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PAPER

A Boosted Evolutionary Neural Architecture  
Search for Time Series Forecasting with Application  
to South African COVID-19 Cases

ABSTRACT
In recent years, there has been an increase in studies on time-series forecasting for the future 
occurrence of disease incidents. Improvements in deep learning approaches offer techniques 
for modelling long-term temporal relationships. Nonetheless, this design practice is rigorously 
painstaking, prone to errors, and requires human expertise. The advent of feature enrichment 
with automatic architecture search typically optimises the discovery of new neural architec-
tures applicable in domains such as time-series modelling. The main methodological contribu-
tion of this study is an approach for time-series forecasting using feature-enriched filters and 
an evolutionary neural architecture search with sequence-to-sequence gated recurrent units 
(GRU-Seq2Seq). This is applied to the prediction of daily cases of coronavirus disease in South 
Africa. The highly pathogenic coronavirus pandemic incident data was modelled with filters, 
optimised hyper-parameter search trials and an evolutional neural algorithm. The proposed 
model was benchmarked against ARIMA and SARIMA. The model predicted trends for 30, 60 
and 90-day horizons and evaluated them for 7, 14 and 31 days. Simulation results demon-
strate that observed daily case counts with added filters and evolutionary search optimisation 
for forecasting improve performance accuracy. Generally, the proposed bFilter+GRU-Seq2Seq 
with optimal search configuration outperformed ARIMA and SARIMA with lower error scores 
and higher performance metrics, with an R2 score of 7.48E-01 for a 30-day forecast horizon.
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1	 INTRODUCTION

Deep learning architectures are developed by human experts, which is 
time-consuming and error-prone due to inadequate features from contributing 
variables. Feature enrichment with filters, such as the Hodrick-Prescott (HP) filter [1] 
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and the Christiano-Fitzgerald (CF) trend filter [2], focus on long-run time-series data. 
A boosted HP filter [3] elevates the HP filter [1] and is well suited for machine- and 
deep-learning data-agnostic processes. The boosted HP filter satisfactorily accom-
modates trends that are much more general to the unit root processes. Empirical 
experiments further ascertain robustness. Combining a boosted HP filter [3] with 
neural architecture search (NAS) can potentially motivate the discovery of new 
architectures. NAS has shown promising results in different domains, including 
sequence modelling [4]. This study’s primary contribution is to provide an empirical 
and analytical simulation of a boosted HP filter with NAS in time series parame-
ter optimisation. Precisely, the power of predictive models was explored with auto-
mated NAS, feature enrichment, and gated recurrent unit (GRU) architecture for the 
emerging daily case count of COVID-19 data in South Africa.

Infectious diseases such as COVID-19 [5–7] have shown rhythmic patterns relat-
ing to factors that allow future outbreak modelling. Prior knowledge of incidence 
time-series data supports model selection for intertwining relationships. The evolv-
ing COVID-19 daily case counts demonstrated robust time-series forecasting (TSF) 
predictability. Using the data-driven autoregressive integrated moving average 
(ARIMA) [8], SARIMA and hybrid filters with recurrent neural network GRU hybrid 
sequence-to-sequence (Seq2Seq), the future rise in daily case counts for COVID-19 in 
South Africa long-term and short-term spatial predictions was explored.

ARIMA is an established predictive model for TSF. Prior investigations imple-
mented classical ARIMA and variations of hybrid ARIMA predictive models for 
various epidemiological analyses [9–12]. In more recent predictive models for the 
COVID-19 pandemic, ARIMA model investigations have been conducted [13–15]. 
ARIMA models are reliable for short-time forecasts [16], but the long TSF horizon 
does not fit well with ARIMA models [15] [17]. The seasonality component of the 
ARIMA model also describes the features of univariate seasonality and non-seasonal 
ARIMA components.

Deep learning algorithms can comprehensively employ TSF for epidemio-
logical problems. A detailed review of machine learning approaches has been 
investigated [14], [18]. The COVID-19 pandemic generated interest in machine and 
deep-learning approaches for TSF. Zhang et al.’s [6] study focused on the perfor-
mance improvement and interpretability of COVID-19 using a novel autoregressive 
(AR) and long-short-term memory neural networks (LSTM) hybrid model. In another 
recent investigation, Chakraborty et al. [7] investigated transfer learning with the 
gated recurrent units (GRU) model from an ensemble of four countries trained to 
predict cases of COVID-19 confirmed, deaths, and recovered. The model was fine-
tuned on India’s COVID-19 dataset. Mahajan et al. [19] investigated six forecasting 
techniques to predict new case counts for COVID-19 in ten Indian states. In [20], six 
deep learning approaches were investigated in two countries, Australia and Iran, to 
forecast new cases and deaths for short and long-time horizons. Ramchandani and 
Mostafavi [21] demonstrated DeepCOVIDNet for COVID-19 case counts in the US with 
the most influential characteristics for predicting cumulative infection. The inves-
tigation in [22] explored a spatiotemporal anomaly detection model for COVID-19 
for early detection based on the reconstruction error. In [23], a deep learning long-
short-term memory (LSTM) model forecasted two-week accrued daily case counts. 
The study in [24] featured convolutional neural networks (CNN) and temporal CNN 
(TCN) for COVID-19 daily case count forecasting in France.

Diverse experimental studies during and after the COVID-19 outbreak have 
inspired research interest in novel learning methodologies and research outputs. 
Bernátová et al. [25] study considered models for bridging distance learning during 
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critical periods such as COVID-19 lockdown using a pedagogical experiment for 
learning resources. In another investigation, Ali et al. [26] investigated the impact 
of in-hospital contact, primarily from a cloud-based Internet of Things (IoT) health 
monitoring system with biosensors that form multi-vital signs. The considerable 
impact was ameliorating healthcare costs through real-time monitoring with com-
parable results. Yet again, Kiflee et al. [27] investigated digital technology themes 
on COVID-19 in Malaysia and publication indexing counts and demonstrated huge 
interest in advancing research trends.

Injecting feature enrichment [28] into the training information can help improve 
the accuracy of COVID-19 case counts for forecasting future horizons. Feature 
enrichment with trend and cycle filters transforms the univariate TSF into a multi-
variate TSF. A stepwise [29] search for the ARIMA and SARIMA models and advanced 
tuning, optimisation, and NAS techniques on a hybrid model with two GRU net-
works in a Seq2Seq arrangement for TSF of COVID-19 daily case counts were applied.  
We executed pre-processing with normalisation, trend decomposition, and differ-
encing in the ARIMA search. We investigated a hybrid network using NAS neural 
network intelligence (NNI) with a boosted filter [3] on a GRU-Seq2Seq architecture. 
With careful selection of parameters such as search space, trial, and tuner for the 
hybrid model, we obtained optimal model performance from the COVID-19 dataset 
cases in South Africa. We incorporated filters into the training and validation sets 
to harness the GRU-Seq2Seq potential for feature representation. One of the weak-
nesses of deep learning is that substantial data is required to extract hidden depen-
dencies in the training set. Furthermore, we implemented pre-processing with a 
sliding window, minimax scaling, teacher forcing ratio, boosted HP cycle filter [1], [3], 
and CF trend filter [2]. We observed that the boosted cycle filter [3] and CF trend filter [2]  
were crucial in defining the top 5% of the hyper-parameter dependencies. We 
benchmarked the results of the best bFilter+GRU-Seq2Seq model with those of the 
ARIMA and SARIMA models.

The rest of the paper is organised as follows: Section II analyses the technique 
and compares it with baseline models, Section III provides the experimental results 
and discussion, and Section IV presents the conclusion and future works.

2	 METHOD

This section discusses the approach with the implementation of ARIMA, SARIMA, 
GRU architecture, Seq2Seq, NAS, filters, normalisation, dynamic teacher forcing, 
sliding window and evaluation metrics in the study.

2.1	 Dataset

We sourced our date for the experiment from Our-World-in-Data, a pub-
licly available repository on COVID-19 daily case counts in South Africa [30]. 
South Africa’s daily case counts from its inception on the February 7, 2020, to 
January 30, 2022 were analysed in our experiment. The South African daily case 
count provides aggregated cases from the nine provinces. The National Institute 
for Communicable Diseases (NICD) provides surveillance information to the pub-
lic regarding COVID-19 in South Africa [31]. The peak daily number of new cases 
culminated in selected incidences with awareness of new COVID-19 strains and 
reduced lockdown measures.
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Fig. 1. Workflow of the COVID-19 models for ARIMA, SARIMA and bFilter+GRU-Seq2Seq (Encoder-Decoder)

South Africa is the fifth-most populous country in Africa, with a total area of 
2,798 km on the South Atlantic and Indian Ocean coastlines. South Africa is bordered 
by Namibia, Botswana and Zimbabwe to the north, Mozambique and Eswatini to 
the east, and encircles the country of Lesotho. It has the second-largest economy 
in Africa as of 2021, and 28.3% of the population is younger than 15 years. South 
Africa is an ideal candidate as a test bed for COVID-19 case counts in Africa because 
it is considered one of the most prevalent COVID-19 hotspots for daily case counts 
as of December 2022 [32], high adult mortality due to the impact of HIV and AIDS, 
and declining life expectancy [33]. The African continent ranked lowest owing to the 
limited reporting of cases, testing, and vaccination [34]. However, the South African 
approach justifies a case study from Africa.

2.2	 Workflow

A general workflow of COVID-19 daily case counts in South Africa TSF is presented 
in Figure 1. Input from Our-World-in-Data COVID-19 for South Africa case counts 
were split into training, validation and test sets. Null observations were converted to 
zero to regularise the missing values. A min-max normalisation was applied to res-
cale values between 0 and 1. Feature enrichment was incorporated with trend and 
cycle filters for short-term fluctuations resulting from COVID-19 strain outbreaks. 
A sliding window was applied to the transformation to prepare the time-series data-
set for a supervised learning problem. The data was split into train, validate, and test 
sets. The test-train ratio was 4% for the test and 96% for the train set. 20% validation 
was performed on the train set. The training data comprised 694 observations, and 
the test data had 31 observations. The train data case counts were from inception 
on the 7th of February 2020 to the 31st of December 2021. The test data forecast is 
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from the 1st of January 2022 to the 30th of January 2022. The test forecast horizons 
were estimated with one-step-ahead forecasts for 31, 60, and 90 days and evaluation 
for 7 days, 14 days, and 31 days, respectively.

The ARIMA, SARIMA and GRU-Seq2Seq derivations and the proposed derivation 
follows. The neural architecture search algorithm resulted in the discovery opti-
mal hyper parameter. Analysis of prediction, evaluation, and results, further justify 
the approach.

2.3	 ARIMA and SARIMA

ARIMA combines AR and moving average (MA) with automatic differencing of 
non-stationary time series. In an AR model, the forecasting of a variable employs 
a linear combination of past values. An AR(p) model is a multiple regression model 
with p lagged observations as predictors.

	 y c y y y
t t t p t p t
� � � � � �

� � �
� � � �
1 1 2 2

 . 	 (1)

The MA(q) model is a multiple regression with q lags as the forecast errors, and 
MA(q) is expressed in (2) as

	 y c
t t q t q
� � � � �

�
� � � �

1
 , 	 (2)

Where, εt is the white noise, yt is the weighted moving average of the previous 
forecast error. Replacing the parameters φ1, …, φp and θ1, …, θq for orders p AR(p) 
and MA(q) led to distinct time-series patterns. An autoregressive moving average 
ARMA(p, q) model associates several regressions with p lags as observations and q 
lag errors as predictors. The insertion of differencing in the ARMA model results in 
the ARIMA(p, d, q) model with d level of differencing, as described in (3).
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� � � �

y c y y
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Box and Jenkin first proposed the ARIMA model [8], with norms for its application. 
Assumptions proposed are articulated in [35] as: (1) no anomalies in the timeseries 
dataset; (2) a univariate dataset; (3) stationary data (constant mean and variance) 
and (4) constant model parameters and error terms. Whereas ARIMA is applicable 
for TSF with non-seasonal components, seasonal ARIMA (SARIMA) is a time series 
with seasonal components (P, D, Q)m. P, D and Q are seasonal components for AR(P)
order, MA(Q) order and level of differencing D, respectively. The m parameter is the 
seasonality over time.

	 �
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m
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t Q

m
q w

B B B B y B B
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( ) ( )( � � ) ( � � ) ( ) ,( )� �1 1� � �� 	 (4)
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t t k
�
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In (4), stationary time-series, wt represents the Gaussian white noise, ϕ(B) is the 
non-seasonal AR, and θ (B) is the non-seasonal MA components. Achieving station-
arity in the data with seasonal differencing D, requires an order of one or greater.  
The seasonal AR component is ΦP(Bm), and the seasonal MA component is ΘQ(Bm).  
In (5), B is the lag operator for shifting the yt data back by the period k. In (6)–(9), the 
terms for the non-seasonal AR, non-seasonal MA, seasonal relationships for seasonal 
AR, and seasonal MA models are independently stated.
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Expressing lag values using standard time-series metrics is essential for investi-
gating the autocorrelation on multiple lag observations. The autocorrelation function 
(ACF), partial autocorrelation function (PACF), Akaike information criterion (AIC) 
and Bayesian information criterion (BIC) are widely applicable for these tasks. Time-
series autocorrelation is the correlation of present observations with preceding lags. 
The ACF for time-series yt in (10) determines the linear relationship between lags in 
a time-series dataset. The ACF check determines whether differencing is required or 
not. Visualising the time-series plot for autocorrelation vs. lags illustrates the direct 
correlation between observations at time t and observations at a previous time (t − k).
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�� 	 (10)

Here, k is the lag, which changes between yt and observations, which are k periods 
separated, cov(·) is the covariance factor, and var(·) is the variance factor. On the other 
hand, the PACF in (11) for a given time step defines a partial correlation of the time- 
series with observations between points. The PACF considers the correlation between 
transitional observations while determining the correlation between two observations 
in different periods. For example, the time-series from lag 1, …, k can be expressed as 
shown in (11). The PACF consists of observations for consecutive time steps. ACF and 
PACF can explain the choice of the best model parameters. The ACF indicates which 
autocorrelations to retain, and the PACF identifies an autoregressive model’s order.
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The PACF demonstrates a coherent association with the lag and a trailing-off cor-
relation from the lag onwards. There is no strict recommendation for interpreting 
the correlation coefficient because data collection in some disciplines is complex.

The AIC and BIC are popular criteria for assessing model quality using in-sample 
statistical measures. Refer to (12) and (13) for expressions. AIC and BIC incorporate 
penalised-likelihood criteria by crediting models with minor errors while applying 
penalties for models with more parameters. Lower residual errors of AIC and BIC are 
a good indication of the significance of the model. The goal is to decrease the com-
plexity and increase the likelihood (goodness-of-fit) of the model. We mathematically 
illustrate AIC as:

	 AIC logL k� ( ) � ,ˆ� � �2 2� 	 (12)

Where, logL( )θ̂  represents the likelihood function, L is the maximum likelihood, 
and K is the model parametrisation. Equally, in the BIC model, the criterion is imposed 
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with a reduced consequence on the parameters compared with AIC. In both AIC and 
BIC, a lower value best describes the times series data from many candidate models. 
We illustrate BIC in mathematical notation as:

	 BIC logL KlogN� ( ) � ,ˆ� � �2 � 	 (13)

Where, N represents the number of observations.

2.4	 GRU-RNN architecture

Inputs are fixed-length sequences in fully connected neural networks (FCNN). 
These peculiar behaviours fail when characterising sequential patterns as vectors 
of an ordered sequence. It is inferred that the FCNN is not suitable for TSF as it is 
not capable of a long-term relationship. The RNN architecture is a more effective 
approach [36]. The RNNs can preserve information over a sequence with a recurrent 
relation applied at every timestamp. RNNs can identify salient patterns in sequences 
and generate accurate forecasts. RNNs are effective in the TSF of weather [37], 
stock prices [38], electrocardiogram (ECG) [39], and deoxyribonucleic acid (DNA) 
sequencing [40]. As a result of computational complexity, RNN suffers from vanish-
ing gradients [41] and exploding gradient problems [42]. The RNN also updates the 
hidden state after every iteration, resulting in difficulties recalling long-term depen-
dencies. Two major RNN architectures address these difficulties with a memory unit 
for storing long-term information: GRU and long short-term memory (LSTM). To 
elaborate further, we will describe the formulation of the GRU architecture for the 
experiment. In (14)–(17), we describe the formulation for the GRU architecture as:

	 r xW b h W b
t t ir ir t hr hr
� � � �

�
� ( ),

1
	 (14)

	 z xW b h W b
t t iz iz t hz hz
� � � �

�
� ( ),

1
	 (15)

	 1( ( )),t t in in t t hn hnn tanh x W b r h W b
−

= + + + 	 (16)

	 1(1    ) ,t t t t th z n z h
−

= − +  	 (17)

Where, hidden state ht at time t, input xt at time t, previous layer hidden state  
ht − 1 at time t – 1 also known as the initial hidden state at time 0, reset gate rt, update 
gate zt, and new gate nt, at time t respectively. σ is the sigmoid function, and  is the 
Hadamard product. The GRU cell improves on gaps of the RNN with the updated iter-
ation limiting the hidden state to compensate for long-term information or depen-
dencies. We depict the computational graph in the first level of Figure 2, as in (14). 
The reset gate rt in time step t is the direct result of a sigmoid activation σ with sum-
mation of input xt in time step t with its connection weight wir and the previously 
hidden state ht − 1 in time step t − 1 with the connection weight whr. Bias bir  in time 
step t and bias bhr  in time step t are added to the input and hidden product prior 
to the activation function σ. The reset gate rt is responsible for forgetting the unim-
portant part in the hidden state of GRU. The following variable is the update gate zt 
in (14). The update gate is responsible for the proportion of the new state that rep-
resents the previous state. GRU selects long-term features rt and forms a hidden state 
with long-term memory nt and mixes it with the previously hidden state ht − 1 with 
zt ratio. In (15), the new gate nt, permits or resets the previous values by providing 
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long-term information storage. The tanh activation function directly results from 
the output rt with the Hadaman (elementwise) product of the previous hidden state 
added to the input. Incorporating the respective bias bin and bhn  with weights Win 
and Whn multiplied by the input and previous hidden state, respectively. In (16), the 
new hidden state ht is a simple linear combination of two hidden states: ht − 1 previ-
ous hidden state and nt – new gate (candidate hidden state) with long-term memory. 
The GRU simplifies the complexity of LSTM while preserving a high accuracy.

2.5	 Sequence-to-sequence

The Seq2Seq [44] network is a two-layer RNN, GRU or LSTM network with the first 
layer (encoder) establishing typical input sequence characteristics of time step data 
and the second layer (decoder) mapping the hidden sequence from the encoder out-
put as target time steps for the desired output. The architecture is closely related to [45] 
and has been widely implemented in mapping audio, sentence sequences [46], neural 
machine translation and TSF. A typical Seq2Seq architecture is illustrated in Figure 3. 
The hidden state hn from the encoder inputs x1, x2, …, xm returns a prediction sequence 
denoted as y1, y2, …, yn. The input and output states are recursive. The evaluation of 
the first input x1 is performed using the recurrent input cell. The output from x1 is the 
input of the recurrent hidden cell state h1. The next phase combines the hidden state 
h1 with the subsequent input x2. This process is repeated until the last input xm handles 
a hidden state hm and ends the encoder layer. The hm is the decoder layer recurrent 
cell input and generates the first output y1. The y1 value is fed recursively as input to 
the decoder layer recurrent cell to generate output y2, …, yn. The equation assumes that 
each input to the decoder layer recurrent cell is a result of the preceding input.

Fig. 2. The figure illustrates the schematic representation of the gated recurrent unit (GRU) cell  
with sigmoid and hyperbolic tangent activation functions [43]

2.6	 Neural architecture search

The NAS is an evolutionary technique used for optimal model discovery [47]. 
Human experts developing deep learning models have successfully created model 
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architectures using a combination of heuristics and the requisite skills. Human experts 
who develop deep learning models require considerable time and effort. The pro-
cess mimics the human experts’ approach through an automatic network search for 
the best-performing model for task selection. This algorithm is simple and has a high 
level of accuracy. NAS is highly customizable with various open-source libraries. The 
application of NAS can significantly increase the variability and likelihood of obtain-
ing highly useful architectures. A significant drawback is the duration of the training 
process. In some cases, NAS requires considerable computational resources and may 
not provide the best model from a trial session search. Although these drawbacks 
exist, NAS offers a robust algorithm for fast optimisation.

In [48] [49], a survey of the different techniques for NAS was reported. Our 
experiment focused on the NAS NNI toolkit [50]. The NNI is an open-source tool-
kit provided by Microsoft Inc. The hyper-parameters are: (1) number of hidden 
layers; (2) activation function; (3) dropout layer ratio; (4) number of training epochs; 
(5) optimisation; and (6) tuning learning rate for best model performance [51]. The 
NAS-NNI tuner aims to determine the top combination of hyper-parameters in a 
search space by reducing the number of trials. Each of the hyper-parameters can 
drastically affect the optimisation during the model search. Three key components 
constitute the hyper-parameter learning process: trial, search space and turner.  
A trial conducted training, validation and testing on a selected hyper-parameter trial 
metric. The search space combines all sets of hyper-parameters, and the tuner is a 
strategic model performance optimisation on a search space. There are several tun-
ers, each with an algorithmic strategy [52]. We employed an evolutionary algorithm 
[47], known as the naïve evolutional or genetic algorithm tuner from the NAS-NNI 
toolkit, for search space reduction. The naïve evolutionary tuner applies intuitive 
mutation operators, traversing through large search spaces. The best combinations 
were selected for each generation, followed by a hyper-parameter mutation for 
the next generation in the search space. The naïve evolutional tuner has a simple 
development process with different features.

Fig. 3. Illustration of the schematic representation of the gated recurrent unit (GRU)  
cell for Seq2Seq implementation

2.7	 Hodrick-Prescott, Christiano-Fitzgerald and booster filters

A range of filter smoothing techniques from HP [1], the band-pass technique 
developed by Christiano and Fitzgerald [2], and the boosting technique developed 
by Phillips and Shi [3]—trends and cycle filters—are features that are incorporated 
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as model input for experimentation. Hodrick and Prescott [1] proposed the HP filter 
technique for characterising time series as the sum of smoothly varying trends and 
cyclical components. The trend is a long time series in the upward or downward 
direction. The cyclical component represents the fluctuation around the trend vari-
ation for the selected periods. The HP filter has been widely applied to several other 
filters with commonly shared characteristics. CF filter [2] generalises the Baxter-King 
approximate band-pass filter.1 The CF is a weighted moving average asymmetric for 
the period using the entire time series. The CF estimates the cyclical and trend com-
ponents for a time series employing several band-pass estimate schemes. A study [53]  
criticised the HP filter for (1) producing series with false relations from undelaying 
data; (2) characterising different point values by false generation; (3) generating a 
smoothing parameter that lacks correlation with standard practice; and (4) an alter-
native technique with detrending. In [3], Philips and Shi proposed repeated anal-
ysis with an HP filter to generate a more innovative smoothing approach, called 
the boosted HP (bHP) filter. The bHP is an L2-loss with a boosting machine learn-
ing approach. The bHP filter recovers trend procedures from a function involving 
combined techniques, deterministic drifts, and structural breaks, which are widely 
applicable in standard modelling methodologies. In our experiment, we applied fil-
ters to discover the optimal model and to remove trends based on the nature of the 
COVID-19 dataset.

2.8	 Normalisation

Normalisation is an effective process for transforming a dataset into a mutual mea-
sure. Normalisations avoid bias with dataset features and enhance the model learn-
ing. In our investigation, we applied min-max normalisation to the feature values. 
Min-max normalisation does not alter the original distribution of the data. In (18),  
x̂ returns a value between 0 and 1 for x as a dataset feature value; min(x) is the small-
est value in the dataset, and max(x) is the most significant value in the dataset.

	 ˆ
� � ( )

( )� ( )
,x

x min x

max x min x
�

�
�

	 (18)

2.9	 Dynamic teacher forcing

The teacher forcing ratio enhances learning by using the ground truth from the 
previous time steps as the input. This approach is a substitute for back propaga-
tion through time, which is widely applied in training RNNs. Various deep learning 
architectures use the teacher forcing ratio [54]. In our investigation, dynamic teacher 
forcing improved performance by aiding the decoder with the expected input value 
at a mixed ratio [51].

2.10	 Sliding window

A sliding window uses previous time steps to predict subsequent periods [55] and 
is essential for preparing data for a deep learning approach. We applied the sliding 
window to pre-process the COVID-19 daily case counts for the TSF.

1https://www.statsmodels.org/dev/examples/notebooks/generated/tsa_filters.html
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2.11	 Evaluation metric

We employed multiple metric evaluations for COVID-19 daily case counts to 
address the difficulties inherent in evaluating model performance. These are root 
mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute 
error (MAE) and coefficient of variance (R2) score. The mathematical derivation for 
the error estimations is given in (19) to (21).

	 MAPE
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%, 	 (19)

The MAPE in (19) is also known as the mean absolute percentage deviation 
(MAPD). The MAPE takes the absolute value from the forecast difference values ŷ

t
 

and the actual values, yt, dividing by the actual values yt, the percentage applied and 
averaging across the dataset.
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In (20), the MAE is also known as the L1 loss. To estimate MAE, we take the abso-
lute value of the difference between the forecast values ŷ

t
 and the actual values, yt. 

The average was obtained across the dataset. MAE is not sensitive to outliers when 
compared to the RMSE.

	 RMSE
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The RMSE in (21) is an estimate of L2 loss. The RMSE estimates the squared val-
ues between the forecast values ŷ

t
 and the actual values, yt. The root values are the 

estimates across the dataset. RMSE is most useful when significant errors exist and 
influence the model performance.
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The R2 score in (22) is a performance metric and not an error metric, as explained 
for the previous metrics in equations (19)–(21). R2 estimates the ratio between the 
squared values from the difference in forecast values ŷ

t
 and the actual values, yt. The 

squared value between the difference of the mean values y
t
 and the actual values yt 

and then the average of the sum, y
t
 is

	 y
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. 	 (23)

3	 RESULTS AND DISCUSSION

This section discusses exploratory analysis, forecast strategies and simulation 
with ARIMA, SARIMA and bFilter+GRU-Seq2Seq models using components, optimi-
sation, prediction, and evaluation. The primary purpose of this investigation was to 
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determine forecast horizons for the COVID-19 daily cases in South Africa using evo-
lutionary search optimisation and a feature-enriched boosted filter [3] with a GRU-
Seq2Seq architecture. We demonstrate below that the resulting feature-enriched 
boosted filter with a GRU-Seq2Seq architecture is more accurate and termed the 
technique bFilter+GRU-Seq2Seq.

3.1	 Exploratory data analysis

Figure 4 details the split for train and test sets, and Figure 5 shows the emerg-
ing cyclic trend and peak period as daily COVID-19 case counts progress in South 
Africa. We observed three significant peaks on the 24th of July 2020 (13.944K), the 
8th of January 2021 (21.98K) and the 3rd of July 2021 (26.485K), respectively. After 
each peak period, there was a downward trend towards near-trivial daily confirmed 
cases. With the emergence of the Omicron strain, confirmed cases rose to an all-time 
high, signifying a shorter trough compared with previous trends. We detail the simu-
lation for ARIMA, SARIMA, and bFilter+GRU-Seq2Seq in the subsequent subsections.

Fig. 4. Data distribution for training from the inception of case counts to the 31st of December 2021  
and for the test set in the month of January 2022

3.2	 ARIMA and SARIMA simulation

We developed models for ARIMA and SARIMA using the Python Statsmodel 
ARIMA library installed on a Windows 11 PC with 16 GB RAM and an Intel i7 9th 
generation processor. The average fit time for training the ARIMA and SARIMA 
models on the local PC were 67.659s and 230.873s, respectively. The parameters of 
ARIMA(p,d,q) and SARIMA(p,d,q)(P, D, Q)m were optimized using Python AUTO_ARIMA from 
the Pmdarima module and Statsmodel libraries. We investigate autocorrelation on 
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multiple lags as indicated by correlation plots in Figure 6a and 6b. In Figure 6a, the 
diagram shows the lag values on the x-axis and the correlation coefficient between 
−1 and 1 on the y-axis. The ACF line plot in Figure 6a shows that the first 22 lags 
are outside the shaded area when autocorrelation values are higher than 0.35.  
In Figure 6b, an obvious pattern is the decay from the PACF plot and not a clear pat-
tern in an MA that would confirm a choice for the order of lags. There are lag values 
on the negative and positive sides of the PACF. ACF and PACF plots were set at a 95% 
confidence interval. We considered a more pragmatic approach because our goal 
was to select optimal lags for the best predictive model performance.

Fig. 5. The HP filter for trend and cyclical fluctuations from the original time-series of COVID-19 cases as 
indicated from the inception of COVID-19 in South Africa to the end of January 2022

We applied first-order differencing to the daily case counts of COVID-19 in South 
Africa. The Augmented Dickey-Fuller (ADF) test [56] and the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test [57] for unit root tests were used for the time-series to deter-
mine the differencing, AR, or MA terms required to fit the model. We selected the 
best parameter from the AIC as the evaluation metric for the best ARIMA(p,d,q) and 
SARIMA(p,d,q)(P,D,Q)m models from the AUTO_ARIMA optimization. The ARIMA and 
SARIMA models were built using a stepwise configuration approach to detect the 
optimal combination by adjusting the seasonality feature to “false” for ARIMA mod-
els and “True” for the SARIMA model. The parameter search space was assigned the 
values listed in Table 1. Our data analysis showed that the best ARIMA and SARIMA 
model were identified using the AIC and BIC [58] information criteria. The ARIMA(10,1,3) 
implies an AR impact of order 10 and a MA effect of order 3, and a first-order differen-
tial is required. The evaluation in Table 1 lists the metrics for the values of ARIMA(10,1,3) 
and SARIMA(0,1,1)(4,0,0)[7] for the best COVID-19 case counts train data, respectively.
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Figure 7a–c illustrate the visualized evaluation from the ARIMA(10,1,3) for 30, 14, 
and 7 days forecast horizons respectively. The train data were from the last 120 
observations, starting the 3rd of September 2021 to the 31st of December 2021. The 
red separator line indicates the beginning of the test data observations from the 1st 
of January 2022 to the 30th of January 2022. The predicted result is the green line 
plot. In the ARIMA(10,1,3) model, the AIC and BIC were 1.23E+04 and 1.24E+04 respec-
tively. The ARIMA(10,1,3) model evaluation errors for 30 days for RMSE, MSE, MAE, 
and MAPE are 3.13E+03, 2.73E+03, 2.73E+03, and 3.94E+17 respectively. The perfor-
mance R2 score was −2.38E-01. The ARIMA(10,1,3) model evaluation errors for 14 days 
for the RMSE, MSE, MAE, and MAPE were given as 3.53E+03, 1.25E+07, 3.05E+03, 
and 5.66E−01 respectively. The performance R2 score was −8.53E−01. In the 7 days 
evaluation, RMSE, MSE, MAE, and MAPE are given as 3.56E+03, 1.27E+07, 3.04E+03, 
4.56E-01 respectively. The performance R2 score was −5.99E−01.

Fig. 6. In (a) Autocorrelation plot of daily COVID-19 case counts in South Africa ending on the  
31st of December 2021 and in (b) Partial autocorrelation plot of daily COVID-19 case counts  

in South Africa ending on the 31st of December 2021

Table 1. ARIMA and SARIMA model configurations

Component Model-Period Min Max

Non-Seasonality AR(p) 0 10

MA(q) 10

I(d) 10

Seasonality AR(P)  7

MA(Q)  7

I(D)  7

Periods Daily  7

Monthly 12

Weekly 52

Quarterly  4

Annual  1

Notes: Non-seasonal components for the ARIMA model with a starting value of 0 and maximum search 
at 10. The seasonal and periodic components for the SARIMA model with a starting value of 0 and 
maximum search at 7.

https://online-journals.org/index.php/i-joe


iJOE | Vol. 19 No. 14 (2023)	 International Journal of Online and Biomedical Engineering (iJOE)	 121

A Boosted Evolutionary Neural Architecture Search for Time Series Forecasting with Application to South African COVID-19 Cases

Figure 7e–f illustrate the visualized evaluation from the SARIMA(0,1,1)(4,0,0)[7] for 
31, 14, and 7 days forecast horizons respectively. The training data were from the 
last 120 observations beginning the 3rd of September 2021 to the 31st of December 
2021. The red separator line indicates the beginning of test data observations from 
the 1st of January 2022 to the 30th of January 2022. The predicted result is the green-
line plot. In the SARIMA(0,1,1)(4,0,0)[7] model, AIC and BIC were 12326.537 and 12353.783 
respectively. The SARIMA(0,1,1)(4,0,0)[7] best R2 score was 5.85E−01 for 7 days evalua-
tion horizon. The short-term forecast indicates better predictability than the long-
term forecast.

3.3	 bFilter+GRU-SEQ2SEQ simulation

We developed the bFilter+GRU-Seq2Seq model using the PyTorch package 
(version 1.10.1+cu113) on Python (version 3.9) programming language. The sim-
ulation was performed on a compute unified device architecture (CUDA) enabled 
computer. The NAS was tuned with Microsoft NNI [50] for the trend filter, cycle 
filter, number of hidden layer nodes, hidden layer size, learning rate and teacher 
forcing ratio (TFR). The statistical HP filter separates trend and cyclical fluctuations 
from the original time-series COVID-19 cases, as indicated in Figure 5. Trend and 
cycle filters were optimized using the default configuration for bHP, HP and CF 
filters, and no filter, respectively. The number of hidden nodes (8,12,16,24,32,64), 
hidden layer size (4,6,8,12), learning rate (.001,.005,.01) and teacher forcing rate  
(0.1, 0.2, 0.3, 0.4, 0.5) parameters were configured for sequential combinations to 
achieve the best prediction metric. Sequences in parenthesis are a range of values 
for the NAS optimization. NAS optimisation search creates suitable models for the 
COVID-19 daily case count task. The deep learning model proposed for South Africa 
was separated using a filter cycle, trend, and normalised historical data component. 
The number of features were three entries from the cycle the filter, trend filter, and 
normalised daily case counts. Given this feature representation, a multivariate input 
with a multi-step forecast emerged. For this task, a sliding window and random sam-
ple validation with a probability of 2% on the training set were applied to the model 
quality metric. The NAS optimisation durations were 1h, 11min, and 12s. The num-
ber of trials was 100 and 0 failed running four concurrent configurations. The train-
ing platform was on a local computer and the NAS tuner algorithm employed was 
the naïve evolution approach. The shortest duration for a model run was 1min, 23s, 
and the longest duration was 1min, 27s. The performance across the NAS-NNI trials 
was similar, as shown in Table 2. The model’s best hyper-parameter was obtained 
from the NAS-NNI training set data from the 7th of February 2020 to the 31st of 
December 2021. The bHP cycle and CF trend filters showed the lowest metric error 
for the hyper-parameter configuration.

The COVID-19 new case counts hyper-parameters without trend or cycle filters 
were not ranked within the top 10 configurations. All the top metrics are close, and 
the RMSE ranges from 2.44E-03 and 5.87E-03. All learning rates were 0.01 except 
for the 10th ranked configuration with a learning rate of 0.005. The top 10 ranked 
combinations applied different TFRs ranging from 0.1–0.4. The complete top-
ranked hyper-parameter combinations are presented in Table 2. In Table 2, the first, 
third, fifth and seventh-ranked model configurations applied TFR of 0.2. The sec-
ond and fourth configurations applied a TFR of 0.4. The last 3 in the top ten ranked 
configurations applied a TFR of 0.3, and the seventh ranked with only a TFR of 0.1.
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ARIMA (10,1,3) South Africa next 31 days
COVID-19 Daily Cases Prediction
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ARIMA (10,1,3) South Africa next 14 days
COVID-19 Daily Cases Prediction
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ARIMA (10,1,3) South Africa next 7 days
COVID-19 Daily Cases Prediction
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SARIMA (0,1,1)(4,0,0)[7] 31 days
COVID-19 Daily Cases Prediction in South Africa
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Fig. 7. ARIMA 31 days daily COVID-19 daily case counts: (a) 1st of January 2022 to the 31th of January 2022, (b) 1st of January 2022 to the 14th of 
January 2022, (c) 1st of January 2022 to the 7th of January 2022, SARIMA 31 days daily COVID-19 case counts from: (d) 1st of January 2022 to the 

31th of January 2022, (e) 1st of January 2022s to the 14th of January 2022, and (f) 1st of January 2022 to the 7th of January 2022

The model was evaluated for 31, 14 and 7 days TSF (Table 3). Table 3 shows that the 
combined daily new cases for South Africa were trained with the hyper-parameter 
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configuration, the prediction and evaluation metrics were reported. In South Africa, 
the COVID-19 pandemic’s first three waves were below 30,000 daily case counts 
until the fourth wave, culminating in the emergence of the Omicron strain with the 
highest daily case count of 37,875, and cumulative daily cases at 3,167,497 on the 
12th of December 2021. The cumulative daily case counts were highest in Africa 
as of the end of 2021. The best RMSE performance for model valuation of the NAS 
configuration was 2.74E-03. The 31 days TSF horizon had lower RMSE, MSE, and 
MAE errors of 1.19E+03, 1.42E+06 and 9.85E+02, respectively, and the best R2 score 
at 7.48E-01, followed by 14 days TSF horizon with the best MAPE score. Figure 8a–c 
illustrate the evaluation for 7, 14 and 31 days horizons.

Table 2. Top 10 hyper-parameter combinations from NAS result metric

Rank Period Metric Trend Cycle Node Layer LR TFR

 1 1m 23s 0.002444 CF bHP 64  6 0.01 0.2

 2 1m 31s 0.002589 bHP bHP 64  6 0.01 0.4

 3 1m 25s 0.002703 CF HP 32  8 0.01 0.2

 4 1m 27s 0.002927 NONE bHP 64  6 0.01 0.4

 5 1m 27s 0.003622 HP bHP 32 12 0.01 0.2

 6 1m 23s 0.004463 NONE HP 12 12 0.01 0.1

 7 1m 24s 0.004739 HP bHP 24 12 0.01 0.2

 8 1m 24s 0.005346 CF bHP 64 12 0.01 0.3

 9 1m 25s 0.005629 CF bHP 64 12 0.01 0.3

10 1m 26s 0.005873 NONE NONE 64  6 0.005 0.3

Notes: The trend and cycle configurations are bHP, HP, and CF for booted Hodrick–Prescott, Hodrick–
Prescott, and Christiano-Fitzgerald filters in that order. The top hidden layer node (NODE), hidden layer 
size (LAYER), learning rate (LR), and teacher forcing ratio (TFR) configurations are depicted.

Figure 8d and 8f provide details of the bFilter+GRU-Seq2Seq model forecast hori-
zons for 30, 60 and 90 days, respectively. The bFilter+GRU-Seq2Seq model was eval-
uated at 31, 14 and 7 days. The training data were from the last 120 observations, 
from the 3rd of September 2021 to the 31st of December 2021. The red separator line 
indicates the beginning of the test data observations from the 1st of January 2022 to 
the 30th of January 2022. The predicted results are plotted as green lines. 31 days eval-
uation errors were lower on the test set with 1.19E+03, 1.42E+06, 9.85E+02 and 7.48E-
01 for the RMSE, MSE, MAE and R2 scores. Only on the 14th day result was the MAPE 
lower at 2.01E-01 when compared with 31 days MAPE and higher with 7.37E+00 and 
4.92E+00 for MAE, respectively. The model prediction for 31 days horizon from the 1st 
of January 2022 to the 30th of January 2022 shows a decreasing number of cases and 
daily case counts not exceeding 3500. In the case of 60 days horizon ending the 1st of 
March 2022, the number of daily case counts continued to drop and did not exceed 
2500 daily case counts. In the case of 90 days horizon ending on the 31st of March 
2022, the daily number of new cases from the model reached 6000 daily case counts.

3.4	 Comparative analysis

The investigation results identified the apparent justification for the bHP filter [3]  
with GRU-Seq2Seq resulting in improved accuracy and lower evaluation errors. 
Prior investigations have distinguished the importance of feature enrichment in 
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deep learning tasks [28]. The present paper determined the effect of incorporating 
feature enrichment with a bHP filter [3] and GRU-Seq2Seq for TSF task. The most 
prominent finding from the analysis is that bHP filters are essential for salient fea-
tures in lagged observations in the training set. Contrary to some expectations in 
[53], this study supports the evidence from previous observations e.g., [28].

Furthermore, the bHP filter improved features in seven of the top 10 model con-
figurations. Based on our experiment. We did not find a varied difference in cycle 
filters and learning rate configurations. However, the model configuration varies 
depending on the trend filter, the number of nodes, layers and TFR.

Our overall best model (bFilter+GRU-Seq2Seq model) was 28% higher in perfor-
mance accuracy when compared to Ogundare and Van Zyl [45] GRU model for R2 
score, while Ogundare and Van Zyl [45] ARIMA model had lower errors on equiv-
alent evaluation metrics than the ARIMA(10,1,3). The short-term forecast indicated 
better predictability than the long-term forecast, as expected when comparing the 
bFilter+GRU-Seq2Seq model to the SARIMA model. The SARIMA-based models are 
effective for short-term TSF, in line with previous studies [15] [34].

Table 3. Performance comparison of ARIMA, SARIMA and filters+GRU-Seq2Seq models for the test dataset

RMSE MSE MAE MAPE R2_Score Horizon Model

3.13E+03 2.73E+03 2.73E+03 3.94E+17 −2.38E−01 31

ARIMA (10,1,3)3.53E+03 1.25E+07 3.05E+03 5.66E−01 −8.53E−01 14

3.56E+03 1.27E+07 3.04E+03 4.56E−01 −5.99E−01  7

2.20E+03 4.83E+06 1.83E+03 6.90E+17  3.90E−01 31
SARIMA(0,1,1)
(4,0,0)[7]1.80E+03 3.22E+06 1.53E+03 2.86E−01  5.22E−01 14

1.81E+03 3.29E+06 1.50E+03 2.44E−01  5.85E−01  7

1.19E+03 1.42E+06 9.85E+02 2.62E−01  7.48E−01 31

Filter+GRU-Seq2Seq1.35E+03 1.82E+06 1.19E+03 2.01E−01  6.11E−01 14

1.70E+03 2.89E+06 1.61E+03 2.40E−01  3.43E−01  7

Notes: 30 days, 14 days, and 7 days horizons (HO) for ARIMA (top 3 rows), SARIMA (mid 3 rows), and 
GRU-Seq2Seq (bottom 3 rows) Models result for COVID-19 daily new cases data in South Africa using 
RMSE MSE, MAE MAPE, and R2 Score metrics.

In the LSTM model proposed by Elsheikh et al. [48], our best R2 score was 24% 
lower in comparable metrics. In the interpretable hybrid AR-LSTM model [6], our 
MAPE is considered reasonable when compared. Similarly, Chakraborty et al. [7] 
Pretrained a transfer weighted ensemble with GRU in the daily confirmed cases and 
demonstrated improvement in RMSE results. A possible explanation for these results 
may be the number and period of observations, feature engineering, training obser-
vations, statistical, machine learning or deep learning architecture deployed for the 
model approach. Our findings were restricted to COVID-19 daily case counts in South 
Africa. However, such associations are likely in countries with similar COVID-19 
observations and daily case counts. Again, it is possible to hypothesise that similar 
results with our proposed configuration are generalisable.

The present investigation raises the possibility that feature enrichment with bHP 
filters and GRU-Seq2Seq supports the conceptual premise of TSF. The current results 
are significant in at least two major aspects: (1) feature enrichment in TSF tasks offers 
robust models for TSF, and (2) filters are relevant in extrapolating salient features for 
TSF tasks. Further work is required to establish the viability of feature enrichment 
with filters and deep learning architectures in relevant domains with TSF tasks.
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4	 CONCLUSION

We have presented a time-series forecasting approach which combines 
feature-enriched filters and evolutionary neural architecture search with 
bFilter+GRU-Seq2Seq. Our approach is applied for predicting daily case counts of 
COVID-19 disease in South Africa. Experiment shows that our proposed technique 
bFilter+improved on the traditional COVID-19 South Africa cases. We benchmarked 
ARIMA and SARIMA against the bFilters+GRU-Seq2Seq model for daily cases of 
COVID-19 TSF in South Africa. Using historical data from the Our-World-in-Data. 
COVID-19 daily case counts were trained from inception to the 31st of December 
2021. Experimental results predict a steady decrease in daily case counts within 
60 days. Daily case counts will rise as we approach the 90 days prediction horizon.  
A comparative practical result with ARIMA and SARIMA shows sufficient predictive 
accuracy in evaluating short-term forecasts compared with the bFilter+GRU-Seq2Seq 
forecast. bFilter+GRU-Seq2Seq demonstrates sufficient predictive accuracy over the 
ARIMA and SARIMA models in long-term forecasting. The future goal is to leverage 
the approach for African countries to model daily case counts as indicators. Again, 
surge in publications during and after the COVID-19 pandemic is testament to huge 
interest in advancing active research trends in multidisciplinary studies [25–27] and 
lessons from the pandemic’s impact.
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