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PAPER

Evolutionary Optimization Algorithm for Classification 
of Microarray Datasets with Mayfly and Whale Survival

ABSTRACT
In the field of bioinformatics, a vast amount of biological data has been generated thanks to 
the digitalization of high-throughput devices at a reduced cost. Managing such large datasets 
has become a challenging task for identifying disease-causing genes. Microarray technology 
enables the simultaneous monitoring of gene expression levels, thereby improving disease 
diagnosis accuracy for conditions like diabetes, hepatitis, and cancer. As these complex data-
sets become more accessible, innovative data analytics approaches are necessary to extract 
meaningful knowledge. Machine learning and data mining techniques can be employed to 
leverage big and heterogeneous data sources, facilitating biomedical research and health-
care delivery. Data mining has emerged as a vital tool in the medical field, providing insights 
into illnesses and treatments and enhancing the efficiency of healthcare systems. This thesis 
aims to present a novel hybrid technique for feature selection using amalgamation wrappers. 
The proposed approach combines the Mayfly and whale survival strategies, leveraging the 
strengths of both algorithms. The model was evaluated using various datasets and assessment 
criteria, including precision, accuracy, recall, F1-score, and specificity. The simulation results 
demonstrated that the proposed integrated optimization model exhibits improved classifica-
tion performance with 12% higher accuracy in disease diagnosis.

KEYWORDS
microarray technology, machine learning, data mining, optimization, mayfly, whale survival 
techniques

1	 INTRODUCTION

Bioinformatics data classification is a key machine learning job that has been 
widely adopted for high-dimensional microarray datasets. It is critical to determine 
the most important characteristics for improving classification accuracy since classi-
fication performance is heavily dependent on the quality of the learning algorithm 
[1]. Due to the increasing amount of information that must be processed, there is 
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some duplication and uninteresting characteristics, resulting in excessive training 
as well as classification time [2].

Feature selection is a typical strategy used to handle the exponential rise of fea-
tures in high-dimensional data to reduce information in order to enhance classifica-
tion performance. The methods for feature selection may be divided into three types: 
wrapper, filter, and embedding [3]. In the absence of different classifiers, characteris-
tics in filter approaches are categorized based on intrinsic information [4]. Each intrin-
sic quality evaluates and ranks features using ranking algorithms such as weights, 
dependence, and distance measures. Such ranking algorithms are unquestionably 
advantageous when dealing with huge amounts of dimensional information [5].

Generally, gene expression data comprises a significant number of genes, necessi-
tating the use of analytic tools in order to get relevant information [6]. Because of the 
huge quantity of gene expression knowledge (features or genes) that can be utilized 
to detect common patterns within a collection of samples, the development of gene 
expression technology has rendered microarray data increasingly useful in cancer 
research categorization. Microarrays are a popular tool for detecting cancer cells 
by examining deoxyribonucleic acid (DNA) proteins for additional gene research. 
The gene expression matrix is an array that organizes microarray data, with each 
row representing a single gene and each column representing an experiment con-
dition [7]. Microarray technology can provide valuable insights into disease-gene 
correlations.

Deoxyribonucleic acid has long been thought to be the genetic material in living 
systems [9]. DNA is constructed from four distinct deoxynucleotide monomers as a 
generic substance with sequence programmability. Each monomer is made up of 
deoxyribose, a phosphate group, and any 1 of 4 nitrogen-containing nitrogenous 
bases (cytosine [C], guanine [G], adenine [A], or thymine [T]) (respectively marked in 
green, blue, and orange colors in Figure 1). A phosphodiester link is formed between 
the deoxyribose of one monomer and the phosphate molecule of the next monomer. 
A single-stranded DNA (ssDNA) chain is formed by the orderly and continuous link-
ing of a given number of monomers via phosphodiester bonds [10].

However, in this hybrid optimization mechanism, an amalgamation of MayFly 
and whale survival techniques is proposed, taking into consideration the benefits of 
both algorithms. The contribution of the paper is as follows:

•	 To choose the most informative and significant genes for the classification problem.
•	 To reduce data and scale down the storage requirements for improved 

performance.
•	 Generating a simpler model that allows for greater speed and simplicity.

The rest of the paper is organized as follows: Section 2 describes related works. The 
proposed methodology is described in Section 3. Section 4 discusses the performance 
evaluation. Finally, the conclusion and future works are presented in Section 5.

2	 RELATED	WORKS

To boost the overall effectiveness of the classification model, Sahu and Shrivas 
(2022) presented a genetic search with the Wrapper Subset Evaluator approach for 
feature selection [11]. They also classified CKD and non-CKD data using the Bayes 
Network, Classification and Regression Tree (CART), and J48 classifier. The genetic 
algorithm chooses the best features from the CKD dataset and compares classifier 
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performance to other genetic search FSTs. All classification models perform better 
with GSBFST than without FST or current genetic search FSTs.

Ibraheem et al. (2022) demonstrated the application of a multi-objective iterative 
method for feature subset selection in computerized BC diagnosis [12]. The logistic 
regression (LR) approach was used in this paper for the classification job. For sub-
set feature selection, the projected framework incorporates the TLBO and LR. The 
assessment of an event’s occurrence probability using LR-based categorization is 
determined by the similarity of the provided data points. According to the findings, 
the projected technique generated higher classification accuracy for the BC dataset.

To anticipate breast cancer, Farid et al. (2021) suggested a Composite Hybrid 
Feature Selection Approach Focused on Optimizing the Genetic Algorithm (CHFS-
BOGA). This hybrid feature selection strategy combines the benefits of three filter 
feature selection techniques with an OGA to choose the best features and increase 
classification process efficiency and scalability. OGA is proposed by enhancing the 
initial population generation as well as genetic operators utilizing filter technique 
outcomes, as some previous knowledge suggests. The results reveal that for opti-
mum feature selection, the hybrid feature selection strategy outperforms single filter 
approaches with principal component analysis (PCA) [13].

Alelyani (2022) presented a bagging-based ensemble strategy to increase feature 
selection consistency in medical datasets through data variance reduction [14]. An 
experiment is carried out utilizing four real-world medical datasets, each of which 
has high dimensionality and a small sample size. In this technique, the bagging tech-
nique is utilized to decrease data volatility, which increases the reliability of the 
process of selecting features. The suggested method significantly improves selection 
stability while retaining classification accuracy. This is accompanied by a rise in clas-
sification accuracy in the majority of cases, indicating the stated outcome of stability.

Sangaiah and Kumar (2021) introduced a novel hybrid breast cancer prediction 
algorithm [15]. For breast cancer diagnosis, the expected method employs relief 
attribute minimization with an entropy-based genetic algorithm. To handle data-
sets with high dimensionality and uncertainty, a hybrid mix of these approaches is  
utilized. The data were acquired from the Wisconsin breast cancer database and 
were classified based on several features. This method’s performance is tested, and 
the findings are compared to other feature selection approaches in the literature.

To overcome optimization challenges, Zainudin et al. (2021) integrated relief-f 
with the differential evolution (DE) attribute selection approach. In this study, popu-
lation numbers as well as generation size were calculated adaptively using the num-
ber of characteristics from relief-f. Using 10 datasets from the UCI machine learning 
repository, the effectiveness of this method is compared to that of different feature 
selection strategies in order to demonstrate its superiority [16].

Shankar et al. (2020) suggested a system for classifying CKD that uses an inspired 
optimization model and a learning procedure. This approach uses the Ant Lion 
Optimization (ALO) strategy to pick appropriate aspects of renal data for the classi-
fication procedure. The CKD data is then sorted using a deep neural network (DNN) 
depending on the specified characteristics. When compared to previous data mining 
classifiers, performance comparison shows that this model achieves greater classifi-
cation accuracy, precision, F-measure, and sensitivity measures [17].

Diabetes is predicted by Alam et al. (2019), utilizing important factors, and the 
link between the various qualities is also described. For diabetes, many techniques 
are utilized to assess relevant attribute selection as well as clustering and prediction, 
including association rule mining. The principal component evaluation approach 
was used to pick significant features. The data show a substantial relationship 
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between diabetes, body mass index (BMI), and glucose levels, as determined by the 
Apriori approach. Diabetes was predicted using artificial neural networks (ANN), RF, 
and K-means clustering approaches.

Recent advanced feature selection approaches use the power of optimization 
algorithms to choose a subset of important characteristics to produce better classi-
fication results in order to improve the performance of feature selection methods. 
The following research papers provide an overview of optimization-based feature 
selection approaches used in medical illness detection utilizing a hybrid optimiza-
tion mechanism, which is a combination of MayFly and whale survival strategies.

3	 PROPOSED	METHODOLOGY

Microarrays are used to diagnose diseases such as hepatitis, diabetes, and breast 
cancer. After loading a dataset, preprocessing approaches were employed to exclude 
and substitute missing-value features. The training group was then separated into two 
sub-data groups: training samples and testing samples. The training sub-data were 
used for building classifiers and evaluating individuals throughout the evolutionary 
processes, while the test sub-data were utilized for evaluating the repository’s results. 
Preprocessed data is sent into the feature selection stage, which employs a hybrid-
ization of the MayFly and whale survival algorithms. As a result, the chosen features 
are subjected to a hybrid of the convolution neural network (CNN) and the HopeField 
Classifier. Figure 1 shows a block diagram for microarray dataset classification.

Fig. 1. Block diagram for micro array dataset classification

3.1	 Dataset	description

Diabetes dataset: We obtained twelve microarray datasets from GEO related to 
diverse case-control diabetes investigations. Those datasets, comprising samples 
from several disease phenotypes were further subdivided, and the resultant 20 
subsets were categorized tissue-wise as follows: skeletal (eleven sets), subcutane-
ous adipose (four sets), peripheral (three sets), and liver (two sets). The datasets and 
sub-divisions were chosen based on prior research on candidate gene identification 
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in type 2 diabetes mellitus [19]. Human patients were also followed in certain 
research studies for additional diabetes-related clinical characteristics such as  
illness, family history, food, and physical training regimen. As a result of the inclu-
sion of many environmental factors that are critical for the clarification of diabetes 
pathogenesis, these datasets may be regarded as an outstanding collection of T2D 
gene-expression profiles.

Patients hospitalized at the Liver Department of the Hospital Clinic in Barcelona 
(2007–2009) exhibiting clinical, analytical, or histological signs of AH were prospec-
tively incorporated into the hepatitis dataset [20]. The inclusion requirements have 
already been defined. 13 24 25 All of the patients had an AH histological diagnosis. 
The research excluded patients with cancer or any other probable cause of liver 
damage. A transjugular technique was used to acquire liver samples. We used indi-
viduals with chronic hepatitis C-induced liver problems (HCV) as controls (n¼18). 
All of the individuals had HCV genotype 1 and had not previously received antiviral 
therapy. According to Kleiner’s criteria, we included a cohort of individuals with 
morbid obesity and concomitant nonalcoholic steatohepatitis (NASH) (n¼20). During 
bariatric surgery, these individuals had a laparoscopic liver biopsy. An experienced 
liver pathologist examined all patients’ liver specimens, and a portion of the biopsy 
was immersed in an RNA-stabilizing solution (RNAlater, Ambion, Austin, Texas, 
USA). The procedure followed the ethical principles of the 1975 Helsinki Declaration 
and was accepted by the Ethics Committee of the Hospital Clinic of Barcelona; only 
patients with written informed consent were enrolled.

Breast cancer dataset: The Gene Expression Omnibus dataset was used to 
acquire breast cancer datasets. The criteria were “Organism: Homo sapiens” and 
“Experiment Type: Transcript Profiling by Array.” The platform Affymetrix Gene 
Chip Human Genome U133 Plus 2.0 Array (CDF: Hs133P Hs ENST, version 10) was 
used (Affymetrix, Inc., Santa Clara, CA, 95051, USA). All datasets contained the GEO 
authorization code, platforms, sampling procedure, quantity of sample, and gene 
regulation data. The microarray platforms, as well as the hgu133plus2 annotating 
platform of probes, were used to determine the proteins with differential expres-
sion. The R programming language was used in addition to the Bio-conductor pack-
ages Biobase, hgu133a2cdf, Affy, Limma, AffyRNADegradation, AnnotationDbi, 
hgu133plus2cdf, Annotate, and AffyQCReport.

3.2	 Preprocessing	of	data

The handling of undefined values is the first portion of the preprocessing layer. 
It should be noted that such actions are often represented by NULL values; nev-
ertheless, they can have specific attribute connotations in the temporal system. 
Furthermore, it has substantial speed constraints, as NULL values are not indexed 
at all using Btree index structures. Because its main limitation is the limited car-
dinality of column values, the bitmap index data structure, as the second index 
type based on quantity, somehow doesn’t provide sufficient power, even though 
it can handle NULL values; however, for date and sensor data processing, such 
an approach is totally unsuitable. Bitmap indexes are most commonly employed 
in data warehouses and decision-support systems. Furthermore, when numerous 
update statements are utilized, performance suffers dramatically. It is important 
to stress that temporal information is primarily distinguished by rapid update 
streams. Depending on the characteristics of attribute X and the technique uti-
lized, missing data pieces can be handled in a range of ways. If X is an integer, for 
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illustration, missing data is commonly “filled” by averaging X or estimating gave 
attention to other independent features. Assuming X is a low-cardinality category 
attribute encoded with one-to-m bit characters, an m-dimensional array of 0 might 
represent the missed case. Moreover, several machine-learning algorithms, such as 
Naive Bayes and decision trees, completely disregard or accept incomplete infor-
mation as an additional value. The suggested processing approach treats missing 
data similarly to any other valuation. This may be accomplished by adding a new 
value for X, a null-value X_O with the probability of the target, X = X_O, utilizing the 
standard formula:

 S n
n

n
n

n

n
TR

0 0

0

0

0
1� � �� �� �( ) ( ( ))  (1)

If the occurrence of a missing parameter for feature X has predictive conse-
quences for the accused, S O will record that data. If the missing data are unrelated 
to the defendant, S O will converge to the target’s posterior distribution, correspond-
ing to a “neutral” portrayal of the random variable. In the sklearn-pandas package, 
category imputer is a unique method for working with categories with missing 
information. It is used on information columns in the category “string,” so it sub-
stitutes null values with the column’s most frequently occurring value. Because the 
scikit-learn modules’ imputing algorithms are limited to numerical data, researchers 
who use them cannot impute missing category values. As a consequence, although 
the categorical imputer approach is beneficial for imputing missing category values, 
the imputing techniques of the scikit-learn module may be used for numerical data. 
Consider probability estimate formula (3), which also works for continuous targets 
with a category feature such as:
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The calculation involves determining the target possibility for a cell value by 
combining the frequency-based goal probabilities in the cell with the posterior 
distribution n/n TR. Instead of using the target’s nTR prior probability as the “null 
hypothesis,” it is fairer to use the projected possibility at the subsequent highest 
aggregation level inside the characteristic hierarchy. 
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i
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5 1 41� � �� �( ) ( ( ))  (3)

It should be obvious how this formula automatically modifies the assumption 
based on the concentration of the data throughout the hierarchy’s various levels. 
Every other numeric value in the dataset is recognized with its own set of rules,  
calculated, and replaced with the appropriate language label. This procedure is done 
for each numerical score in the provided dataset. This entire approach is automated 
in order to efficiently preprocess and prescribe the dataset.

3.3	 Feature	selection	using	hybrid	Mayfly	and	whale	optimization

Many species in nature exhibit similar foraging behaviors. Whales, for exam-
ple, exhibit a distinct predatory behavior in foraging known as bubble net foraging. 
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The WOA simulates whale predation behavior by designing a smaller encircling 
mechanism and an upward spiral assault path. When hunting for food, mayflies 
travel from one location to another in search of ample food. They would hunt prey 
in spiral form in the air whenever rich prey was located. This work offers a hybrid 
Mayfly and whale optimization algorithm (MWOA) for complex optimization prob-
lems that combines the WOA’s shrinking encircling mechanism with the MOA’s 
mating behaviors, considerably increasing the algorithm’s local and worldwide 
searching abilities. Levy flying is a method that controls local search through ran-
dom walking behaviors. 

The seagull optimization algorithm, on the other hand, will converge prema-
turely. This research explores including the levy flight technique into the contraction- 
encircling mechanisms of the WOA as well as the local pairing of the MOA, which 
increases the exploiting ability and prevents the algorithm’s early convergence.

Exploitation phases. Equations (1) and (2) mimic the circular habits of hump-
back whales. The leading solution is considered the target prey by the algorithm, 
with some other alternatives seeking to close in on the targeted prey.

 
� � � �

� � � �

� �

� � � �

u X t X t

X t X t u

b

b

� . ( ) ( )

( ) ( ) .1
 (4)

Here, ‘t’ is the current iteration, ′X
b
 is the best-so-far solution, ∝′ and β ′ are coeffi-

cient vectors that are shown as follows:
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�� �
2

2

a r a

r

.

.�
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Here, a′ is a linear decreasing coefficient that decreases from 2 to 0 through-
out the iteration process, and r′ is a random vector in the iterative procedure (0, 1).  
The values of ∝′ and β ′ vectors are adjusted to control the different locations of the 
present position relative to the best-so-far solution. In (2), the algorithm considers 
that the prey is the best-so-far answer, changes the humpback whale’s current loca-
tion to a position near the prey, and simulates the circumstance of an encircling 
prey. Two mathematical models are developed to imitate the bubble-net attack on 
humpback whales.

Shrinkage circling method: This model is accomplished by lowering the value 
of the vector’ linearly. The fluctuation band of the coefficients vector ∝′ is among 
(–∝′,∝′) depending just on vectors a and randomized vector r′, where a′ is lowered 
from two to zero during the iteration process. 

The model first estimates the range from it to the target, before the humpback 
whale surrounds the prey in a logarithmic circular movement, as depicted in the 
mathematical formula below:

 � � �� � � � �X t U e X tr

b
( ) cos( ) ( )1 2� ��  (6)

Here � � �� �U X t X t
b
( ) ( ) � is a parameter for defining the form of the exponential 

spirals, which is a random number in (1, 1).
During the optimization procedure, the humpback whale will deep dive and then 

begin to emit a spiral bubbles surrounding the prey as it moves upward toward the 
surface. In a spiral, the humpback whale progressively retreats inside the ring while 
chasing food. According to the hunting behavior, the diminishing circle, and the 
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spiral-shaped pathway each have the same implementation chance for revising the 
humpback whale’s location throughout the illustrations.

Movements of male mayflies. During iterations, male mayflies in a swarm will 
continue the exploration or exploitation operation. The velocity will be changed 
depending on their current fittest f (x i) and the fittest values in previous paths f (xhi). 
If f (xi) > f (xhi), the male mayflies will then change their velocity based on their cur-
rent velocity, the space between themselves and the global optimal location, and the 
historic best trajectory will be: 

 v t g v t a e x x t a e x x t
i i

r

hi i

r

g i

p g( ) . ( ) ( ) ( )� � � ��� �� � ��
�

�
�

� �
1

1 2

2 2� �  (7)

In this case, g is a variable that decreases linearly from its maximum to a lesser 
number. The constants a1, a2, and β are used to equalize the quantities. The parame-
ters r

p

2  and r
g

2 � are employed to calculate the Cartesian distances among individuals 
and their historical best position, as well as their global position in the swarm. The 
Cartesian range would serve as the length array’s second norm.

 x x x x
i j

k

n

ik jk
� � �

�
�

1

( )  (8)

On the other hand, if f (xi) < f (xhi), then the male mayflies would update their 
velocity from the current with a random dance coefficient d: 

 v t g v t d r
i i
( ) . ( ) .� � �1

1
 (9)

Here, r1 is a uniformly distributed random value drawn from range [–1, 1].
Movements of female mayflies. Female flies have the ability to adjust their veloc-

ity in an unusual way. Female mayflies have wings that last only between 1–7 days,  
so they might be in a rush to locate male mayflies to breed with and reproduce 
themselves. As an outcome, their velocity would change depending on which male 
mayfly she wanted to engage with. The MO technique calculates the finest female 
and male mayflies to be the initial partners, followed by the second best female and 
male mayflies, and so on. As an outcome, if I is the i-th female mayfly, f (yi) < f (xi) 

 v t g v t a e x t y t
i i

r

i i

mf( ) . ( ) ( ) ( )� � � ��� ��
�

1
3

2�  (10)

Here, a3 is another constant. r
mf

2 � gives Cartesian distance. On the contrary, if  
f (yi) < f (xi) Female flies will refresh its present velocity with some other randomized 
dance. f l:

 v t g v t fl r
i i
( ) . ( ) .� �

2
 (11)

Where, r_2 is random number within uniform-distribution in range [–1, 1].
Exploration phase. The technique causes the answer to be distant the best 

current solutions during the exploration phase and randomly traverses the search 
space. As a result, the WOA algorithm picks the reference solution at random using a 
random number of the ∝′ vector larger than + 1 or even less than 1. This method, in 
conjunction with ∝′ > 1, enables the algorithm to do global exploration. Here is the 
mathematical model:
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Here ′X
rand

� is the location vector of a solution picked at random out from present 
populations

Mating of mayflies. Every one of the leading 50% females and males would be 
mated then given a pair of progenies. Their kids would be created at random from 
their parents:

 offspring L male l female

offspring L female l

� * *

� * *

1 1

2 1
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( )

( ) mmale

Here, L gives random no, in the Gauss distribution.
As the gap between jth and ith persons expands, r j will seem to be larger. The 

ith individual may be referenced to the global optimum, the jth individual’s his-
toric ideal situation, or its mate. Therefore, due to the declination of the negative 
exponential function, the weights for the range would be lowered. This means 
that when the distance between p j and p I grow, so do the weights and the over-
layed velocities v p. If the difference between p j and p I is narrowed, the weight 
will be increased instead. As a consequence, when p j is sufficiently separated 
from p I, it adjusts its speed with a lesser range, and when p j is sufficiently close 
to p I, it changes its speed with a larger amplitude. This also means that when 
they are far away, they approach each other more slowly; conversely, whenever 
they come face-to-face, they slide away more quickly. These possibilities are just 
unacceptable.

Classification using hybridization of convolution neural network and 
Hopefield (CNN_HF). The Hopfield architecture is a completely connected neu-
ral network that can recover previously stored memories from loud and distorted 
inputs. The Hopfield network is made up of N neurons linked together by symmetri-
cal bidirectional linkages. The binary variable will be used to represent the activity 
of neuron i. x_i∈{+	1, –1} corresponds to the two conceivable states of neurons: fir-
ing (+1) or silence (–1). As a result, the network’s state may be depicted as a binary 
array x = (x 1,…x N), with the ith component, x i, representing the state of neuron 
i. The interactions of neurons are represented in the connecting matrix, which is 
a NN real square matrix with self-interaction terms, with entries w j defining the 
strength of the link between neurons. i and j. Where x

i

t  is the temporal development 
of the network specified by the following updated rule based on the state of neuron 
I at time t:

 x sign w x
i

t

j

N

ij i

t�

�

�
�

�
�
�

�

�
�
��1

1

 (13)

(1) describes dynamics that may be done either asynchronously or synchro-
nously. In the first scenario, the status of all neurons is concurrently updated at 
time t. Asynchronous updating, on the other hand, modifies the state of one node 
at a time based on the status of its neighbors. We picked asynchronous updating 
because it has superior convergence features since it reduces misleading cycles. 
In general, the Hopfield system is utilized for pattern storage and recovery. A col-
lection of p patterns must be kept in the network, � � �� � �� �( , . )�

1 N  with � � �1, ,� �p  
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should be stable fixed points in the dynamics. This may be accomplished in two 
steps. First, it can be demonstrated that an asynchronous update as well as a sym-
metrical non-negative vector W are necessary criteria for the recursion to reach a 
stable state. The energy function is commonly used to demonstrate the truth of this 
assertion:

 E w x x

i j

N

ij i j
� �

�
�12

1,

 (14)

Demonstrating a Lyapunov function for something like the system If this is con-
firmed, energy doesn’t grow at every state transition; and system development 
results in a local energy minimum. Secondly, it can be demonstrated that with the 
draw the conclusion matrix selection

 w
N

ij

P

i j
�

�
�1

1�

� �� �  (15)

called the Hebb rule, when p isn’t large, patterns � � � �� � �� � � �( , . ) ,
1

1
N

p� . With 
this rule, the number p of patterns that may be stored in the network is finite and 
proportionate to the number of neurons N. There is a crucial variable p c, termed 
storage capacity, and only if the number of patterns is less than pc can the model 
retrieve them. We impose a cutoff on the signature size to counteract the occurrence 
of imbalanced microarrays, which may cause a bias in favor of bigger microarrays. 
As a result, if the size N of the signature connected with the class is greater than 
1, genes are chosen at random first from the relevant signature. When Nµ	>	Γ all 
neurons corresponding to genes eliminated from the signature are set to 0 in the 
input configuration. As a result of the updating rule, they play no further part in 
the model’s temporal development. We paired the signal reduction with something 
like a resampling approach to avoid information loss. As a result, the threshold is 
used M1 times (the default M = 100). The class to which the Hopfield models con-
formed in the majority of the M trials is chosen as the final outcome of our study for 
each sample.
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p
error
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�
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1

2
1

2
[ ]erf  (16)

where N = N(Γ) is used for the program as well as in the following. Assuming that 
a pattern is made up of N bits, the probability of an error-free retrieval of a recorded 
pattern is (1-p error) N, which must be larger than some fixed number, such as 0.99. 
Given that the factorial expansions as well as the smallest terms in the p error should 
be minimal, we obtain

 p
N

p N
error

� �
�

�
�
�

�

�
�
�
�

1

2
1

2

0 001
[ ]

.
erf  (17)

Here, p << N and erf (x) = 1 - x
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Fig. 2. Convolution neural network and Hopefield (CNN_HF) based classification

Therefore, it must be minimal in order to reduce noise and have balanced sig-
natures, but it must also allow N to meet equation 6. Given that normally 2p6, the 
threshold value of N () is between 70 and 100, according to equation 6, because the 
configurations we are keeping in the networks are correlated, we set a number such 
that the value of N is much greater than the aforementioned threshold and chose = 
200 as the default value for our analysis. To learn how to discern between these 2 
ideas, we propose a neural network architecture (CNN HF), which is a hybridization 
of convolution neural network and Hopefield, as given in Figure 2.

The input to the network is an image map having three channel {Sk(x)[k = 1,2,3]},  
here S1(x) = n ↑ (x), S2(x) = n ↓ (x), S3(x) = nhole (x) Because the models we are consid-
ering are limited to one Hilbert space, each input can only take on the values 0 or 1. 
The CCNN creates nonlinear “correlation maps” from this input, which contain data 
on local spin-hole interactions up to a certain order N across the snap. This proce-
dure is parameterized by f (a, k(= 1,… M)) learnable 3-channel filters, wherein M 
represents the number of filters in the models. The mappings for the specified filter 
are defined as follows:
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In this case, it runs over the filter’s convolutional window. Traditional CNN uses 
just one of these procedures, which are alternated with a nonlinear activation func-
tion like h RELU (x) = max(0, x). The problem with common non – linear functions 
is that typically combine all levels of correlation into the extracted feature, mak-
ing it impossible to determine what traditional networks are measuring. Each level 
of our nonlinear convolutions, on the other hand, C

α
( ) ( )N x  is especially created to 

understand n-site semi-local correlations at site x that manifest as patterns in the 
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convolution layers f. It is necessary to do a direct calculation of nonlinear convolu-
tion layers up to order N, O((KP)n per site; here P gives the pixel count and K gives 
the number, of microarrays.

4	 PERFORMANCE	ANALYSIS

The experimental results are analyzed using Python software and the parame-
ters precision, accuracy, specificity, F1-score, and recall. The comparison is made for 
three different datasets, including hepatitis, diabetes, and breast cancer. The follow-
ing are the performance metrics:

Accuracy: To compare the total expected values to the number of predictors for 
successfully categorized occurrences. It is expressed mathematically:

 Accuracy �
�

� � �
TP TN

TP TN FP FN

Fig. 3. Confusion matrix for breast cancer testing validation Fig. 4. Precision-recall curve for breast cancer testing validation

Recall or sensitivity: Recall provides a ratio of the value of the correct prediction 
to the total prediction values. It is defined in the equation.

 Recall
TP

TP FN
�

�

Precision: Precision is expressed in terms of true positives to total anticipated 
values. It is expressed mathematically.

 Precision �
�
TP

TP FP

F1 – Score: It is involved in the computation of the ratio of the average value of 
precision and recall. F1-Score expressed mathematically:

 F � �Score *
*

1 2� �
�

Precision recall

precision recall

Figure 3 depicts the discriminant function for breast cancer test validation; 
here, rows indicate the anticipated class, and columns give the actual data class. 

https://online-journals.org/index.php/i-joe


iJOE | Vol. 19 No. 13 (2023) International Journal of Online and Biomedical Engineering (iJOE) 29

Evolutionary Optimization Algorithm for Classification of Microarray Datasets with Mayfly and Whale Survival

The diagonally colored cells represent the tested systems that are categorized prop-
erly or inaccurately. The column here on the right side represents each anticipated 
class, whereas the row at the bottom reflects each actual class’s performance. Table 1  
shows training and testing validation for the breast cancer dataset:

Table 1. Train and test validation for breast cancer dataset

Parameter Testing Values Training Values

accuracy 0.9783 0.9783

Precision 0.9861 0.9861

Recall 0.9833 0.9833

Specificity 0.9952 0.9952

F1-score 0.984 0.984

Fig. 5. ROC curve for breast testing validation Fig. 6. Confusion matrix for breast cancer training validation

Figure 4 depicts the precision-recall curves for breast cancer test validation, 
where the x-axis represents recall and the y-axis represents accuracy. Average accu-
racy (AP) is 0.9842 for basal 1.0 with HER, cell line, normal, luminal A, and luminal 
B, and 0.9762 for luminal B. Figure 5 depicts the ROC curve for breast cancer testing 
verification, where the x-axis represents the false positive rate and the y-axis rep-
resents the TRUE POSITIVE RATE parameter. The AUC for HER, cell line, normal, 
luminal A, and luminal B is 0.9948 with basal 1.0 and 0.9958 for luminal B.

Figure 6 depicts the scatterplot for prostate cancer training validation, where the 
rows indicate the predicted class and the columns represent the actual data class. 
The electric networks that are successfully and erroneously categorized are shown 
by diagonally colored cells. The column just on the right side represents each antici-
pated class, whereas the row at the bottom reflects each actual class’s performance.

Figure 7 depicts the precision-recall curves for breast cancer train validation, 
where the x-axis represents recall and the y-axis represents accuracy. AP is 0.9989 
for baseline, 1.0 for HER, cell line, normal, luminal A, and luminal B, and 0.9762 for 
luminal B. Figure 8 depicts the ROC curve during breast cancer screening validation, 
where the x-axis represents the false positive rate and the y-axis represents the true 
positive rate parameter. The AUC is 0.9948 for basal, 1.0 for HER, cell line, normal, 
0.9967 for luminal A, and 0.9992 for luminal B.
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Fig. 7. Precision-recall curve for breast cancer training 
validation

Fig. 8. ROC curve for breast cancer training validation

Table 2. Train and test validation for diabetes dataset

Parameter Testing Values Training Values

accuracy 0.9654 0.9572

Precision 0.9592 0.9578

Recall 0.9677 0.9464

Specificity 0.9677 0.9464

F1-score 0.9631 0.9517

Fig. 9. Confusion matrix for diabetes testing validation

Figure 9 depicts a confusion matrix for diabetic testing validation, where 
the rows indicate the expected class and the columns reflect the actual class of 
data. The diagonally colored cells represent the tested systems that are catego-
rized properly or inaccurately. The column just on the right-hand side represents 
each anticipated class, whereas the row at the bottom reflects each actual class’s 
performance.
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Fig. 10. Precision-recall curve for diabetes testing validation Fig. 11. ROC curve for diabetes testing validation

Figure 10 depicts the precision-recall curves for diabetic testing validation, where 
the x-axis represents recall and the y-axis represents accuracy. When the AP reaches 
0.9963, it indicates presence, and when it reaches 0.9869, it suggests absence. Figure 11 
depicts the ROC curve for diabetes testing validation, where the x-axis represents the 
false positive rate and the y-axis represents the true positive rate parameter. When AUC 
reaches 0.9929, it implies presence, and when AP reaches 0.9929, it shows presence.

Fig. 12. Confusion matrix for diabetes training validation

Fig. 13. Precision-recall curve for diabetes training validation Fig. 14. ROC curve for diabetes training validation

https://online-journals.org/index.php/i-joe


 32 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 19 No. 13 (2023)

Ramakrishna and Rajarajeswari

Figure 12 depicts the confusion matrix for diabetic training validation, where 
the rows indicate the predicted class and the columns represent the actual class 
of data. The diagonally colored cells represent telecommunication that is prop-
erly and erroneously categorized. The column on the right-hand side represents 
each anticipated class, while the row at the bottom displays the performance of 
each actual class. Figure 13 depicts the accuracy-recall curve for diabetes training 
validation, where the x-axis represents recall and the y-axis represents preci-
sion. It is discovered that the AP is 0.9868 for both present and absence, indicat-
ing absence.

Figure 14 depicts the ROC curve for diabetes training validation, where the x-axis 
represents the false positive rate and the y-axis represents the true positive rate 
parameter. The AUC is found to be 0.9893 for both present and absent data. Table 3 
shows training and test validation for the hepatitis dataset.

Table 3. Train and test validation for hepatitis dataset

Parameters Testing Values Training Values

accuracy 0.9605 0.9733

Precision 0.9912 0.9253

Recall 0.8 0.7984

Specificity 0.9417 0.9621

F1-score 0.8622 0.824

Fig. 15. Confusion matrix for hepatitis testing validation

The confusion matrix for hepatitis test validation is shown in Figure 15, where 
the rows represent the expected class and the columns represent the actual class 
of data. The diagonally colored cells represent the tested systems that are cate-
gorized properly or inaccurately. The columns on the right-hand side represent 
each anticipated class, while the row at the bottom reflects each actual class’s 
performance.
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Fig. 16. precision-recall curve for hepatitis testing validation Fig. 17. ROC curve for hepatitis testing validation

Figure 16 depicts the precision-recall curves for hepatitis test validation, where 
the x-axis represents recall and the y-axis represents accuracy. AP is found to be 0.997 
for blood donors, 1.0 for questionable blood donors, 0.7276 for hepatitis, 0.7935 for 
fibrosis, and 1.0 for cirrhosis.

Figure 17 depicts the ROC curve during hepatitis testing validation, where the 
x-axis represents the false positive rate and the y-axis represents the true positive 
rate parameters. The AUC is 0.9812 for blood donors, 1.0 for questionable blood 
donors, 0.9587 for hepatitis, 0.9725 for fibrosis, and 1.0 for cirrhosis.

Fig. 18. Confusion matrix for hepatitis training validation

Figure 18 depicts the matrix for hepatitis retraining validation, where the rows 
indicate the predicted class and the columns represent the actual data class. The 
electric networks that are successfully and erroneously categorized are shown by 
diagonally colored cells. The columns on the right-hand side represent each antic-
ipated class, while the row at the bottom reflects each actual class’s performance.

Figure 19 depicts the precision-recall curves for hepatitis-trained validation, 
where the x-axis represents recall and the y-axis represents accuracy. The AP for 
blood donors is 0.9979, 1.0 for suspicious blood donors, 0.8145 for hepatitis, 0.8274 
for fibrosis, and 0.979 for cirrhosis. The curve for hepatitis retraining validation is 
shown in Figure 20, where the x-axis represents the false positive rate and the y-axis 

https://online-journals.org/index.php/i-joe


 34 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 19 No. 13 (2023)

Ramakrishna and Rajarajeswari

represents the true positive rate variable. The AUC is 0.9726 for blood donors, 1.0 
for suspicious blood donors, 0.9005 for hepatitis, 0.9913 for fibrosis, and 0.999 for 
cirrhosis.

Fig. 19. Precision-recall curve for hepatitis training validation Fig. 20. ROC curve for hepatitis training validation

Table 4. Comparative analysis

Dataset Parameter Hybrid Approach CNN Model RNN Model

Breast Cancer

Accuracy 0.9783 0.9432 0.9367

Precision 0.9861 0.9485 0.9402

Recall 0.9833 0.9512 0.9426

Specificity 0.9952 0.9356 0.9281

F1-score 0.984 0.9501 0.9414

Diabetes

Accuracy 0.9654 0.9215 0.9124

Precision 0.9592 0.9263 0.9185

Recall 0.9677 0.9197 0.9113

Specificity 0.9677 0.9176 0.9092

F1-score 0.9631 0.9234 0.9151

Hepatitis

Accuracy 0.9605 0.9321 0.9246

Precision 0.9912 0.9385 0.9302

Recall 0.8 0.9256 0.9173

Specificity 0.9417 0.9301 0.9224

F1-score 0.8622 0.9324 0.9247

Table 4 provides a comparative analysis of the performance metrics for the 
hybrid approach, CNN model, and RNN model on three different datasets: breast 
cancer, diabetes, and hepatitis. For the breast cancer dataset, the hybrid approach 
achieves the highest values across all parameters, including accuracy (0.9783), pre-
cision (0.9861), recall (0.9833), specificity (0.9952), and F1-score (0.984). The CNN 
model and RNN model also perform well but consistently exhibit slightly lower val-
ues compared to the hybrid approach. Similarly, in the diabetes dataset, the hybrid 
approach outperforms the individual CNN and RNN models in terms of accuracy 
(0.9654), precision (0.9592), recall (0.9677), specificity (0.9677), and F1-score (0.9631). 

https://online-journals.org/index.php/i-joe


iJOE | Vol. 19 No. 13 (2023) International Journal of Online and Biomedical Engineering (iJOE) 35

Evolutionary Optimization Algorithm for Classification of Microarray Datasets with Mayfly and Whale Survival

The CNN model and the RNN model show slightly lower performance in all the met-
rics. In the case of the hepatitis dataset, the hybrid approach again demonstrates 
superior performance compared to the CNN and RNN models. The hybrid approach 
achieves higher values in accuracy (0.9605), precision (0.9912), recall (0.8), specific-
ity (0.9417), and F1-score (0.8622). The results highlight that the hybrid approach 
tends to outperform the individual CNN and RNN models across all three datasets. It 
achieves higher accuracy, precision, recall, specificity, and F1-score values, indicat-
ing its effectiveness in handling these particular datasets. These findings suggest that 
combining the strengths of both CNN and RNN models in a hybrid approach leads 
to improved performance and better predictive capabilities for the given datasets.

5	 CONCLUSIONS

This research focused on the categorization of microarray datasets using a hybrid 
classifier combined with optimization strategies. The suggested hybridization of 
CNN-HF gathers and classifies the microarray dataset for sources. Three conven-
tional microarray cancer datasets, namely breast tumors, hepatitis, and diabetes, 
are utilized to validate the suggested technique. Null value handling and categorical- 
to-numerical techniques are employed as dimensionality reduction techniques to 
solve the curse of dimensionality and other challenges related to the nature of the 
data. The feature selection method is a hybridization of the mayfly and whale opti-
mization algorithms. The binary cross-entropy is used to determine it because it 
is a conventional loss function and is recommended for classification problems. It 
has a large magnitude of error during both training and testing. We employed per-
formance metrics such as classification results, accuracy, recollection, and classifi-
cation error to evaluate the suggested method’s effectiveness. We discovered that 
the proposed CNN HF achieves 97% accuracy, 98% precision, 98% recall, 99% spec-
ificity, and a 98.4% F1-score for the breast cancer dataset. It achieves 96% accu-
racy, 95% precision, 96% recall, 95% specificity, and a 96% F1-score for the diabetes 
dataset. It achieves 96% accuracy, 99% precision, 80% recall, 94% specificity, and 
an 86% F1-score for the hepatitis dataset. In the future, we want to improve the 
proposed method and apply it to multi-class microarray tumor databases. We also 
wish to improve the accuracy of classification on binary datasets that now have 
low accuracy.
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