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Abstract—This article presents, we describe fully autonomous brain tumor 
classifying as well as the classification method depending on a multiscale DCNN 
Deep-Convolutional-Neural-Network (multiscale Deep Convolutional Neural 
Network). As compared to similar efforts, ours differs in part because it processes 
input images at two different spatial scales using independent neural networks. 
The suggested neural model can interpret MRI scans comprising two kinds of 
tumors: the first one meningioma, and the second one glioma, without requir-
ing input images to be preprocessed to eliminate skull and spine components. 
The effectiveness we’ve noted model available to the public MRI image dataset 
containing 3060 slices of 250 cases is compared to previously reported models 
for conventional ML (machine learning) as well as DL (deep learning). In the 
comparison, our approach produced an impressive 97% accuracy in classifying 
tumors, which was better than some other algorithms utilizing similar datasets.

Keywords—classifying of brain tumor, DL, CNN, multiscale process, ML, 
MRI

1	 Introduction

The segmentation and classifying of medical pictures serve a crucial role in brain 
tumor diagnosis, growth prediction, and treatment. Patients with brain tumors have a 
better chance of surviving if their condition is diagnosed and treated quickly. Brain 
tumor detection and categorization in large medical image databases, performed man-
ually for regular clinical tasks, are labor- and time-intensive. A process for automatic 
detection, localization, and classification is required and worth the effort [1]. Many 
medical imaging techniques are utilized to collect diagnostic information regarding 
tumors (tumor kind, size, form, position, and others) [2]. The most effective methods 
are (CT, SPECT, PET, MRS, and MRI). It is possible to combine these methods to gain 
more specific information on tumors. Nonetheless, MRI is the most popular technology 
due to its positive qualities. In MRI image acquisition, the scan produces hundreds of 
two-dimensional picture slices with great soft tissue opposition and without the use of 
ionizing irradiance [2]. There are 4 MRI diagnostic modes: (T1 or T2 weight MRI), 
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(T1-CE), as well as (FLAIR MRI) exist all kinds of magnetic resonance imaging. 
Each MRI modality provides tissue-distinct pictures, making some better than others 
for searching specific tissues. T1 is often utilized for working with healthy tissues. 
T2 pictures are better suitable for recognizing edema region borders. Although FLAIR 
images help diagnose an edematous CSF area, T1-CE images show tumor margins [3]. 
The purpose of MRI image analysis is to recognize and classify brain cancers, our work 
demonstrates that the T1-CE modality was competent as well as sufficient. BTI has 
grown significantly during the past few decades. In recent years, quantitative magnetic 
resonance imaging (MRI) investigations of brain malignancies have proliferated [2, 4]. 
The BTS method is used in biopsies to identify tumor-infected tissue from normal 
tissue. The segmentation problem is transformed into a classification challenge [5] due 
to the widespread usage of pixel categorization in BTS applications for the purpose of 
isolating brain tumors in images. The purpose of this study is to develop and assess a 
DL method for MCNN-based brain tumor classification and segmentation. The pro-
posed neural network [6] was trained and validated using a T1-CE Input image dataset 
of 250 cases that included meningiomas and gliomas. Illustrations of these two kinds 
of tumors are depicted in Figure 1A and B. In additional info on a dataset is provided.

Fig. 1A. Red highlights the tumor borders in T1-CE MRI scans of a meningioma
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Fig. 1B. Red highlights the tumor borders in T1-CE MRI scans of a Glioma

Both generative and discriminative approaches to tumor segmentation may be 
found widely used in the BTS sector. Discriminative approaches, on the other hand, 
use the best practice expert segmentation method to learn image features and their 
connections [2], and piece generative methods use explicit anatomic modeling to obtain 
the segmentation. Discriminative research published in the past has tended to use con-
ventional ML [7–10] but has recently shifted to adopting DL approaches [11–15].

2	 Related work

In works that employ traditional ML approaches, The segmentation pipeline has a 
feature extraction preprocessing stage. Despite its flaws, skull stripping is a common 
preprocessing step in traditional discriminative methods, which includes parameter 
selection, the need for prior picture knowledge, and a long computing time [7, 16, 17]. 
The collected characteristics act as input to the classifying and/or segmentation phase. 
Moreover, the study [7, 18], presented SVM and ANN algorithm classifiers were com-
pared, the accuracy was between 79% and 91% for SVM, between 75% and 94% 
for ANN, using 10 characteristics as well as a Back Propagation Network classifier 
(BPNC). In [8], suggested an automatic tumor classification system with an accuracy of 
95%. In addition [9] fractal wavelet features were supplied to a SOM classifier for 90% 
precision. The KNN classifier is used in a semi-automatic fashion in instance-based 
training tumor identification pipelines [10]. Using well-known BRATS-2013 data, they 
reported Dice similarities of 85% and 75% between the entire tumor and its core, plac-
ing them in the second location among full plus core tests. As ML approaches have pro-
gressed, they’ve moved on to the next stage, which is training computers to determine 
which features are most indicative of a dataset. This approach is the core of DNN [5], 
which transforms feature-driven issues in data-driven challenges. CNN [19], as well as 
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FCN [20, 21], have been used in an assortment of tasks within DNN. DL’s introduction 
has had a significant effect on the development of medical imaging equipment, which 
is why it is put to use in both general image analysis [22] as well as medical image 
analysis [1, 5, 23, 24] as researchers have widely implemented improved techniques in 
recent years [25]. The advancements in the field have made collaboration between ML 
scientists with radiologists quite interesting [26]. In [11], the authors investigated the 
application of an FCN algorithm again for BRATS-2013 dataset, after that the KNN 
classifier suggestion [10] was discussed. The majority of current research utilizing DL 
to classify brain tumors dataset [27] is focused on CNNs or FCNs. In [12], brain tissue, 
including white matter hyperintensities were segmented using an MCNN. They mea-
sured the accuracy of their CNN architecture using data from the MRBrainS13 com-
petition [13]. The most significant contributions to the field were made by [14], who 
presented an innovative CNN program titled U-net. They employed this CNN model to 
segregate brain areas from ISBI challenge electron microscopy images [15]. U-net con-
sists of five convolutional stages and five D-convolutional stages, forming a U, hence 
its name. They achieved the highest scores in the ISBI competition [15].

3	 Methodology

3.1	 Substances and approaches

Suggested CNN and execution specifics. For tumor segmentation, we suggest a 
multi-path CNN model, as depicted in Figure 2. Using a PX-by-PX approach, the CNN 
model analyses an MRI image (slice) and assigns each PX to one of three possibility 
action output labels: label zero depiction (area of healthy), label one depiction (tumor 
of meningioma), label two depiction (tumor of glioma).

Fig. 2. The suggested CNN model
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Our model uses sliding windows. So, each PX classifies based on N by N neigh-
borhood or window, which our CNN model uses as input (as shown in the previous 
Figure). Each window is transformed through two convolutional routes using large-
scale, medium-scale, and small-scale kernels get featured. Our window sizes were 10 
by 10, 6 by 6, and 2 by 2 pixels. After preliminary configuration and testing with 32 by 
32 PX and 74 by 74 PX windows, the window size was chosen. Each path has two con-
volutional phases with ReLU rectification and a 2-by-2 maximum-pooling kernel with 
stride 1. The path for the big-scale, medium-scale and small-scale each have 95 and 63 
feature maps, respectively. The scale features from the 2nd path are combined with a 
convolutional layer using a 2x2 ReLU activation function kernel and a 1x1 maximum 
pooling kernel with a stride of 1. This phase output enters the FC phase, where 8,281 
scale features are concatenated to provide the classification method. Before the FC 
layer, our model adds the dropout layer to prevent overfitting. The last layer’s activa-
tion function is soft max. The suggested CNN has been executed by utilizing PyTorch. 
Around 3M trainable parameters exist in the NN (2,845,921). The tests were run on a 
Linux Foundation cloud infrastructure powered by a Core i7 processor. The average 
time to anticipate an image was 60 seconds after 6 days of training.

Datasets and preprocess. CE-MRI of the brain is typically only available in two 
dimensions and with a consi erable slice gap in clinical settings. Thus, the proposed 
method employs one-dimensional slices from 250 examples, such as meningiomas 
(706 slices) and gliomas (3060 slices) (1,415 slices). Figure 1 depicts many forms of 
tumors. This dataset is composed of four K-fold cross-validation indices. As a result, 
70% (2441) of images are utilized for training, whereas 30% (612 images) serve the 
purpose of assessing progress, then five times repeat. The in-plane resolution of the 
images is 512 by 512 PX, or 0.48 by 0.48 meters. The slices are 1 meter apart and 
6 mm thick. Two skilled radiologists manually sketch the tumour borders. Every data-
set slice is associated with the patient’s pid. During training, elastic transform data 
augmentation [27] inhibits neural network overfitting. Figure 3 depicts this change. 
Data augmentation increases the number of training images to 4904 per fold iteration. 
A thorough technique collected 6 px 6 every image inside the training dataset used as a 
training example, which included 150 TP and 325 TN window occurrences per tumor. 
Pixel normalization scaled these window PX throughout the training dataset (null mean 
and units’ variance).

70 http://www.i-joe.org



Paper—Efficient Deep Learning Approach for Detection of Brain Tumor Disease

(A)

(B)

Fig. 3A and B. Data augmentation by elastic transformation,  
tumor borders have been accented with red color

3.2	 Training neural networks and execution measures effectiveness

Using the slice train/test subsets from the dataset, the recommended CNN and per-
formance metrics were obtained using a 4-fold cross-validation approach, as previously 
stated. To train the suggested model, for this, we employed the SGD algorithm with initial 
values of 0.004 for the learning rate and 0.8 for the velocity coefficient, and ran the training 
for 70 epochs for each fold iteration. We also used a rate-of-change of the learning rate, 
exponentially decreasing every 10 epochs. The dropout parameter was set to a value of 0.4. 
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There were 612 images used to verify the model’s accuracy inside each fold using a sliding 
window technique. Each testing window was 6 PX by 6 PX and was fed into the trained 
CNN to predict the tumor type label, l p. To segment the tumor, the area containing all the 
PX for a certain tumor type is analyzed. Frames from the testing window are normalized 
before being fed into the CNN using the global average and standard deviation of PX in the 
train windows, both of which were computed during data preparation. The classification 
function can be computed by labeling each PX (i, j) in the input slice (Eq. 1 and 2). The vec-
tor is used in a classification function. { f1, l = 1,2} to determine the label lp, which indicates 
the tumor type in a particular slice. The classification function establishes a link between 
the label prediction and the actual label, l, {Pij = = l} (amount of PX labeled including l) 
and the entirety of the prediction, Pij > 0 (amount of PX including a predicted label that 
fit in to every tumor). The label of predicted, lp will be associated with a connection label 
that is significantly bigger than the minimum relation required by the confidence criterion.
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In this case, the size, or pixel number, is represented by the symbol |.| (amount of 
PX). We quantify effectiveness by calculating the Confusion Matrix, Dice score, and 
Sensitivity score [3]. In addition, we developed a score based on the ratio of expected 
tumor types, pattas, to assess a reliability of the anticipated tumor type. This index 
measures how large the tumor area Pij = lgt is in comparison to the total tumor area 
estimated by our approach Pij > 0. The pattas index measures the ratio relative to the 
full predicted tumor, while the Sensitivity index measures it related to the actual tumor 
size. Assessment metrics are derived from the following Eqs:
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where PT is the amount of TP and FP is the amount of FP, FN is the amount of FN, 
^ is the logical AND operation, |.| is the size or PX amount, P1 act. The adding of TP 
and FP (the predicted positives (P), Pij = lgt, and T1 act the adding of TP and FN Tij = 1.

4	 Outcomes and analysis

The NN was evaluated using the dataset’s required 4-fold validation train/test sub-
sets. The findings are presented in the tables and figures below. Figure 4A and B dis-
played the outcomes of our method applied to two distinct slices.

(A)

(B)

Fig. 4A and B. The outcomes of the suggested model for 2 slices  
(A) meningioma tumor, and (B) glioma tumor.
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Obtaining segmentation metrics is displayed in Table 1. Meningioma photos had the 
highest Dice index and glioma images. Hence, glioma prediction has the highest FP, 
and FN percentage and meningioma prediction has the lowest. The TP-to-reality ratio 
was the weakest for glioma predictions. In contrast, Figure 4B shows a glioma has the 
highest pttas index and, Figure 4A shows a meningioma has the lowest pttas index. 
The segmentation metrics used to rank the 2 tumors all produced distinct results, which 
can be attributed to the unique characteristics of the brain tumors under study and the 
inclusion of additional variables. With average values for the segmentation, metrics are 
Dice = 82%, Sensitivity = 94%, and pattas = 96%, the segmentation metrics that were 
collected show remarkable results.

Table 1. Metrics for segmenting 3060 slices analyzed using 4-fold cross validation

Metricn/Tumor Meningioma Glioma Avg

DICE 89% 77% 82%

SENSITIVITY 96% 90% 94%

PTTAS 93% 98% 96%

The histograms for these segmentation measures for each processed slice are dis-
played in Figure 5. The values of the histograms for Sensitivity and pttas are extraor-
dinarily concentrated in a narrow region slightly below the maximum region. This 
indicates that the majority of processed images fare well across these criteria.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Meningioma Glioma Avg

Metrics 

DICE SENSITIVITY PTTAS

Fig. 5. Distributions of the metrics that were calculated after the data was analyzed

Figure 5 shows several examples surrounding 0. Pattas below 0.3 in these samples 
indicate a false tumor. (pattas measures right label ratio). Pattas over 0.3 indicate reli-
able tumor type prediction. All remaining samples had values above 0.4, suggesting 
accurate prediction. The high Sensitivity index indicates that almost all tumor area in 
processed images was correctly retrieved (area in yellow in Figure 4A and B). Dice 
histogram amplitude indicates FP and FN. The Dice index is high; hence FP and FN 
are quite low.
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While, Figure 6A–D displays segmentations with mislabeled portions; in 
Figure 6A and B, the most of the diagnosed tumor is accurately tagged (red area), yield-
ing in an extremely precise segmentation (yellow area). Regrettably, the spot discov-
ered outside the brain was misidentified as a glioma tumor (green area). This example 
highlights how the inclusion of non-cerebral areas that can produce FP has enhanced the 
complexity of this dataset. This complexity is also evident in Figure 6C and D example. 
Similarly, the segmentation is accurate for the most part (yellow region), Nevertheless, 
In the area of the sphenoidal sinuses, wherein pituitary tumors commonly develop, 
there is a misclassified area designated as a pituitary tumor (blue area).

Fig. 6. Some sample outcomes from the suggested strategy  
for two slices representing meningioma and glioma

Due to the manner in which we segment the tumors, we can simply classify them. If 
the total number of projected tumor types for all pixels in the image exceeds the confi-
dence threshold tc, the image’s classification algorithm will classify that pixel as hav-
ing the most probable form of tumor (Eq. 2). Tables 2 and 3 exhibit, confusion matrix 
values as well as tumor accuracy rate for the [6] method and our model. As evidenced 
by the high values in the diagonal of the confusion matrix, our method classifies tumors 
with a high degree of accuracy (97%).

Table 2. Predicted tumor confusion matrix [6], accuracy = 91%

Predict (T) Meningioma Tumor Glioma Tumor Sensitiveness

Meningioma Tumor 570 58 86%

Glioma Tumor 43 1327 96%

Pituitary Tumor 76 53 87%

ACC = 91%
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Table 3. Predicted tumor confusion matrix for our method,  
taking a confidence threshold tc = 75%, and accuracy = 97%

Predict (T) Tumor 
Meningioma Tumor Glioma Sensitiveness Not Classified

Meningioma 
Tumor

659 4 93% 42

Glioma Tumor 7 1414 99% 4

Pituitary Tumor 1 3 98% 15

ACC = 97%

5	 Comparing with other studies

Our method’s segmentation performance metrics (Table 1) are comparable to those 
of the winning solutions in the renowned BRATS brain tumor image segmentation 
competition, this criterion uses glioma tumor images from a dataset that includes four 
different MRI modalities (T1, T2, T1-CE, as well as FLAIR). Segmentation of the 
entire tumor yielded glioma Dice index values ranging from 82% to 96%. Despite the 
disadvantages of using a single MRI modality and differentiating between two types 
of tumors, our technique for glioma segmentation achieves a Dice index value of 77%, 
which is close to the greatest value achievable. Using the same T1-CE MRI image col-
lection as prior studies would allow for a more relevant comparison of outcomes. The 
accuracy of our tumor classification system is compared in Table 4 to seven existing 
approaches, two of which are feature-driven [6, 28] and five of which are deep learn-
ing [6, 29, 30]. Our technique exceeds the competition with its 97% tumor classifying 
accurateness.

Table 4. Using the same dataset of T1-CE MRI images,  
the new approach is compared against existing ones

References Classifying ACC

[6] SVM 91%

[28] Fisher kernel 94%

[31] CNN and GA 94%

Proposed method MCNN 97%

The two experiments in [6, 28] are examples of traditional ML algorithms employ-
ing predefined feature extraction. In [6], Two independent methods were used to gather 
local characteristics from the expanded tumor site, and from these, a classification 
model was built: histogram of intensity, GLCM, and BoW. With the K-NN, these traits 
were used to generate a dictionary. The ROIs were then classified as a specific type 
of tumor using a trained classifier. SVM, SRC, and KNN classification techniques 
were compared. Utilizing BoW as wella ss SVM as a classifier yielded the best results. 
It was suggested in [28] to use a Fisher kernel for content-based image retrieval of 
MRI images. These approaches [6, 28] are semi-automatic because they begin with 
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segmentations conducted by expert radiologists. These require human interaction 
during categorization, whereas the solution we offer is totally automatic. With a 75% 
confidence criterion, our technique achieves a tumor classification accuracy of 97%, 
compared to 91% in [6] and 94% in [28]. In addition, Meningioma has the lowest 
Sensitivity score (Table 3) in the [6] method because the intensity difference between 
tumor and healthy areas is the smallest of all tumor types (Table 2). The sensitivity 
to gliomas is the greatest. Meningiomas and gliomas fall halfway between pituitary 
tumors. Lastly, in [27], a CNN was also proposed, but a genetic algorithm was We 
used these factors to determine the best settings for a convolutional neural network 
(CNN): the number of convolutional layers, the amount of maximum-pooling layers, 
the amount of fully-connected layers, its input vector, the dropout value, the optimiza-
tion strategy, and the learning rate. Rotation, translation, scaling, and mirroring were 
employed to enrich the data. They achieved a 94% accuracy rate.

6	 Conclusion

We presented a method for fully automatic tumor of brain segmentation as well as 
classification utilizing CNN model trained for multiscale processing. The effectiveness 
of the suggested strategy was determined by analyzing publicly available T1-weighted 
contrast-enhanced MRI data. Elastic transformation data augmentation was employed 
to prevent overfitting and expand scale of data used for training. Using the same data-
set, we compared our findings to those of three different brain tumor classification 
algorithms. Our technique was found to have a 97% classification success rate for can-
cers. To segment and classify meningioma and glioma, we employ a multiscale CNN 
technique that exploits two distinct processing routes. Despite the fact that portions of 
the skull and spine are not separate from either of the two tumor types. Resulting in FP 
in some images, our method still managed to achieve excellent segmentation execution 
metrics, including a mean Dice index of 82%, mean Sensitiveness of 94%, and mean 
Pattas value of 96%. The suggested segmentation and classification method is applica-
ble to a variety of medical imaging situations, and our technology can assist physicians 
in diagnosing brain tumors. In a future study, In order to evaluate the suggested model’s 
efficacy, we plan to develop an FCN architecture to categorize the similar MRI image 
dataset. Finally, we plan to look into the potential of the suggested MCNN for segmen-
tation to be used in other areas of study, such as satellite imagery.
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