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PAPER

Secure Data Computation Using Deep Learning 
and Homomorphic Encryption: A Survey

ABSTRACT
Deep learning and its variant techniques have surpassed classical machine algorithms due to 
their high performance gaining remarkable results and are used in a broad range of applica-
tions. However, adopting deep learning models over the cloud introduces privacy and security 
issues for data owners and model owners, including computational inefficiency, expansion 
in ciphertext, error accumulation, security and usability trade-offs, and deep learning model 
attacks. With homomorphic encryption, computations on encrypted data can be performed 
without disclosing its content. This research examines the basic concepts of homomorphic 
encryption limitations, benefits, weaknesses, possible applications, and development tools 
concentrating on neural networks. Additionally, we looked at systems that integrate neural 
networks with homomorphic encryption in order to maintain privacy. Furthermore, we clas-
sify modifications made on neural network models and architectures that make them com-
putable via homomorphic encryption and the effect of these changes on performance. This 
paper introduces a thorough review focusing on the privacy of homomorphic cryptosystems 
targeting neural network models and identifies existing solutions, analyzes potential weak-
nesses, and makes recommendations for further research.

KEYWORDS
homomorphic encryption, deep learning, privacy-preserving, convolutional neural networks, 
privacy-preserving deep learning, bootstrapping

1	 INTRODUCTION

Algorithms for Machine Learning (ML) based on Deep Neural Networks (DNNs) 
have received much interest as a step forward in the advancement of Artificial 
Intelligence (AI). These algorithms provide impressive results and are widely used in 
various domains, including medical predictions, natural language processing, and 
financial predictions [1]. A Deep Learning (DL) algorithm is a variety of AI capable 
of interpreting data in the same way a human brain learns and classifies objects. By 
exploiting deep learning’s predictive capability, we can predict the future and make 
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decisions depending on currently accessible data that serve as training data for the 
DL model [2]. The deployed model will make predictions based on client data. That is 
how Machine Learning as a Service (MLaaS) was developed in the cloud, eliminating 
the requirement for clients to create their models to perform predictions. MLaaS and 
other services are offered by Microsoft Azure Machine Learning, Google Prediction 
API, and GraphLab [3]. Privacy and effective data processing are critical research 
topics in outsourced computing [4]. Before adopting the cloud model, the standard 
technique for protecting private data was encryption. It protects data during storage 
and transmission but not during decryption and processing. Extraction of data values 
requires decryption to access the raw data, which is frequently private. As a result, 
privacy-preserving solutions are becoming increasingly important. The underlying 
principle is to outsource data processing without allowing transparent access to it. 
Several studies have been conducted in recent years to examine the privacy protec-
tion of this sensitive data in various machine learning techniques, including linear 
regression, linear classifiers [5], [6], decision trees [7], and neural networks [8]. The 
necessity for private inference has increased due to two primary key points:

1. Data proliferation and digitization: As an increasing volume of sensitive data
becomes digitally accessible, the need for secure methods to process this data
while preserving privacy becomes paramount [9].

2. Legal obligations: The emergence of data-protection regulations such as the
General Data Protection Regulation (GDPR) [10] and others has led to increasing
legal obligations to maintain the privacy of customers’ data.

Homomorphic Encryption (HE) is essential for enabling private inference. HE is
a cryptographic technique that enables computations to be executed on encrypted 
data, producing an encrypted output corresponding to the result of operations per-
formed on unencrypted data [11], [12]. This attribute facilitates the execution of 
computations on encrypted data by multiple entities without necessitating access to 
the unprocessed, unencrypted data. This makes it possible for multiple parties to col-
laborate on sensitive data, such as financial information or medical records, without 
revealing their respective inputs to one another. The relationship between HE and 
private inferencing can be observed in the following manner:

1. HE can be used as a utility within secure Multi-Party Computation (MPC) proto-
cols [13] to facilitate computations on encrypted data, thereby facilitating private
inferencing.

2. In order to maintain data privacy, HE enables computations to be offloaded to
unreliable third parties (such as cloud servers). This is especially crucial when
data owners lack the computational power for complicated computations yet are
reluctant or legally unable to provide their raw data [14].

This review paper focuses on solutions entirely based on HE for privacy preser-
vation and Neural Networks (NN) for ML. HE cannot be applied directly to NN. They 
are reconciled using a variety of advanced cryptography techniques. Among these 
techniques, multi-party computation enables many parties to share their inputs 
to obtain a unique output. Several practical constructions relying upon Garbled 
Circuits (GC), secret sharing, or Oblivious Transfer (OT) exist today [15]–[18]. HE is 
another technique, where additions or multiplications are made in the encryption 
using Rivest, Shamir, and Adleman (RSA) [19], ElGamal [20], or Paillier [21] crypto-
systems. The potential of having Fully Homomorphic Encryption (FHE) capable of 
doing both additions and multiplications in any fashion in the encrypted world is 
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relatively recent. Since the initial implementation of FHE in 2009, several publica-
tions have been published on this subject [22]–[25]. This paper’s main contributions 
are summarized as follows:

•	 Discusses and analyzes the most recent advances and related issues in HE, con-
centrating primarily on a combination of cryptography and neural networks.

•	 Provides benefits, weaknesses, and possible applications, reviewing existing 
development tools, languages, and libraries of HE cryptosystems.

•	 Covers the standard neural network structure and what modifications are 
required to overcome the limitations of applying the original structure to provide 
security and privacy.

•	 Provides detailed comparisons of the surveyed methods based on our 
defined metrics.

In summary, this study aims to serve as a starting point for academics and 
researchers who are new to the field by comparing various approaches and findings 
to preserve privacy and those interested in creating models that integrate NN with 
HE cryptosystems.

This paper is structured as follows: Section 2 describes classical cryptographic 
methods for securing DL. Implementation of DL technology with HE, limitations, 
and required modifications are presented in Section 3. Section 4 discusses privacy- 
based DL techniques. Section 5 discusses homomorphic training and evaluation. 
Attacks on DL models and privacy solutions are presented in Section 6. Furthermore, 
the most potential applications that work with HE are discussed in section 7. Section 
8 presents the tools used within homomorphic schemes. Challenges are examined 
in Section 9. Finally, in Section 10, we present conclusions and raise issues for 
future research.

2	 CLASSICAL	CRYPTOGRAPHIC	METHODS	FOR	SECURING	DL

To ensure the privacy of private information such as financial or medical records, 
we need to use computation on encrypted data without disclosing the original con-
tent, which is made possible by homomorphic encryption, functional encryption, 
and secure multi-party computing techniques. This section demonstrates the cryp-
tographic methods for securing deep learning to preserve privacy.

2.1	 Homomorphic	and	functional	encryption

In 1987, Rivest et al. [26] questioned the ability of an encryption system to facilitate 
the computation of encrypted data without the need to know secret information. HE is 
a term used in cryptography referring to symmetric/secret key or asymmetric/public 
key cryptosystem. It is capable of performing specific computations on ciphertexts. 
Also, the computational result is encrypted, so no decryption procedures are neces-
sary throughout the computation. An HE system contains three primary functions: 
KeyGen, Enc, and Dec, which are responsible for generating keys, encryption, and 
decryption. However, it integrates an evaluation function, denoted by the term Eval. 
Assume having a collection of plaintext messages {mi} and their corresponding associ-
ated ciphertexts {ci}. The evaluation function takes a public key Kpk, a set of ciphertexts 
{ci}, and circuit f such that Dec Eval f c c f m m

K K n n
sk eval

( , ( )( , )) , ,�
1 1
 = . Depending 
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on the type of computations, HE is named Partially Homomorphic Encryption (PHE) 
when only one type of operation is allowed; hence the name partially comes from [27]. 
It provides an infinite number of addition or multiplication operations on ciphertext 
without revealing data. For instance, the widely used RSA encryption [19] enables 
multiplication over ciphertext with no decryption; hence, RSA is referred to as a mul-
tiplicative HE. Another well-studied additive PHE is the Bealoh [28] and Paillier [21] 
cryptosystems. These encryptions have been extensively applied in a variety of appli-
cations, including electronic voting [29] and data mining. Another type of scheme 
known as Somewhat Homomorphic Encryption (SHE) provides homomorphic addi-
tion and multiplication operations but does not support arbitrary deep circuits. Boneh, 
Goh, and Nissem’s BGN scheme [30] was the first to allow both operations with con-
stant-size ciphertext and compute an unlimited number of additions but only one sin-
gle multiplication.

In 2009, Gentry [14] proposed the first FHE scheme capable of calculating arbitrary 
functions of any circuit depth. It works in two main steps: first, it starts with a SHE and 
uses ciphertexts that contain a certain amount of noise to ensure security. However, 
for the decryption to be correct, this noise must be maintained within a certain bound, 
referred to as the decryption bound. In order to allow arbitrary computations on the 
scheme, Gentry introduces a new technique (second step) called “Bootstrapping” or 
“Recrypt,” allowing the reduction of noise contained in a ciphertext [31]. The use of 
both SHE and bootstrapping results in applying an unlimited number of operations. 
Unfortunately, Gentry’s bootstrappable SHE, which is based on Ideal Coset Problem 
(ICP), suffers from high computation and memory costs; hence, the scheme is ineffi-
cient for practical real-world applications. It has become the subject of optimization 
research, laying the groundwork for novel approaches to the performance problem. 
A decade later, numerous FHE systems have been designed to make it practical [32].

An FHE scheme is a public-key technique composed of four algorithms: KeyGen, 
Enc, Eval, and Dec [4], [14]. All operations must have a polynomial computational 
complexity under the security parameters λ, where:

•	 KeyGen accepts λ as input and outputs a key pair (public key Kpk and private key, 
Ksk) where Kpk is used to map plaintext to ciphertext, while Ksk does the reverse. 
Further, a public evaluation key Keval is used during homomorphic multiplication 
operations.

 K K K KeyGen
pk eval sk

, ,�� � � � � �

•	 Enc takes plaintext m belongs to plaintext space M and encrypts it to cyphertext 
c in the ciphertext space C.

 c Enc m
K
pk

� � �

•	 Eval accepts as input Keval, a circuit f from a permitted set of circuits, and cipher-
texts C= (c1, …, ct) that encrypt M= (m1, …, mt) of f; it outputs a ciphertext C′, 
such that DEC C f M

K
Sk

� � � �� �  .

 C Eval f C
K
eval

�� � �,  

•	 Dec implements the reverse process of an encryption algorithm; it accepts the 
inputs Ksk and ciphertext c and returns plaintext m, which belongs to plain-
text space M.
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 m DEC c
K
Sk

� � �

Homomorphic encryption is the same as a conventional encryption scheme, but 
with an extra Eval algorithm, which allows performing operations over encrypted 
data. The correctness of the scheme is proven by the decryption process of the 
ciphertext produced by the Eval algorithm. The scheme is correct if the following 
statement is satisfied:

 � � � �� � � � � �C Eval thenDEC C f Mf C
K K
eval Sk

, , � � � �

Also, when all circuits of the scheme are evaluated compactly, the homomorphic 
encryption scheme is full.

 DEC Eval f Mf C
K K
Sk eval

, �� �� � � � �

In 2005, Sahai and Waters [33] proposed Functional Encryption (FE). It is a public- 
key cryptosystem that lets users learn certain functionalities of encrypted data. It 
allows for secret keys with limited access, such that the holder of the key may decrypt 
just a small subset of the data and perform a specific function on it. Consider the 
functionality denoted by the notation F �K X: , * .� �� �0 1  Where K is the key space 
and X is the plaintext space, the function F is a deterministic function over (k,x) that 
returns (0,1)*. A scheme is FE for a function F over (k,x) if it can compute F(k,x) given 
a ciphertext of x ∈ X and a secret key Ksk for k ∈ K. Both FE and HE allow for compu-
tations to be performed over encrypted data. The distinction is that the output of FE 
is plaintext, but the output of HE stays encrypted since HE evaluates encrypted infor-
mation without decryption. Within HE frameworks, a trusted authority is unneces-
sary. In addition, if Ksk is provided, HE allows any circuit to be evaluated over the 
encrypted data, whereas FE allows only certain functions to be computed [1].

2.2	 Secure	multi-party	computation

MPC, often called Secure Multi-Party Computation (SMC), is another cryptographic 
method for privacy-preserving. MPC provides a solution to the challenge of collabo-
rative computing that protects the privacy of honest/dishonest users inside a group 
without needing a reliable third party. Generally, an MPC configuration presumes the 
existence of n parties (P1,P2,…,Pn), each with its own data (x1,x2,…,xn). All parties are 
interested in jointly computing a fixed function f (x1,x2,…,xn) of their inputs, where their 
data privacy is protected. It wasn’t until Yao [18] introduced Garbled Circuit (GC) in 
1986, that the idea of secure computing was explicitly articulated as secure two-party 
computation. All the functions in Yao’s GC can be expressed in terms of a boolean cir-
cuit, and it only needs constant number of communication rounds. Another technique 
used by MPC is an Oblivious Transfer, where information is transferred without the 
recipient’s knowledge. In OT protocol, a receiver participant PR can choose i without 
knowledge of the sender participant PS and receive mi from the group of PS messages 
M. However, while PR is unaware of the other messages in M, PS is also unaware of the 
one that has been selected. Secret sharing is an additional building block for secure 
MPC protocols. Secret sharing distributes secrets to participants. The original value 
may be reconstructed using a small set of secret shared values [1].

In contrast to HE and FE methods, parties in a secure MPC cooperatively calcu-
late the function on their data via a protocol rather than a single party. During the 
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procedure, the confidentiality of the parties’ secrets must be maintained. In secure 
MPC, the communication cost is high but the computational cost is low, while in the 
HE method, the server incurs high computational costs but barely any communica-
tion overhead. Parties exchange encrypted data over an encrypted connection to the 
server. The server performs an inner product calculation between the data and the 
first layer’s weight value and returns the result to the involved parties. The parties 
then decode the information and calculate the non-linear transformation. The result 
is encrypted before being sent back to the server. This procedure is repeated until 
the final layer has been calculated.

3	 DEEP	LEARNING	AND	HOMOMORPHIC	ENCRYPTION

Deep learning structure and functionality mimic the behavior of the human 
brain. It consists of interconnected nodes widely known as “neurons” modeled in 
an ordered layer’s architecture (input, hidden, and output). Each neuron accepts 
input, performs a function depending on the layer it belongs to, and outputs the 
result of that function. The hidden layer is more complex than the others where 
the learning process happens [27]. Convolution Neural Network (CNN) differs from 
standard DNN in focusing on convolution and pooling layers rather than connecting 
all layers. CNN is extremely successful in various applications, including image rec-
ognition and classification. It has the ability to build a complex model automatically. 
A series of operations such as convolution filters, non-linear activation functions, 
batch normalization, sub-sampling, and others automatically extract features from 
the dataset, achieving better performance based on Stochastic Gradient Descent 
(SGD) algorithm on backpropagation training process [27], [34].

Preserving data privacy utilizing HE is a natural development of classical DL. The 
architecture of such newly developed systems suffers from high computational com-
plexity, reduced precision, non-linear functionality, and inefficient training process. 
CNN is a DL variant used in privacy-preserving, which requires architectural encod-
ing, not encryption. Approximation of non-linear functions in a conventional CNN 
is vital to success in developing CNN for privacy-preserving, where only low-degree 
polynomial functions are considered for the transformation process. The following 
subsections define and describe CNN architecture layers. Also, discuss what changes 
may needed to be done (mostly approximation) in order to function properly over 
encrypted data.

3.1	 Convolutional	layer

The primary goal of the convolutional layer of a CNN is to extract useful features 
from the input data. As shown in Figure 1, this is accomplished through the con-
volution process, which involves sliding a kernel or filter across the input image. 
During the convolution process, the kernel’s elements systematically align with the 
corresponding regions of the input image. The algorithm carries out element-wise 
multiplication between the kernel and the input region, subsequently summing 
the resulting products. This calculated value represents the dot product of the filter 
values and their respective input elements [13]. By iteratively applying this proce-
dure to the whole input image, the convolutional layer creates a new output matrix, 
known as a feature map. The feature map captures the input data’s spatial informa-
tion and highlights specific features corresponding to the applied filter. As a result 
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of this procedure, CNN can better recognize and classify images and understand 
complicated hierarchical patterns in the data.

In the context of HE, the challenge lies in adapting these convolutional opera-
tions to work with encrypted data without compromising the privacy of the input 
information. Employing HE techniques makes it possible to directly conduct the con-
volution operation on encrypted data to generate encrypted feature maps. These 
encrypted feature maps can then be used for further computations within the NNs, 
preserving data privacy throughout the entire process.

Thus, integrating HE with the convolutional layer in CNN aims to enable privacy- 
preserving feature extraction while retaining the network’s capability to learn and 
represent complex hierarchical patterns in the data. The evaluation of this layer is 
straightforward since it only uses additions and multiplications. These operations 
are HE compatible; thus, no further adaptation is needed [34].

Fig. 1. Convolutional layer [34]

3.2	 Activation	layer

A neural network composed entirely of fully connected and convolutional lay-
ers can only classify data linearly, which is suitable for simple classification tasks. 
However, an activation layer was introduced to address more complex problems, 
as shown in Figure 2. Each neuron in the preceding layer is activated using a non- 
linear activation function to obtain one neuron in the current layer. Usually, we 
use the non-linear activation layer after each convolutional layer [35]. The activa-
tion function accepts a single number and executes a particular fixed mathematical 
operation on it. In practice, several activation functions do exist, including Rectified 

Linear Unit (ReLU) (f (x) = max (0,x)), Sigmoid f x
e x

( ) �
�

�

�
�

�

�
��

1

1 �
, and hyperbolic tan-

gent (Tanh) f x
e e

e e

x x

x x
( ) �

�
�

�

�
�

�

�
�

�

�
. Due to the nature of these functions and their high 

complexity, they cannot be calculated over encrypted values. As a result, we need to 
find approximate alternatives for such functions, including only addition and mul-
tiplication [1], [8], [13].
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Fig. 2. Activation layer [34]

3.3	 Pooling	layer

Due to the large number of features extracted from raw input data by the con-
volution process in a convolutional layer, a down-sampling layer, called pool-
ing layer, is required in order to reduce the size of spatial data (neurons), which 
reduces the computational complexity of the model, leading to faster classification 
process, especially in CNN [13], [35]. The pooling layer is the same as the activa-
tion layer that is non-linear. Two main functions exist in this layer: max-pooling 
and average-pooling. In HE, we cannot utilize the max-pooling function since the 
maximum value cannot be obtained over encrypted data [1]. Consequently, the 
average pooling function or a scaled-up version is used in HE [8]. Figure 3 depicts 
the pooling layer.

Fig. 3. Pooling layer [1]

3.4	 Fully	connected	layer

Each neuron of the current layer is connected to every neuron in the previous 
layer through connections representing values called weights; hence, the name 
“fully connected.” The operation on this layer is a dot product between the output of 
preceding layers’ neurons and the weight associated for each neuron. Dot product 
operation is HE compatible. It only consists of additions and multiplications, and no 
effort is required to modify them for usage over encrypted data using HE [1], [36]. 
Figure 4 depicts a fully connected layer.
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Fig. 4. Fully connected layer [35]

3.5	 Dropout	layer

Building the NN model contains two main phases: training and testing. When a 
model results in high error over testing, the model may be biased toward the train-
ing set. This problem is called overfitting during the training process. To avoid an 
overfitting problem, a dropout layer, as Figure 5 depicts, is used [1], [35].

Fig. 5. Schematic diagram of dropout layer [34]

The implementation of state-of-the-art DL with HE suffers from several incom-
patibilities or limitations. To merge DL structure with HE approaches, modifications 
have to be made. The Batch Normalization (BN) layer, activation function approxi-
mation, and convolution with increased stride are the most often necessary adjust-
ments, as shown in Figure 6.
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Fig. 6. Required modifications of DL with HE [1]

1. Convolutional Layer with Increased Stride. Liu et al. [27] proposed this archi-
tecture as a substitute for the pooling layer. The design replaced the pooling layer 
with a convolutional layer of an increased stride. BN is applied between Fully 
Connected (FC) and ReLU layers. This maintains the data’s depth but reduces its 
dimension [37].

2. Approximation of Activation Function. Prior works [27], [34], [38] have used 
polynomial approximations to perform the activation functions. Numerical anal-
ysis, Taylor series, and approximation of polynomials relying on the activation 
function’s derivative are all well-known approaches. The numerical analysis cre-
ates points from a ReLU activation layer and then passes them to the approxi-
mation function as inputs, While the Taylor series approximates the activation 
function using polynomials of different degrees [1].

3. Batch Normalization Layer. Ioffe and Szegedy [37] proposed a BN layer. The 
layer’s primary goal is to speed up training by improving the NN’s stability. It 
takes the output of an activation layer and then scales it to a number between  
0 and 1. Each input is subtracted from the batch mean value and then divided by 
the batch mean value in the BN layer.

4	 PRIVACY-BASED	DEEP	LEARNING	METHODS

The cryptosystems presented in this section are primarily based on HE. 
This section is divided into subsections, including private inferencing and pri-
vate training.

4.1	 Private	inferencing

Private inference refers to a technique for processing inferences without disclosing 
the underlying input data. In private inference, preserving the privacy of user input 
data and models is essential. Xie et al. [39] introduced BAYHENN, a novel high-level 
protocol as a practical interactive paradigm for secure DNN inference. The authors 
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claimed that their technique was the first to secure and prevent client and server 
privacy leakage simultaneously. They combine HE with Bayesian Neural Networks 
(BaNNs). Specifically, they employed HE to protect the client’s raw data and BaNNs 
to protect the DNN weights on a cloud server.

Gilad-Bachrach et al. [40] proposed a method that converted learned NN to 
CryptoNets, in which a NN is applied to encrypted data that can be seen as a solution 
to the problem of blind, non-interactive classification. The NN employs a leveled HE 
scheme for inputs and homomorphically propagates data throughout the network. 
The weakness of CryptoNets lies in its limited performance due to computational 
complexity, which performs poorly on deeper NN models, where accuracy declines 
and error rate increases.

Chabanne et al. [41] solved the limitation of CryptoNets [40]. They designed and 
evaluated the first privacy-preserving classification method for DNN with a depth 
greater than two. They combined CryptonNets [40] with Ioffe and Szegedy’s [37] BN 
layer and polynomial approximation for activation function. The advantage of this 
model was that it can be used in neural systems with a large number of non-linear 
levels though still offering greater accuracy, in contrast to CryptoNets, which loses 
accuracy as the number of non-linear layers increases.

Hesamifard et al. [34] presented CryptoDL, a newly developed technique to adopt 
a deep CNN with the practical limitations of HE schemes. Three main transfer func-
tions were approximated by the authors: ReLU, Sigmoid, and Tanh. The approxi-
mation relies on the activation function’s derivative to find the lowest-degree 
polynomial within a certain error range.

Sanyal et al. [42] introduced TAPAS, a new algorithm to accelerate computa-
tions in Binary Neural Networks (BNNs) [43], [44]. They reduced computation time, 
creating a DL architecture comprising fully connected, convoluted, and batch- 
normalized layers [37]. Also, they developed techniques such as the sparsification 
of NN and algorithmic tools to accelerate and parallelize computation on encrypted 
data through Single Instruction Multiple Data (SIMD) operations. These techniques 
enable highly accurate predictions on encrypted data, producing a framework that 
provides Encrypted Predictions as a Service (EPaaS).

Bourse et al. [45] introduced FHE-DiNN, a framework for combining FHE with 
a Discretized Neural Network (DiNN) in a DL environment to provide data privacy. 
Bootstrapping was used to achieve linearity with a weighted sum and sign activa-
tion function that ranged from –1 to 1. When comparing DiNN to standard NN, one 
significant distinction is that the weight, bias value, and domain of an activation 
function in FHE-DiNN must be discretized. Compared to Cryptonets [40], FHE-DiNN 
efficiently increases the speed and reduces the complexity of FHE, but at the expense 
of accuracy.

Jiang et al. [46] presented E2DM, a novel matrix-encoding technique and an effi-
cient evaluation mechanism for performing fundamental matrix operations such as 
addition, multiplication, and transposition. The data and model were homomorphic-
ally encrypted, guaranteeing both Privacy of Client (PoC) and Privacy of Model (PoM). 
Also, their model fulfilled Privacy of Result (PoR), as only the client can decrypt the 
predicted result. E2DM delivers a smaller message size as well as reduced latency 
than the CryptnoNets [40] approach.

Zhou et al. [47] presented a secure binarized CNN inference and perceptron mod-
els, where inputs and weights are binarized. The models can provide privacy in a DL 
system composed of two components: (1) the service provider (SP) component, which 
trains and stores the model on unencrypted data and allows homomorphic opera-
tions and (2) the client’s component, where encryption and decryption are performed.  
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Binarized convolution, max-pooling, and fully connected layers were used to form 
the model. The bit-wise operations executed operations such as addition and multi-
plication, speeding up CNN inference calculation.

Disabato et al. [48] proposed an innovative distributed design for Deep Learning 
as a Service (DLaaS) which protects customers’ sensitive data while offering cloud-
based DL services. The suggested architecture is executed using a client server REST-
based framework for sharing encrypted data and findings among both client and 
server. The work adopts the Brakerski–Fan–Vercauteren (BFV) scheme [25] based 
on Ring Learning With Errors (RLWE) problem. A square activation function substi-
tutes the ReLU, and the max-pooling by the average. MNIST dataset [49] and FMNIST 
dataset [50] were used in the analysis.

Obla et al. [51] developed a novel approach to construct HE-friendly non-linear 
activation functions for deep CNN using polynomial approximations. The research-
ers introduced three approximation methods: Taylor expansion, best uniform 
approximation, and best square approximation. Additionally, they proposed novel 
weighted activation function approximations independent of the degree of approxi-
mation or training technique. The MNIST [49] and FMNIST [50] datasets were used to 
train the deep CNN model developed by Chabanne et al. [41]. Furthermore, research-
ers trained on CIFAR-10 [52] and employed Springenberg et al. [53] architecture, in 
which design involved no pooling layers.

Lee et al. [54] proposed polynomials that accurately approximated the ReLU 
activation function and the max-pooling function for Privacy-Preserving Machine 
Learning (PPML) using FHE by composing minimax approximation polynomials of 
small degrees. As a result, researchers may utilize the suggested approximation poly-
nomials to substitute the ReLU and max-pooling functions in classifiers like ResNet 
[55], VGGNet [56], and GoogLeNet [57], and BN as core models.

Badawi et al. [58] offered an FHE-based CNN that can homomorphically clas-
sify secured images. Their work was the first to implement a GPU-accelerated 
Homomorphic CNN (HCNN) that operates on encrypted images using a pre-learned 
model. The implementation included a series of optimization techniques, includ-
ing quantized NNs with low-precision training, improved FHE design and parame-
ters selection, and GPU-accelerated implementation.

Lee et al. [59] introduced a PPML model implemented using standard 
ResNet-20 with Residue Number System CKKS (RNS-CKKS) [60] scheme. The 
model is almost the same as the state-of-the-art ResNet-20 paradigm, except that 
for the first time bootstrapping is incorporated. The authors claim that they were 
the first to implement a PPML model based on FHE and the first to apply the 
Softmax function in the PPML model, hence preventing model-extraction attacks. 
The proposed model was numerically verified achieving a 98.67% agreement 
ratio to the standard ResNet-20 design with unencrypted data when used over 
CIFAR-10 dataset [52].

4.2	 Private	training

The process of training DL models accurately without security is not an easy step 
due to all factors, including model structure, weights and biases initialization, and 
hypertuning parameters, that require analysis. Privacy-preserving training is almost 
impossible when security is applied during this phase. This section summarizes 
some related studies to secure training.
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Mohassel and Zhang [61] suggested a protocol for privacy-preserving training and 
classification using secure MPC techniques based on NN. Their research employed 
HE as one building block of secure MPC. The data owner shares data with two serv-
ers, which perform ML approach that uses a Two-Party Computation (2PC) tech-
nique. They are particularly interested in three algorithms: linear regression, logistic 
regression, and NNs. Their approach comprises two stages: online and offline. They 
generated multiplication triplets using oblivious transfer in the offline phase and 
safely computed an activation function in logistic regression and NN training in the 
online phase.

Hesamifard et al. [62] presented a CryptoDL framework based on CryptoNets 
[40]. They were the first to show that it is possible and practical to train the neu-
ral model using HE and make encrypted predictions. Compared with earlier secure 
MPC studies, which need a high number of interactions between client and server, 
this method requires no contact from the server until the noise level exceeds a pre-
defined threshold. The model was implemented using HELib [63], and the model’s 
running time was measured for both the training and testing stages.

A few new studies have examined privacy issues during the training phase, nota-
bly for the back-propagation algorithm [64], [65]. Zhang et al. [64] also suggested uti-
lizing the Brakerski-Gentry-Vaikuntanathan (BGV) encryption scheme to efficiently 
perform a high-order back-propagation algorithm for deep-computing model train-
ing in the cloud. To avoid an excessive Multiplicative Depth (MD), the new weights 
were given back to the parties for decryption and re-encryption after each itera-
tion. As a result, the solution had a high communication complexity. Bu et al. [65] 
proposed a cloud-based back-propagation algorithm that preserves privacy. Their 
suggested approach offloads expensive processes to the cloud and employs a BGV 
scheme for protecting data privacy during the training phase.

In summary, complete datasets and features of our surveyed deep learning 
papers of private inferencing and training are illustrated in Tables 1 and 2, respec-
tively. Figures 7–10 condense performance comparisons of private inferencing and 
training strategies based on specified metrics.

5	 HOMOGRAPHIC	TRAINING	AND	EVALUATION	IN	NEURAL	
NETWORKS

During the training process, a mapping is performed that goes from the input 
space to the output space based on how the weights of each neuron are modi-
fied. This mapping is developed throughout the training phase, where a network 
can learn from and generalize over several instances where the learning process 
is either supervised or unsupervised. Even for models that are not HE, training 
comprises computationally demanding tasks. With HE, it is already challenging to 
train an NN because of the large number of operations required to locate the set of 
weights, which minimizes loss function. The training procedure in an HE domain 
requires several bootstrapping runs and large encrypted messages. The compu-
tational complexity of encrypted training is several orders of magnitude higher 
than that in unencrypted training. Therefore, it is impractical to train classifiers 
that might have a large number of layers [4]. Bootstrapping or re-encrypting in 
the HE training phase can be controlled through using accelerators or exclusion. 
Most recently, hardware accelerators such as high-performance processors (GPUs 
and FPGAs) have become increasingly popular. These new technologies greatly 
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reduce runtime and can make encrypted versions equivalent to unencrypted 
ones. One approach to achieving exclusion is decrypting ciphertext inside a 
secure entity, such as a client-server. Another widely utilized exclusion approach 
is pre-training a neural model over unencrypted data, where weights are made 
public to avoid overhead.

Access to raw data is not restricted throughout the testing and training phases 
of NNs. Therefore, many applications may not be feasible due to legal and ethical 
concerns, such as medical and financial applications. Employing HE with NN can 
be seen as a logical extension of NN. The approach involves applying HE to the net-
work’s inputs and then homomorphically transmitting the information across the 
network. At the inference stage, knowing a model’s MD in a priori helps in the eval-
uation process, where the number of operations may be estimated in advance. From 
an HE viewpoint, the network is analogous to a layered circuit, with levels being 
referred to as “layers.”

Table 1. Features of our surveyed DL papers—private inferencing

Reference Year Methodology ML/
DL Technique Limitation(s) Overcome the Limitations Dataset(s)

Xie 
et al. [39]

2019 HE DNN •	 Model accuracy
•	 Computation acceleration

Create a better algorithm to 
optimize BaNNs for higher accuracy 
and employ FPGA to accelerate 
computation

MNIST, 
Breast Cancer

Gilad-
Bachrach 
et al. [40]

2016 HE CNN •	 Limited performance
•	 Training: Do not cover 

privacy and slow 
over plaintext

GPUs and FPGAs to accelerate the 
computation. Also, finding more 
efficient encoding schemes to allow 
for smaller parameters, hence faster 
HE computation.

MNIST

Chabanne 
et al. [41]

2017 HE •	 Classification 
accuracy relies on 
the approximation of 
activation function

Employing preprocessing techniques 
such as feature scaling and 
postprocessing techniques such as 
thresholding can effectively mitigate 
the impact of approximation.

MNIST

Hesamifard 
et al. [34]

2017 HE •	 Do not cover privacy 
during training

•	 Data and the training 
model can be tuned 
when using HE

GPU and FPGA can be used as 
an improvement for efficient 
implementation since these types of 
data take a very long time to train

MNIST,
CIFAR-10

Sanyal 
et al. [42]

2018 HE •	 Support only BNNs Encrypting non-binary or real-
valued neural networks can solve 
this limitation

Cancer,
Diabetes,
Faces,
MNIST

Bourse 
et al. [45]

2018 HE •	 Drop in accuracy due to 
discretization procedure

Train a DiNN instead of discretizing 
an already-trained model to improve 
classification accuracy

MNIST

(Continued)
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Table 1. Features of our surveyed DL papers—private inferencing (Continued)

Reference Year Methodology ML/DL 
Technique Limitation(s) Overcome the 

Limitations Dataset(s)

Jiang 
et al. [46]

2018 HE •	 Simple matrix operations Extending the advanced matrix 
computation will be promising 
future work

MNIST

Disabato 
et al. [48]

2020 HE – MNIST,
FMNIST

Obla 
et al. [51]

2020 HE •	 Classification accuracy Softplus can increase network 
performance and classification 
accuracy. Changing the network 
architecture or adjusting 
hyperparameters can assist.

MNIST,
FMNIST,
CIFAR-10

Badawi 
et al. [58]

2021 HE – MNIST, 
CIFAR-10

Zhou 
et al. [47]

2020 HE Binarized CNN •	 FC layer takes 51.2% of the 
time in the overall model

Train the model with binary value 
and creates a method to replace 
batch normalization under FHE

MNIST,
Breast Cancer

Lee 
et al. [54]

2021 HE CNN— (ResNet, 
VGGNet, 
GoogLeNet)

– CIFAR-10
ImageNet

Lee 
et al. [59]

2022 HE CNN—
(ResNet-20)

•	 Running time: 4 hours
•	 Security level: 98-bits
•	 Model training: only once

Implementation with various 
accelerators can be realized using 
GPU, FPGA, or ASIC.
Changing parameters of the RNS-
CKKS scheme to raise security level.

CIFAR-10

Table 2. Features of our surveyed DL papers—private training

Reference Year Methodology ML/DL Technique Limitation(s) Overcome the
limitations Dataset(s)

Mohassel and 
Zhang [61]

2017 MPC NN – – MNIST

Hesamifard 
et al. [62]

2018 HE CNN •	 Do not approximate 
non-continued 
activation functions

•	 Susceptible to attacks

Using piecewise 
polynomial 
approximations. Also, 
exploiting deferential 
privacy, or zero-knowledge 
proofs for SMPC to 
increase security.

MNIST,
CIFAR-10

Zhang et al. [64] 2016 HE DCM (Deep 
Computation Model)

•	 High communication 
complexity

– STL-10,  
NUS-WIDE,
PeMS,
DLeMP

Bu et al. [65] 2015 HE – – STL-10,
CIFAR-10
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Fig. 7. The accuracy of research studies for various datasets—private inference
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Figure 7 depicts the accuracy of research studies utilizing private inference tech-
niques for various datasets. The x-axis indicates the accuracy percentage, while 
the y-axis depicts the various research studies. The colored bars reflect different 
datasets, such as MNIST, CIFAR-10, Breast Cancer, and others. The graph depicts the 
varying degrees of accuracy obtained by various studies performed on each dataset. 
The study by Xie et al. [39] obtained the highest possible accuracy on the MNIST 
dataset, whereas Study Lee et al. [59] did well on the CIFAR-10 dataset. These results 
demonstrate the significance of evaluating the performance of private inference 
approaches across multiple datasets.

Fig. 8. The accuracy of research studies for various datasets—private training

Figure 8 visualizes the accuracy of different studies across multiple datasets: 
MNIST, CIFAR-10, STL-10, NUS-WIDE, and PeMS. It simplifies performance compari-
son and helps identify the best-performing models. The x-axis indicates the accuracy 
percentage, while the y-axis depicts the various research studies.
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Fig. 9. The inference time of research studies for various datasets—private inference

Figure 9 depicts the inference times of private inference for various research studies 
utilizing various datasets. It regulates time metrics by displaying them on a logarithmic 
scale to reflect potentially large value differences (seconds, minutes, hours). This visu-
alization facilitates cross-study and cross-dataset performance comparison. The x-axis 
indicates the various research studies, while the y-axis indicates the inference time 
in the log scale. Figure 10 is similar to Figure 9, but it shows the inference time when 
models are both trained and classified over encrypted data.

Fig. 10. The inference time of research studies for various datasets—private training
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The cryptosystem implements an encryption algorithm with a predetermined 
noise budget without bootstrapping techniques. In other terms, a leveled HE scheme 
is sufficient for the inference stage since the quantity of noise allowed by the 
encrypted message is known and the maximal degree of the polynomial functions 
on the encrypted data is fixed. Since deep learning requires many hidden layers in a 
network, it requires a scale-invariant FHE technique. Because of this, bootstrapping 
or any other recrypt function must manage a significant amount of noise [4].

6	 DL	MODEL	ATTACKS	AND	PRIVACY-PRESERVING	MODEL	AS	
A	SOLUTION

Deep learning privacy-related model attacks aim to let the adversary obtain pri-
vate knowledge that was not supposed to be publicly available. Preserving privacy 
in deep learning frameworks has three main security goals. The first is to preserve 
the client’s private information by preventing the server from accessing it during the 
training phase. The second prevents the server from directly obtaining model input in 
the classification stage. The third only applies when the client has delegated prediction 
to a server. Attacks on DL models that privacy-preserving approaches can mitigate are 
membership inference, model inversion, and model-extraction attacks [1].

Membership inference aims to determine if a piece of input data was used as part 
of the training dataset—in other words, if sample data is used to generate some aggre-
gation of data. A model, including its parameters, may be considered an aggregate of 
the training data within the context of DL. It is one of the most common types of attack, 
initially described by Shokri et al. [66], and it violates the first security goal mentioned 
above. Extraction of some attributes of sensitive training data, or even recovery of 
training data, are examples of more advanced forms of membership inference attacks. 
Security against the membership inference attack may be simplified to the security 
of the underlying cryptosystems in Privacy-Preserving Deep Learning (PPDL) models. 
Model parameters are encrypted, so an adversarial server cannot read them in plain-
text unless the model is available to the public. The privacy parameter affects the model 
accuracy and membership inference attack performance for deep private models. The 
model inversion attack described by Fredrikson et al. [67] is a type of prediction-phase 
attack that violates the second security purpose of PPDL by targeting the models them-
selves. Model inversion attacks attempt to identify the sensitive features of input data 
by starting with the non-sensitive features and working backward through the pre-
diction outcomes produced by the model. There has been relatively limited research 
on the trade-off between the accuracy of the model and the effectiveness of the attack 
for deep private-based models. Last but not least, model-extraction attacks [68], com-
monly referred to as model-stealing attacks, target the third security objective of PPDL. 
The goal of model-extraction attacks is to build a model that is functionally equal to a 
given black-box (target) model. If an attacker is successful in a model-extraction attack, 
they gain access to a white-box model. If the owner of the model sells access to it, the 
attacker can exploit it directly. The generated model can then be used as a “stepping 
stone” for other attacks with white-box models.

7	 APPLICATIONS	OF	HOMOMORPHIC	ENCRYPTION

This section explores several applications of various flavors of HE. Some of them 
require PHE, SHE, or FHE. In general, an FHE scheme can compute anything over 
encrypted data, while PHE and SHE schemes are more restricted. Theoretical and 
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practical applications exist in several fields of cryptography. Some of the most signif-
icant applications are as follows:

7.1	 Outsourcing	storage	and	computation

One of the major applications in HE is outsourcing storage and computation of 
data. It can be seen as a delegation of computation of a function to a server that 
provides computation without disclosing sensitive information [69]. Consider a 
small company that wants to outsource computations to the cloud provider, and 
the cloud may be malicious or subjected to malfunctions. For the cloud to process 
data, it must have access to the company’s sensitive information. Hence, the com-
pany does not trust the result of computations and requires proof that the com-
putations were done correctly and were more efficient than the company itself. 
HE delivers an elegant solution to this problem. The company encrypts data then 
sends it over to the cloud provider (server) to process it in its encrypted form. After 
computations are done, the server sends back the encrypted result to the company 
to decrypt it [70], [71].

7.2	 Private	information	retrieval

Another direct use of HE is the ability to conduct personal queries on a database 
or search engine. The most straightforward analogy is Private Information Retrieval 
(PIR), in which a server hosts a huge database, such as the US patent database, and 
a client wishes to obtain a single record from the database with no knowledge by 
the server of the requested record. The user can use HE to encrypt the index of the 
record he wishes to retrieve. The server performs evaluation of a function fdb(i) = 
db[i] on the encrypted index, returning encrypted result to the client. The client will 
decrypt the result using his own private key and gets the plaintext record. Utilizing 
HE to the index of a single required record and retrieving it in an encrypted for-
mat, PIR becomes quicker, more secure, and private while sustaining confidentiality, 
integrity, and availability. [29], [71].

7.3	 Zero-knowledge	proofs

This fundamental cryptographic protocol serves as a theoretical application of 
homomorphic cryptosystems. Zero-knowledge proofs are employed to establish the 
presence of knowledge of certain secret information. The user wishes for his private 
information, such as a password, to remain secret and secure during the protocol’s 
operation. Zero-knowledge proofs ensure that the protocol sends just the infor-
mation intended and no (zero) additional information [72]. It is noteworthy that 
Gentry’s seminal work shows that HE can be utilized to construct Non-Interactive 
Zero-Knowledge (NIZK) proofs of small size [14].

7.4	 Healthcare

Health care systems operate in an environment where sensitive data must be 
secured from exposure while being available as input to computations needed for 
daily operations. For some applications in the healthcare industry, HE can assist in 

https://online-journals.org/index.php/i-joe


iJOE | Vol. 19 No. 11 (2023) International Journal of Online and Biomedical Engineering (iJOE) 73

Secure Data Computation Using Deep Learning and Homomorphic Encryption: A Survey

balancing risk and potential value in information exchange. Two such applications 
are billing and report generating. In both circumstances, analysts require access to 
personal medical data to do computations on their content. By allowing such compu-
tation without disclosing such records in plain view, breaches may be avoided with-
out compromising mission-critical applications. HE allows a breach-proof solution for 
such applications in a clinic environment. For example, an analyst searches current 
medical records for data such as prescription statistics and medical encounters given 
by the clinic. A potentially insecure server maintains an encrypted collection of rele-
vant data, including individual medical records protected under privacy and policies. 
HE enables queries to be computed upon encrypted data and delivers an encrypted 
result to the analyst. The analyst then decrypts the answer, including the relevant 
report or invoice query results. Since the data corpus stays encrypted, both at rest and 
during computation, adversaries gain no knowledge of the data or the results of these 
queries [73]. Many other applications concerning HE exist, such as Data Mining (DM), 
forensic image recognition, signatures, secret sharing schemes, election schemes, 
watermarking schemes, financial privacy, and many other applications.

8	 HOMOMORPHIC	ENCRYPTION	TOOLS

This section exhibits the most widely used crypto libraries with HE implementa-
tions in real-world applications. High-quality implementations should boost theoret-
ical research. In recent years, corporate and scientific groups have released several 
open-source libraries.

Simple Encrypted Arithmetic Library (SEAL) [74] is the most widely used accessi-
ble tool developed by Microsoft® that supports BFV and CKKS crypto schemes. The 
tool is written in C++ and actively developed for additional languages such as Python 
and JavaScript. It is capable of compressing data in order to obtain considerable 
memory footprint reductions. SEAL is used by [40], [58], [75]–[78].

Homomorphic Encryption Library (HElib) [63] is a C++ based FHE library built on 
the BGV cryptographic system that also supports the CKKS scheme. It concentrates 
on the effective usage of ciphertext-packing optimization. A downside of HElib is 
that it has a limited capability for bootstrapping. It is used by [34], [41], [79], [80].

Fast Fully Homomorphic Encryption (TFHE)  over Tours [23] is a library imple-
mented in a Gentry, Sahai, and Waters (GSW) ring variant with a torus format. 
Developed under C/C++, the library supports a highly rapid gate-by-gate bootstrapping 
mechanism; it places no restrictions on the number of gates. It is used by [81], [82].

Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN) [83] 
is a library that implements the CKKS bootstrapping and CKKS crypto scheme. It is 
written in C++ and offers capabilities for fixed-point computation. HEAAN is used by 
[46], [78].

PALISADE [84] is a standalone HE library written in C++ funded by DARPA defense 
contractors and supports BGV, Fast Fully Homomorphic Encryption Library over the 
Torus (THEW), and many other schemes. The library provides an extension for mul-
tiparty. This library achieves high performance by utilizing RNS algorithms [4].

CUDA Homomorphic Encryption (cuHE) [85] is a library that uses GPU to acceler-
ate evaluations with homomorphic schemes. It is implemented in C++ for parallel- 
platform CUDA. To deal with large polynomial operands, arithmetic functions use 
the Chinese Remainder Theorem (CRT), the Number Theoretic Transform (NTT), and 
Barrett reduction [4].

Along with the libraries mentioned above, there are many other libraries, such as 
FHEW [86], FV-NFLlib [87], lattigo [88], concrete [89], and nuFHE [90]. Last but not 
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least, GPU-accelerated libraries can further improve already-fast TFHE bootstrapping 
speeds at about two orders of magnitude. Still, they are significantly more costly and 
less common in commercial data centers [91]. Table 3 shows FHE libraries and includes 
a list of supported languages, schemes, features, and accessibility considerations.

Table 3. Overview of existing FHE libraries [91]

Name Language
Supported Schemes Features Accessibility

BFV CKKS GSW Bootstrap Levels Documentation

SEAL [74] C++, .NET • • • •

HElib [63] C++ • • • • •

TFHE [23] C++ • • •

HEAAN [83] C++ • • •

PALISADE [84] C++ • • • • • •

FHEW [86] C++ • •

FV-NFLlib [87] C++ • •

Lattigo [88] Go • • •

Concrete [89] Rust • • •

cuHE [85] C++, Python • •

nuFHE [90] C++, Python • • •

9	 CHALLENGES	AND	WEAKNESSES

This section analyzes the weaknesses of HE based on the surveyed papers. While 
HE standards and implementations contribute to the development of Deep Learning 
with Homomorphic Encryption (DL-HE), still several key challenges remain critical, 
including the following [4]:

1. Computational Overhead: DL-HE has a substantial overhead as contrasted 
with its plaintext counterpart, causing it to be unusable for various fields of appli-
cations. For non-HE models, the training phase is a computationally intensive 
process. It becomes increasingly more difficult with HE, even with the advance-
ment of technologies. A current trend is to avoid the training process, favor-
ing pre-trained modeling approaches to strike the right balance of complexity 
and accuracy.

2. Parallelization: A strategy for reducing computational overhead is to use well-
known and novel parallelization technologies. DL-HE methods are amenable 
to modification for usage with high-performance computation and distributed 
designs. Multi-core modern devices such as GPU, FPGA, or tailored ASIC chips 
provide a more efficient and friendlier environment. Using batching and paral-
lelization of many bootstrapping operations together helps improve the model’s 
overall efficiency.

3. Polynomial Approximation: Since DL requires operations that HE does not 
enable, it is critical to build cryptographically appropriate replacement functions 
for use with encrypted data. The activation function is a critical component of a 
successful DL-HE model. It ensures the accuracy and computational efficiency of 
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the model. Additionally, the activation function significantly influences the net-
work’s convergence speed. Also, its derivative, sometimes referred to as gradient, 
is important during the learning process. Several strategies tackle the restrictions 
of non-linear operations by polynomial approximation with cryptographically 
interoperable polynomial pattern. These methods should balance between com-
plexity and accuracy [92]. Practically, an inadequate approximation function results 
in a model performing poorly and taking a long time to process. Furthermore, it 
produces large coded messages, which consumes more memory. The main issue is 
to create an estimate of an activation function for a low-degree polynomial with 
the least amount of error and the greatest degree of precision possible.

4. Leveled HE schemes: Another important aim is to build schemes without boot-
strapping, which support NN evaluation of pre-computed depths. Such homomor-
phic schemes improve the performance by reducing the complexity produced by 
the bootstrapping mechanism. However, this strategy restricts DL implementa-
tion. At the same time, it is efficient for the pre-computed DL model.

5. Automatization: Developing HE solutions demands manual customization and 
a high level of competence in a multitude of disciplines, including scheme refine-
ments, parameter setting, and low-level programming. The inadequate setup 
might result in low performance, encryption vulnerability, and unrecoverable 
data. The implementation should be simple for beginners and highly customiz-
able for advanced users.

Among other challenges that can be seen as open problems are Binary Neural 
Network (BNN), where a blind non-interactive DL-HE model can be achieved, 
and developing a common framework as a standard framework that simplifies the 
adoption of libraries, algorithms, and measures.

10	 CONCLUSION

The deployment and implementation of deep learning techniques in a cloud 
environment make homomorphic cryptosystems paramount in solving security 
and privacy concerns. In this study, we discussed and analyzed the standard neu-
ral network structure and what modifications are required to overcome the lim-
itations of applying the original structure to provide security and privacy. The 
work also addresses a trade-off between accuracy and complexity of computations 
associated with the replacement activity of non-linearity of activation functions 
to linear approximations for compatibility purposes. Several studies cover the 
fundamentals of homomorphic encryption, whereas others introduce novel tech-
niques and frameworks as a building block for future considerations. The studies 
also examined the most recent advances in homomorphic encryption systems, 
concentrating primarily on a combination of cryptography and neural networks, 
highlighting potentials and limitations. We have covered privacy-preserving deep 
model’s security objectives, as well as attack types and their potential solutions. 
The paper also reviews existing development tools, research trends, and relevant 
application fields. An open issue is to reduce the computational load by efficiently 
distributing it between client and server to acquire the most acceptable perfor-
mance, which requires future investigation. Furthermore, federated learning as a 
foundation for PPDL implementation is a promising area of study. Future private 
deep learning model research should combine federated learning with conven-
tional PPDL to address privacy concerns.
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