
PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

Design and Implementation of Experiments with
Real-Time Shared Architecture using Different

Mobile Systems
http://dx.doi.org/10.3991/ijoe.v11i2.4133

Bahaa I. Kazem1,2, Mazin Rahman Ali
1

1 University of Baghdad, Iraq.
2
 University of Missouri-Columbia, USA.

Abstract—This work presents a new design for an internet
laboratory at University of Baghdad (UoB-iLab) that can be
used by students off-campus to execute real time experi-
ments in the on-campus. The UoB-iLab architecture is de-
signed to be used with limited internet bandwidth and con-
current access by users and administrators. The Arduino ®
Microcontroller was used to establish the interface platform
with various laboratory devices using C and C++ program-
ming languages to control input/output signals for a specific
lab device. The web interface for the system was developed
using HTML, PHP, and AJAX along with JAVA to build
graphical real-time interfaces for the experiments that can
work on any operating system platform (Windows, Mac OS,
Linux, Unix, BeOS) on PCs and mobile devices. Several
experiments were designed to check the reliability of the
suggested UoB-iLab architecture to deal with different types
of input and output configurations during the real experi-
ments session while using several types of sensors and actua-
tors. The suggested design of UoB-iLab can be used to im-
plement several types of real-time experiments to improve
the practical skills for engineering college students at the
University of Baghdad and other universities without the
need for high resource investment.

Index Terms—iLab, remote control, web-based laboratory.

I. INTRODUCTION
The rapidly expanding use of information and commu-

nication technology in an educational environment and its
reflection on the teaching and learning styles make it is
possible for schools, universities, and other educational
institutions to offer web-based online laboratories as an
alternative to the traditional laboratory experience.

The educational institutions that would have struggled
to or been unable to provide a sufficient traditional labora-
tory experience and equipment can use distance-learning
technology that provides the opportunity to incorporate
online laboratory experiences in their course curriculum.
Consequently, more students in technical and science
courses are able to participate in valuable laboratory expe-
riences. Even universities without such concerns can
bene!t from online laboratories as a complement to their
existing hands-on and traditional facilities [1].

Certainly, online laboratories are not a perfect replace-
ment for traditional laboratories. The students do not get
hands-on experience setting up the experiments and have
limited debugging abilities. However, an online laboratory
system ensure that the laboratories remain open at night to

serve students in any part of the world at a minimum cost
where traditional and expensive equipment is not availa-
ble.

Online laboratories are "exible and can be accessed by
a large number of users from anywhere at any time. The
"exibility lets students conduct their experiments at a
convenient time and location. It also allows institutions to
keep their laboratories open for much longer, which is
usually not possible with the traditional hands-on labora-
tory. Furthermore, universities can use online laboratories
to expand their offering of available laboratory experi-
ments with minimal additional cost so that the entire class
of students can perform the same experiment on shared
equipment.

A lot of research has been conducted by researchers [1]-
[33]. They have used different types of microcontrollers to
connect and control laboratory devices and web-based
platform engines as shown in Appendix B.

The first iLab project was started at MIT in 1998 by
one of the authors [2]. The initial inspiration for the first
iLab came from the frustration that MIT’s courses on
semiconductor devices did not contain a laboratory com-
ponent. Traditionally, students in these courses were ex-
posed only to theoretical device models presented in lec-
tures and course texts. At the same time, an Agilent
4155B semiconductor parameter analyzer (shown in Fig.
1) was available with spare capacity in a graduate research
lab. While the underutilization of the Agilent equipment
seemed to provide an opportunity to have this tool also
used in education, there was no way to accommodate the
students taking courses using a single piece of equipment
in the crowded research lab.

Students in an upper level electrical engineering course
in the fall of 1998 were the first to try this system, i.e.,
Microelectronics WebLab. By the following spring, the
hardware and software combination had proved to be
reliable to the point that an undergraduate class of nearly
100 students employed the online lab for an assignment.

According to the available research, there are several
limitations with using the available iLab systems, espe-
cially with low infrastructure locations. They include:

The student is required to have LabView Runtime in-
stalled. While this can be a perfectly affordable require-
ment on a personal computer, it can become a problem if
the student tries to use the system on a computer where he
does not have administration permissions, such as a com-
puter room at the university or a Cyber Cafe.

iJOE ‒ Volume 11, Issue 2, 2015 9

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

Figure 1. iLab Architecture [7].

LabView Runtime is not available for all platforms.
While covering Microsoft Windows could be enough in
most cases, it fails to achieve the ongoing trends of using
mobile devices (including tablets such as iPads or Sam-
sung Galaxy Tabs) more often than the computer. Imple-
menting m-learning with a remote laboratory based on
LabView Runtime is plainly impossible.

The communication is not encrypted and hard to en-
crypt. The fact that it does not use HTTPS makes it diffi-
cult to create a tunnel that the web browser can understand
and to make it possible to send secure messages to the
server. Depending on how affordable the risk of malicious
users breaking the remote hardware is, it might become a
problem.

The communication is based on a TCP socket. This
makes the deployment difficult when trying to support
other web platforms (such as Apache or IIS). If it is re-
quired to have two servers in the same machine, a non-
standard port must be opened, both by the IT services of
the host university and by the client system (which might
not be even possible if the user is at a foreign university).

In this work the required web-based interface platform
using basic programing languages (JAVA, HTML, AJAX,
and Processing Language – PHP) was developed. Ar-
duino® Microcontroller will be used for interfacing the
laboratory devices since it is inexpensive and has several
good features when compared with commercially availa-
ble microcontrollers.

The suggested UoB-iLab system in this work needs to
have following features:
• Open-source development model that gives users the

ability to improve the product.
• Compatibility with major PC operating systems like

Linux, Mac, or Windows.
• Support of running real-time applications. This spe-

cial feature is possible due to use of a separate AVR
microcontroller programmed in assembly language.

• Can be extended to a wide range of multidisciplinary
applications where innovators can use it as a base to
develop advanced projects, as it can deal with differ-
ent types of input/output protocols.

The developed UoB-iLab was used to design several
basic experiments to be used by Mechatronics engineering
students at the Al–Khwarizmi Engineering College at the

University of Baghdad. The students can access and run
real-time experiments from any location at any time with-
out any special application or software to be installed on
their PCs. Also, UoB-iLab can be integrated with other
international resources of iLab around the world.

II. ILAB ARCHITECTURE OVERVIEW
From the perspective of the internet shared architecture,

online experiments fall into two broad categories [7].
• A batch experiment in which the entire course of the

experiment can be specified before the experiment
gets running. Experiment execution takes place in
machine time.

• An interactive experiment in which the user monitors
and controls one or more aspects of the experiment
during execution. Experiment execution takes place
in real time.

iLab architecture consists of three layers: Client, Web-
Lab server, and experiment device. The WebLab server is
responsible for managing lab server experiments for the
students who will perform experiments, as shown in Fig.
1.

The WebLab server plays an important role in the man-
agement of the relationship between the lab server at la-
boratory side and the client (user) at the other side.

The roles of the WebLab server include management of
authorization, authentication, and registration, scheduling,
and periodization of users.

The lab server’s role is to control the laboratory devices
to implement a specific set of experiments according to
the client’s (user’s) needs.

III. UOB-ILAB ARCHITECTURE
The suggested design for UoB-iLab must be reliable

and easily implemented at the University of Baghdad with
the following design features:

The system can be used by mechatronics engineering
students at the Mechatronics Engineering Department at
the University of Baghdad

The design of the UoB-iLab architecture can be used to
support secured authentication for clients and adminis-
tered with low cost and limited internet bandwidth.

The suggested design for (UoB-iLab) can be imple-
mented using an Arduino® Microcontroller platform with
a web interface.

The design and implementation of the required web in-
terface can be used to control and interact with electronic
and mechanical devices.

Figure 2 shows the basic design hardware and software
components for UoB-iLab. The required programing and
interface languages to complete data transformation and
acquisition between the user interface and laboratory de-
vice are also listed in Fig. 2.

The major laboratory activities that need to be consid-
ered to complete an experiment in an integrated manner
are as follows:
• Switching the process of equipment and devices.
• Getting the result values from the sensors.
• Modifying the value of the process variables.
• Achieving the concept of the feedback control sys-

tem.

10 http://www.i-joe.org

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

Figure 2. UoB-iLab Architecture.

IV. MICROCONTROLLER DESIGN AND PROGRAMMING
The Arduino® Microcontroller board is provided with a

USB plug to connect to a computer and a number of
connection sockets that can be wired to external elec-

tronics such as motors, relays, light sensors, laser diodes,
loudspeakers, microphones. They can be powered through
the USB connection from the computer or by using a 9V
battery. They can be controlled from the computer or
programmed by the computer and then disconnected and
allowed to work independently [34].

Arduino is an open source code environment that makes
it easy to write codes and upload them on the input/output
(I/O) board. It runs on Windows, Mac OS X, and Linux.
The environment is written in Java and based on pro-
cessing, avr-gcc, and other open source software. The
physical computing platform is based on a simple I/O
board and a development environment that implements
processing. Arduino is composed of two major parts [35]:

Part 1: the Arduino board, which is the piece of hard-
ware used to build objects.

Part 2: the Arduino IDE, the piece of software to be run
on computer.

The Integrated Development Environment (IDE) is
a cross-platform application written in Java and is derived
from the IDE for the processing programming lan-
guage and wiring projects. It is designed to introduce
programming to artists and other newcomers unfamiliar
with software development. It includes a code editor with
features such as syntax highlighting, brace matching, and
automatic indentation, and it is also capable of compiling
and uploading programs to the board with a single click.
Experiments are monitored in real time.

There is typically no need to edit files or run programs
on a command line interface. A program or code written
for Arduino is called a “sketch” [34].

Arduino programs are written using C or C++. The Ar-
duino IDE comes with a software library called "Wiring”
from the original wiring project, which makes many
common input/output operations much easier. Users only
need to define two functions to make a runnable cyclic
executive program:

setup(): a function that runs once at the start of a pro-
gram and can initialize settings

loop(): a function repeatedly called until the board
powers off.

iJOE ‒ Volume 11, Issue 2, 2015 11

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

Figure 3. Steps of codes witting for an Experiment.

V. INTEGRATED RELATION BETWEEN ARDUINO
MICROCONTROLLER AND PYTHON IN UOB-ILAB

Python programs are indeed often deployed in the con-
text of larger applications. For instance, to test hardware
devices, Python programs may call out to components that
give low-level access to a device. Similarly, programs
may run bits of the Python code at strategic points to sup-
port end-user product customization without the need to
ship and recompile the entire system’s source code. Py-
thon’s simplicity makes it a naturally flexible control tool.
Technically, although, this is also just a common Python
role, many (perhaps most) Python programmers code
standalone scripts without ever using or knowing about
any integrated components. It is not just a control lan-
guage [36].

To support communication with the Arduino board, a
method of interfacing is required. Standard Arduino
boards provide RS232-style serial connection to older
boards over a physical RS232 connection. But with such a
port that is no longer common to modern computers, re-
cent boards include a USB for serial functionality. With
Python, it is trivial to read and write to the serial devices
as if it were a file on a Windows system, but there is also a
wrapper library called pySerial that works well across all
operating systems [35]. After installing pySerial, reading
data from Arduino is straightforward:

>>> import serial
>>> ser = serial.Serial('COM11', 9600)
>>> while True:
… print ser.readline()
'1 Hello world!\r\n'
'2 Hello world!\r\n'
'3 Hello world!\r\n'
Writing data to Arduino is easy too:
>>> import serial #
>>> ser = serial.Serial('COM11', 9600)
>>> ser.write('5')

It is necessary to connect to the same device that is
connected to from within the Arduino development envi-
ronment. A symlink between the longer-winded device
name and COM11 to cut down on keystrokes has been
created. Note that the example above will not work on a
Windows machine, as the Arduino serial device takes
some time to load. When a serial connection is estab-
lished, it resets the Arduino.

Any write() commands issued before the device initiali-
zation will be lost. A robust server-side script will read
from the serial port until the Arduino declares itself ready,
and it will then issue write() commands. Alternatively, it
is possible to work around this issue by simply placing a
“'time.sleep(2)” call between the serial connection and the
write call. The major reason for using the python program
in UoB-iLab is to convert the result data from Arduino
microcontroller from binary form to another form such as
CSV–TXT- XCL…, which enables the other program to
analyze it easily, as shown in Fig. 3.

VI. DESIGN AND IMPLEMENTATION OF EXPERIMENTS
USING UOB-ILAB

Several basic experiments were designed and imple-
mented at UoB-iLab using the same procedure given in
Section IV to test system reliability and ability to capture
input/output relation in real time. Figure. 4 shows steps to
build any new experiments using an Arduino Microcon-
troller at UoB-iLab.

Figure 4. Steps to build any new experiments using the Arduino

microcontroller at UoB-iLab.

12 http://www.i-joe.org

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

Figure 5. Schematic diagram for experiment(Controlling a DC motor).

A. Remote control of DC motor
Objectives of the Experiment:
The aim of this experiment is to show the capability of

Arduino in controlling the speed of a DC motor via inter-
net in UoB-iLab project and the method of using the Py-
thon program to read and write data to the Arduino plat-
form using a USB port by converting the results from
binary to text file.

The hardware requirements needed are as follows:
• Arduino Uno board
• Breadboard
• DC motor (5V)
• L293D motor driver
• Wires

The hardware configuration needed is as follows:
The motor and motor drivers must be correctly wired to

the IC. First, it is necessary to plug the L293d motor driv-
er into the middle of the breadboard. It can be started by
connecting the power for this integrated circuit. After this,
pins 8 and 9 must be connected to the 5V pin of the Ar-
duino board and pin 5 must be connected to the ground
pin of the Arduino board.

There are still three input pins and two pins to be con-
nected. The output pins can be connected to the terminals
of the DC motor. The output pins used for this are pins 3
and 6.

The first input pin to connect is pin 1, which is called
the Enable pin. This is the pin used to turn the motor on
and off and to change the speed of the motor. This pin is
connected to pin 6 of the Arduino board. The schematic
diagram that presents the design procedure for the new
experiment is shown in Figure 5.

Finally, pins 2 and 7 of the L293D need to be connected
to pins 4 and 5 of the Arduino board, respectively. These
pins will be used to change the direction of the motor.
The software requirements needed are as follows:

Arduino C IDE
• Python (with pySerial library)
• PHP
• HTML
• JavaScript

The electrical circuit needed is as follows:
The complete schematic of the diagram for the DC mo-

tor control system is shown in Fig. 5.
The L293D circuit needs to work properly before per-

forming any remote command operation. To check the
proper function of the remote command operation, a sim-
ple command such as making the motor accelerate and
decelerate in both directions can be performed. The script
code is given in Appendix A. The setMotor function has
two inputs: direction and the speed of the motor. The first
step is creating two digitalWrite() operations to set the
direction of the motor: one pin of the L293D circuit will
receive 5V, and the other one will be set at 0V. Finally,
the analogWrite() command on the enable pin is used to
change the motor speed using PWM. With this function, it
is easy to command the motor to move in both directions.
For example, to accelerate in reverse, the following script
can be used:

1
2
3
4

// Accelerate reverse
for (int i = 100; i < 250; i++){
 setMotor(false, i);
 delay(10);}

The motor speed for accelerating, decelerating, and re-
versing the rotation direction can be controlled by upload-
ing the above script to the Arduino board.

At this point, the DC motor speed control using the Ar-
duino® Microcontroller has been implemented. Three
different software parts need to be developed to integrate
it with the web interface system. First, it is necessary to
slightly modify the Arduino sketch so that it can receive
data from the host computer. The second part will be writ-
ten in Python, which will make the interface between the
computer and the Arduino board, by reading and writing
data using text files. Finally, HTML, PHP, and JavaScript

iJOE ‒ Volume 11, Issue 2, 2015 13

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

together can be used to create a nice web interface for the
project.

Figures 6 and 7 show the architecture of the experi-
ment, and the role of the Python program in converting
data from Hex to txt type using the USB Port and enabling
the PHP program to perfectly read it.

From this experiment, it can be concluded that the Ar-
duino® Microcontroller can be integrated with high-level
data structured languages like Python and the standard
scripts for web development to complete low-cost, relia-
ble, real-time web- based laboratory system.

B. Proportional-Integral-Differential (PID)
Photoresistor Controller Experiment

Objectives of the Experiment:
A photoresistor is a resistor whose resistance decreases

with increasing incident light intensity.
A PID is a controller widely used in industrial control

systems. A PID controller calculates an error value as the
difference between measured process variables and a
design setpoint. The controller attempts to minimize the
error by adjusting the process through the use of a manip-
ulated variable as shown in Fig. 8 There are three primary
components to think about in a PID control loop. Each
component is prefixed with a gain constant and, when
added together, gives the instantaneous control value that
can be used to drive the system.

Typically, a voltage is generated to control the system,
so that each component can be thought of as contributing
a particular voltage to the system’s final output.

The voltage corresponding to the current state of the
system (position, temperature, etc.) is called “Process
Variable” or PV. The PV is the value that is passed to the
PID control loop as feedback about the state of the system.
Also, a set point voltage (SP) that corresponds to the state
to be reached by the PV will be determined. Basically, the
PID loop will drive the system to be a state in which the
SP and PV are equal. A control voltage (u), which corre-
sponds to the instantaneous voltage value, will be used to

Figure 6. A mock-up of the user interface for remote control of the

DC motor.

drive the system toward its SP voltage. The control volt-
age u can be thought of as what is actually sent to the
system to steer it to the desired point. Defining u (t) as the
controller output, the final form of the PID algorithm as
follows [37]:

The constants Kp, Ki, and Kd are used to set the sign

and contribution gain of each part of this equation. e (t) is
the “error” corresponding to SP and PV.

The variable t corresponds to the current time in the
system under control and is simply a variable of integra-
tion. The proportional portion of the equation takes into
account how far away PV is from SP. The differential part
takes into account how fast the system is moving (if it is
moves too fast near our SP, it will overshoot) and can be
used to reduce the proportional portion if it is moving too
fast or to speed up if it is experiencing resistance despite
its proportional contribution.

Figure 7. Architecture of experiment (Remote control of DC motor) with UoB-iLab.

14 http://www.i-joe.org

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

The integral part of the equation takes into account how
long the system has been off the set point, contributing
more to system output the longer it is missing the SP. This
is important because P and D contributions will typically
lead the PV value to sag slightly above or below the SP
value.

The hardware equipment needed is as follows:
• Arduino UNO R3.
• Breadboard
• Resistance 1 K
• Resistance 220 ohm.
• Photo resistance(10 K)
• Potentiometer (10 K)
• Light Diode (Led)

The software requirements are as follows:
• Arduino C IDE.
• Processing (Java) IDE.

Electrical circuit:
Figure 8 shows the schematic diagram for the PID con-

troller for the brightness control system.
Writing a new PID control loop is not difficult, but

there are many details to take into account. Beauregard
[38] is good place to start with an existing library, a set of
ready tools that can be easily used. First it is necessary to
install the library.

First, download the library from following link:
https://github.com/br3ttb/Arduino-PID-Library/archive/m
aster.zip

The system may suffer from external actions called dis-
turbances, such as shading or excessive light in the sensor
or in the environment or even blocking the sensor.

The disturbances are automatically controlled by the
Arduino_PID, i.e., when the incident light on the LDR
(simulated by a shadow on the LDR) is decreased, the

Figure 8. Block diagram of PID Controller in a feedback loop.

system will automatically increase the brightness of the
LED, trying to maintain a constant ambient lighting.

When the incident light on the LDR (a flashlight may
increase the brightness for simulation purposes) is in-
creased, the system will reduce the brightness of the LED,
trying to maintaining a constant ambient lighting.

Another detail of this particular test is that the set point
value is controlled by a potentiometer, and using the set
point configuration via PID_FrontEnd is no longer need-
ed.

The code can be downloaded from the following link:
https://github.com/bcomnes/315-lab-microcontroller/blob/
master/code/pid_led_set_serial/pid_led_set_serial.ino

To start with, it is necessary to use the following:
PID myPID(&Input, &Output, &Setpoint, Kp, Ki,

Kd, DIRECT);
This line sets up the PID library to use a PID process

called myPID. At any time, the program call

myPID.Compute();

Figure 9. Schematic diagram for (PID) Controller Experiment)

iJOE ‒ Volume 11, Issue 2, 2015 15

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

Subsequently, myPID will take the variables Input, Set-
point, Kp, Ki, and Kd and use them in its calculation. It
will then write whatever it determines to Output. DIRECT
simply tells the PID the direction the system is working in.
For example, if the PID loop tries to make the LED dim-
mer when it should actually get brighter, then it is neces-
sary to change DIRECT to REVERSE.

Time stamps have been used to keep track of when
some serial line feedback has been provided and to decide
whether to wait or to write what the system PID loop is
doing.

It is necessary to check if any commands have been
sent to the Arduino every time the serial line has been
updated. A very simple command parser has been created
that will take 3 float variables separated by commas and
set the value of Kp, Ki, Kd, respectively, with the new
values. This will help in gain tuning without having to re-
flash the Arduino card every time it is necessary to change
the tuning value.

To complete the experiment setup, the following sche-
matic is needed:

The photo resistor needs to be placed so that it aims into
the LED output or to attach the LED to a wire to vary how
close it is to the photo resistor.

The disturbances are automatically controlled by the
Arduino_PID, i.e., when we have a decrease in the inci-
dent light on the LDR (simulated by a shadow on LDR),
the system will automatically increase the brightness of
the LED, trying to maintain a constant ambient lighting.

When there is an increase in the incident light on the
LDR (a flashlight may increase the brightness for simula-
tion purposes), the system will reduce the brightness of
the LED, trying to maintaining a constant ambient light-
ing.

Another detail of this test is that the set point value that
is controlled by a potentiometer is no longer needed for
using the set point configuration via PID_FrontEnd.

The following functions were used to control the exper-
iment session:
TOGGLE_AM changes the PID mode to automatic or manual
SETPOINT desired amount of light in the environment(from 0 to

1024)
INPUT the actual value of the ambient brightness (measured

by LDR and returned as feedback)
OUTPUT the control value returned by the Arduino as a PID

controller (brightness control of the LED attached on
pin D3)

Kp Proportional control's constant
Ki Integral control's constant
Kd Derivative control's constant
TOOGLE_DR changes the PID's direction (if output grows as

grows the entry or the reverse of it)
SEND_TO_AR
DUINO

send data to the Arduino

PID Input /
Setpoint

Graphical Window for the setpoint (desired value for
brightness) and input (measure of brightness LDR)
curves.

PID Output Graphical window for the control output of the LED.
In the pictures, it can be notice the setpoint settled to
950 (green line), the input variable (red line) and the
PID control output variable (blue line) to control
brightness.

As shown in Figs. 10 and 11.
Where the error = SP#PV, and the error is applied to

the PID controller that generates the MV for process con-
trol.
 PV = Process Variable;

SP = Set Point;
MV = Manipulated Variable.

Each controller type (i.e., P, I, and D) can be used in-
dependently or jointly as follows:
• P controller (often used)
• PI controller (often used)
• PD controller (rarely used)
• PID controller (most used)

Figure 13 shows the effect of changing the set point
value (from 950 to 700 and then to 950 again), where the
PID controller tracks the changes in the input variable.

It can be observed that this system has some oscillation
in the control (characteristic of each controlled system,
whether it is first order, second order, etc.).

Figure 13 shows the effect of the disturbance input on
the system response, which is very helpful information for
the students when they try to understand the properties of
any control system.

Figure 10. PID Brightness Controller.

Figure 11. system responses for PID Brightness controller.

16 http://www.i-joe.org

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

Figure 12. Architecture of PID Brightness Controller at UoB-iLab.

VI. CONCLUSIONS
The Arduino® Microcontroller was used as a reliable

controlling platform for UoB-iLab, as it is compatible
with different types of sensors and actuators. The designed
web interface using HTML-JAVA- PHP-JavaScript code
can be successfully used with an Arduino® Microcontrol-
ler to develop several remote experiments to achieve dif-
ferent learning objectives for the engineering college.

The developed application for UoB-iLab has several
advantages:
• Can work on any web interface and does not need

any runtime code.
• Can work on any operating system platform (Win-

dows, MacOs, Linux, Unix, BeOS) on PCs and mo-
bile devices.

• Can be easily encrypted to protect the information
from spies and hackers.

• Can develop a new design of UoB-iLab using an
available server like (Apache or IIS).

Python programming language has been successfully
used to efficiently read data from a USB interface with a
microcontroller and has the ability to convert data to dif-
ferent forms (txt, csv, xcl. etc.) to make it ready for use
with web development programs and compatible with
major operating systems (Windows, MacOS, Linux, Unix,
BeOS). By using a relay Arduino® Microcontroller and
its family can deal with a device that operates using more
than 5V.

REFERENCES
[1] V. J. Harward, J. A. del Alamo, S. R. Lerman, P. H. Bailey, J.

Carpenter, K. DeLong, C. Felknor, J. Hardison, B. Harrison, I.
Jabbour, P. D. Long, L. Naamani, J. Northridge, M. Schulz, D.
Talavera, C. Varadharajan, K. Yehia, R. Zbib, and D. Zych, “The
iLab Shared Architecture: A Web Services Infrastructure to Build
Communities of Internet Accessible Laboratories,” Proc. IEEE,
vol. 96, no. 6, pp. 931–950, Jun. 2008. http://dx.doi.org/10.1109/
JPROC.2008.921607

[2] J. A. Del Alamo, “about iLabs - iLabs Dev - MIT Wiki Service,”
1998. [Online]. Available: https://wikis.mit.edu/confluence/
display/ILAB2/about+iLabs. [Accessed: 06-Aug-2014].

[3] I. Ahmed, H. W. H. Wong, and V. Kapila, “Internet-based remote
control using a microcontroller and an embedded Ethernet,” Proc.
2004 Am. Control Conf., vol. 2, 2004.

[4] H. W. and V. Kapila, “Internet-Based Remote Control of a DC
Motor using an Embedded Ethernet Microcontroller,” in
Proceedings of the 2004 American Society for Engineering
Education Annual Conference & Expositi, 2004.

[5] G. Viedma, I. J. Dancy, and K. H. Lundberg, “A web-based linear-
systems iLab,” in Proceedings of the 2005, American Control
Conference, 2005., 2005, pp. 5139–5144.
http://dx.doi.org/10.1109/ACC.2005.1470837

[6] J. Garcia-Zubia, D. L. deIpina, and P. Orduna, “Accessing
WebLabs from cellular phones,” in IECON 2006 - 32nd Annual
Conference on IEEE Industrial Electronics, 2006, pp. 3779–3781.

[7] A. Agrawal and S. Srivastava, “WebLab: A Generic Architecture
for Remote Laboratories,” in 15th International Conference on
Advanced Computing and Communications (ADCOM 2007),
2007, pp. 301–306. http://dx.doi.org/10.1109/ADCOM.2007.71

[8] M. Niederstaetter, T. Klinger, and D. G. Zutin, “An Image
Processing Online Laboratory within the iLab Shared
Architecture,” International Journal of Online Engineering
(iJOE), vol. 6, no. 2. pp. pp. 37–40, 29-Apr-2010.

[9] D. Ursutiu, D. T. Cotfas, M. Ghercioiu, C. Samoila, P. A. Cotfas,
and M. Auer, “WEB Instruments,” in IEEE EDUCON 2010
Conference, 2010, pp. 585–590.

[10] M. E. Auer, D. G. Zutin, and C. Rajyaguru, “A LabVIEW toolkit
for the development of iLab batched lab servers,” in 2011 IEEE
Global Engineering Education Conference (EDUCON), 2011, pp.
26–29. http://dx.doi.org/10.1109/EDUCON.2011.5773107

[11] K. DeLong, J. Harward, P. Bailey, and G. Kohse, “Online
Spectrometer Experiments Using the iLab Shared Architecture,”
Using remote labs in education: two little ducks in remote
experimentation. Ediciones Deusto, pp. 121–134, 2011.

[12] I. Gustavsson, “On Remote Electronics Experiments (Bookchapter
by Ingvar Gustavsson) - Electronic Research Archive @ Blekinge
Institute of Technology (BTH).” Blekinge Institute of Technology,
pp. 157–176, 2011.

[13] S. Marchisio, S. Concari, H. Kofman, and F. Lerro, “Real
Experiments by Remote Laboratories for Physics Teaching at
Argentina,” in World Conference on Educational Multimedia,
Hypermedia and Telecommunications, 2011, vol. 2011, no. 1, pp.
1950–1955.

iJOE ‒ Volume 11, Issue 2, 2015 17

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

[14] A. Nafalski, J. Machotka, and Z. Nedic, “Collaborative Remote
Laboratory Netlab for Experiments in Electrical Engineering,”
Syst. Cybern. INFORMATICS, vol. 6, no. 3, pp. 22–27, 2011.

[15] A. Selmer, M. Goodson, R. Watson, A. Braumann, M. Kraft, S.
Baguley, M. Abbott, and C. Callegari, “An Undergraduate Weblab
Using the SIMATIC PCS7 Process Control System,” Using
remote labs in education: two little ducks in remote
experimentation. Ediciones Deusto, pp. 375–386, 2011.

[16] S. S. Tickodri-Togboa, C. Mwikirize, A. A. Tumusiime, and P. I.
Musasizi, “iLabs: Revolutionizing Teaching and Learning at
Makerere University,” Using remote labs in education: two little
ducks in remote experimentation. Ediciones Deusto, pp. 113–120,
2011.

[17] D. Ursutiu, C. Samoila, P. Cotfas, D. T. Cotfas, D. V. Pop, M. E.
Auer, and D. G. Zutin, “Multifunction iLab implemented
laboratory,” in 2011 IEEE Global Engineering Education
Conference (EDUCON), 2011, pp. 185–190.
http://dx.doi.org/10.1109/EDUCON.2011.5773135

[18] D. G. Zutin and M. E. Auer, “Work in progress — Integrating
educational online lab platforms around the iLab Shared
Architecture,” in 2011 Frontiers in Education Conference (FIE),
2011, pp. F1G–1–F1G–3.

[19] D. G. Zutin, M. E. Auer, and I. Gustavsson, “A VISIR lab server
for the iLab Shared Architecture,” in 2011 IEEE Global
Engineering Education Conference (EDUCON), 2011, pp. 30–33.
http://dx.doi.org/10.1109/EDUCON.2011.5773108

[20] C. Mwikirize, “A Sequential Logic iLab Utilizing NI ELVIS II+
and the Interactive iLab Architecture,” International Journal of
Online Engineering (iJOE), vol. 8, no. 3. pp. pp. 34–40, 23-Jul-
2012.

[21] K. P. A. O.B.Akinwale, “Implementing Remote Laboratories with
the iLab Architecture: Three Case Studies from Obafemi
Awolowo University, Nigeria,” Comput. Educ. J., vol. 3, no. 1, pp.
86 – 98, 2012.

[22] D. O. X. C. O. A. D. S. and D. Olowokere, “Virtual and Remote
Laboratory Framework Development for Engineering Technology
Education—A Case Study (ASCE),” in Earth and Space 2012,
2012, pp. 1211–1217.

[23] O. B. A. O.S. Oyebisi, “Development of a Remote Operational
Amplifier iLab Using Android-Based Mobile Platform,” Comput.
Educ. J., vol. Volume 4, no. 4, pp. 100 – 110, 2013.

[24] C. Mwikirize, A. T. Asiimwe, L. Musasizi, V. Namuswa, M. D.
Nakasozi, C. Mugga, A. Katumba, S. S. Tickodri-Togboa, J.
Butime, and P. I. Musasizi, “Development of Online Laboratories
for Modulation and Combinational Logic Circuit Analysis Using
NI ELVIS II&amp;#153; Platform,” Inf. Technol. New
Gener. (ITNG), 2010 Seventh Int. Conf., 2010.

[25] K. DeLong, V. J. Harward, P. Bailey, J. Hardison, G. Kohse, and
Y. Ostrocsky, “Three Online Neutron Beam Experiments Based
on the iLab Shared Architecture,” International Journal of Online
Engineering (iJOE), vol. 7, no. 1. pp. pp. 4–9, 30-Jan-2011.

[26] J. García-Zubía, D. López-de-Ipiña, P. Orduña, and U. Hernández-
Jayo, “Experience with WebLab-Deusto,” in IEEE International
Symposium on Industrial Electronics, 2006, vol. 4, pp. 3190–
3195.

[27] X. Chen, G. Song, and Y. Zhang, “Virtual and Remote Laboratory
Development$: A Review,” in Earth and Space 2010:
Engineering; Science; and Operations in Challenging
Environments, 2010, pp. 3843–3852.

[28] F. Lerro, S. Marchisio, S. Martini, H. Massacessi, E. Perretta, A.
Gimenez, N. Aimetti, and J. I. Oshiro, “Performing Real
Experiments From a Remote Learning Management System,”
IEEE Rev. Iberoam. Tecnol. del Aprendiz., vol. 9, no. 1, pp. 23–
27, Feb. 2014.

[29] J. L. Hardison, K. DeLong, V. J. Harward, J. A. del Alamo, R.
Shroff, and O. Oyabode, “Enabling Remote Design and
Troubleshooting Experiments Using the iLab Shared
Architecture,” in Earth and Space 2010, 2010, pp. 3721–3733.

[30] B.-A. Deaky, D. G. Zutin, and P. Bailey, “The First Android
Client Application for the iLab Shared Architecture,”
International Journal of Online Engineering (iJOE), vol. 8, no. 1.
pp. pp. 4–7, 16-Feb-2012.

[31] T. L. L. Ingvar Gustavsson, Johan Zackrisson, Kristian Nilsson,
Javier Garcia-Zubia, Lars Håkansson, Ingvar Claesson, “A
Flexible Instructional Electronics Laboratory with Local and
Remote Lab Workbenches in a Grid,” in 2nd International
Workshop on e-learning and Virtual and Remote Laboratories,
2008, pp. 45 – 50.

[32] O. H. Graven and D. A. H. Samuelsen, “Using Remote
Laboratories in Combination with Hands-on Laboratories in an
Analogue Electronics Module,” Using remote labs in education:
two little ducks in remote experimentation. Ediciones Deusto, pp.
231–252, 2011.

[33] B. Aktan, C. A. Bohus, L. A. Crowl, and M. H. Shor, “Distance
learning applied to control engineering laboratories,” IEEE Trans.
Educ., vol. 39, no. 3, pp. 320–326, 1996.
http://dx.doi.org/10.1109/13.538754

[34] [34 S. Monk, 30 Arduino Projects for the Evil Genius, Second
Edition [Kindle Edition]. McGraw-Hill/TAB Electronics; 2
edition, 2013.

[35] M. Banzi, Getting Started with Arduino. O’Reilly Media; 1
edition, 2009, p. 128.

[36] “Arduino Playground - Python.” [Online]. Available:
http://playground.arduino.cc/interfacing/python.

[37] B. Comnes and A. La Rosa, “Arduino PID Example Lab,” 2013.
[38] https://github.com/br3ttb/Arduino-PID-Librar

AUTHORS
Bahaa I. Kazem is with Mechatronics Engineering

Department, Al-Khwarizmi Engineering College, Univer-
sity of Baghdad, Iraq and currently Visiting Professor,
MAE-college of Engineering, University of Missouri-
Columbia, USA.

Mazin Rahman Ali is with Mechatronics Engineer-
ing Department, Al-Khwarizmi Engineering College,
University of Baghdad, Iraq.

Submitted 22 August 2014. Published as resubmitted by the authors
10 March 2015.

18 http://www.i-joe.org

PAPER
DESIGN AND IMPLEMENTATION OF EXPERIMENTS WITH REAL-TIME SHARED ARCHITECTURE USING DIFFERENT…

APPENDIX A
Script adopted Arduino C for Controlling a DC motor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

int motorPinPlus = 4;
int motorPinMinus = 5;
int motorPinEnable = 6;
// Setup
void setup()
{
 pinMode(motorPinPlus, OUTPUT);
 pinMode(motorPinMinus, OUTPUT);
 pinMode(motorPinEnable, OUTPUT);
 Serial.begin(9600);
}
// Loop
void loop()
{
 // Accelerate forward
 for (int i = 100; i < 250; i++)
 {
 setMotor(true, i);
 delay(10);
 }
 // Decelerate forward for (int i = 255; i > 100; i--) {
 setMotor(true, i);
 delay(10);
 }
 // Accelerate reverse
 for (int i = 100; i < 250; i++){
 setMotor(false, i);
 delay(10);
 }
 // Decelerate reverse
 for (int i = 255; i > 100; i--){
 setMotor(false, i);
 delay(10);
 }
}
// Function to control the dc motor
void setMotor(Boolean forward, int speed){
 digitalWrite(motorPinPlus, forward);
 digitalWrite(motorPinMinus, !forward);
 analogWrite(motorPinEnable, speed);
}

The core of this script is the function setMotor, and it will also be used
in the rest of this project:

// Function to control the motor
void setMotor(Boolean forward, int speed){
 digitalWrite(motorPinPlus, forward);
 digitalWrite(motorPinMinus, !forward);
 analogWrite(motorPinEnable, speed);
}

APPENDIX B.
Remote Laboratories architecture (1996-2014)

No. (Reference number, Year) Microcontroller Type Web based Platform Country
1 ([33],1996) Control Interface (MCI) and UNIX work-

station
shell scripts on the workstation and
corresponding batch files on the PC. USA

2 ([1],2008; [2], 1998) Agilent 4155B Java Applet USA
3 ([3],[4], 2004) DSTINIM400 Java Applet USA
4 ([25],2008) ELVIS /DAC VS.NET C# Nigeria,
5 ([5]., 2005) LabJack DAQ Java Applet USA
6 ([7], 2006) WebLab PLD AJAX Spain
7 ([13],2011) WebLab-PLD hardware AJAX Spain
8 ([15], 2011) PLC S7-400 PCS7 UK
9 ([8],2010) WebLab-PLD Ajax- java Spain
10 ([16],2011; [26],2010) ELVIS LabView - Matlab Uganda
11 ([11],[27], 2011) 4DH1 beam port (Nuclear Reactor) LabView USA
12 ([6],[28],2006) XR4000(autonomous mobile Robot) Ajax – Servlet- JSP UK
13 ([29],2010) NI-ELIVIS Java Applet USA
14 ([30] 2014) DAQ-1200 Ajax- Visual Studio.net Australia
15 ([31],, 2010) ELMO (HV-550XG) LabView Australia,
16 ([10], 2011) NI-ELVIS LabView USA
17 ([9],2010; [17], 2011) PXI-8360 LabView USA
18 ([19],2011) Agilent USB device U2351A LabView Australia
19 ([18],2011) VISIR workbench FLASH USA
20 ([33]. 2012) ELVIS LabView USA
21 ((12],[34],2011) VISIR Platform workbench LabView Sweden
22 ([14],2011) E8408A- VXI CAD (Matlab- multism) Australia
23 ([20],2012) ELVIS -DAQ Java Applet USA
24 ([22], 2012) ELVIS-II LabView Uganda
25 ([36],2011) PCI-6221 LabView Norway

iJOE ‒ Volume 11, Issue 2, 2015 19

