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Abstract—This work presents a new design for an internet 
laboratory at University of Baghdad (UoB-iLab) that can be 
used by students off-campus to execute real time experi-
ments in the on-campus. The UoB-iLab architecture is de-
signed to be used with limited internet bandwidth and con-
current access by users and administrators. The Arduino ® 
Microcontroller was used to establish the interface platform 
with various laboratory devices using C and C++ program-
ming languages to control input/output signals for a specific 
lab device. The web interface for the system was developed 
using HTML, PHP, and AJAX along with JAVA to build 
graphical real-time interfaces for the experiments that can 
work on any operating system platform (Windows, Mac OS, 
Linux, Unix, BeOS) on PCs and mobile devices. Several 
experiments were designed to check the reliability of the 
suggested UoB-iLab architecture to deal with different types 
of input and output configurations during the real experi-
ments session while using several types of sensors and actua-
tors. The suggested design of UoB-iLab can be used to im-
plement several types of real-time experiments to improve 
the practical skills for engineering college students at the 
University of Baghdad and other universities without the 
need for high resource investment. 

Index Terms—iLab, remote control, web-based laboratory. 

I. INTRODUCTION 
The rapidly expanding use of information and commu-

nication technology in an educational environment and its 
reflection on the teaching and learning styles make it is 
possible for schools, universities, and other educational 
institutions to offer web-based online laboratories as an 
alternative to the traditional laboratory experience.  

The educational institutions that would have struggled 
to or been unable to provide a sufficient traditional labora-
tory experience and equipment can use distance-learning 
technology that provides the opportunity to incorporate 
online laboratory experiences in their course curriculum. 
Consequently, more students in technical and science 
courses are able to participate in valuable laboratory expe-
riences. Even universities without such concerns can 
bene!t from online laboratories as a complement to their 
existing hands-on and traditional facilities [1]. 

Certainly, online laboratories are not a perfect replace-
ment for traditional laboratories. The students do not get 
hands-on experience setting up the experiments and have 
limited debugging abilities. However, an online laboratory 
system ensure that the laboratories remain open at night to 

serve students in any part of the world at a minimum cost 
where traditional and expensive equipment is not availa-
ble. 

Online laboratories are "exible and can be accessed by 
a large number of users from anywhere at any time. The 
"exibility lets students conduct their experiments at a 
convenient time and location. It also allows institutions to 
keep their laboratories open for much longer, which is 
usually not possible with the traditional hands-on labora-
tory. Furthermore, universities can use online laboratories 
to expand their offering of available laboratory experi-
ments with minimal additional cost so that the entire class 
of students can perform the same experiment on shared 
equipment.  

A lot of research has been conducted by researchers [1]-
[33]. They have used different types of microcontrollers to 
connect and control laboratory devices and web-based 
platform engines as shown in Appendix B. 

The first iLab project was started at MIT in 1998 by 
one of the authors [2]. The initial inspiration for the first 
iLab came from the frustration that MIT’s courses on 
semiconductor devices did not contain a laboratory com-
ponent. Traditionally, students in these courses were ex-
posed only to theoretical device models presented in lec-
tures and course texts. At the same time, an Agilent 
4155B semiconductor parameter analyzer (shown in Fig. 
1) was available with spare capacity in a graduate research 
lab. While the underutilization of the Agilent equipment 
seemed to provide an opportunity to have this tool also 
used in education, there was no way to accommodate the 
students taking courses using a single piece of equipment 
in the crowded research lab. 

Students in an upper level electrical engineering course 
in the fall of 1998 were the first to try this system, i.e., 
Microelectronics WebLab. By the following spring, the 
hardware and software combination had proved to be 
reliable to the point that an undergraduate class of nearly 
100 students employed the online lab for an assignment.  

According to the available research, there are several 
limitations with using the available iLab systems, espe-
cially with low infrastructure locations. They include: 

The student is required to have LabView Runtime in-
stalled. While this can be a perfectly affordable require-
ment on a personal computer, it can become a problem if 
the student tries to use the system on a computer where he 
does not have administration permissions, such as a com-
puter room at the university or a Cyber Cafe.  
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Figure 1.  iLab Architecture [7]. 

LabView Runtime is not available for all platforms. 
While covering Microsoft Windows could be enough in 
most cases, it fails to achieve the ongoing trends of using 
mobile devices (including tablets such as iPads or Sam-
sung Galaxy Tabs) more often than the computer. Imple-
menting m-learning with a remote laboratory based on 
LabView Runtime is plainly impossible.  

The communication is not encrypted and hard to en-
crypt. The fact that it does not use HTTPS makes it diffi-
cult to create a tunnel that the web browser can understand 
and to make it possible to send secure messages to the 
server. Depending on how affordable the risk of malicious 
users breaking the remote hardware is, it might become a 
problem.  

The communication is based on a TCP socket. This 
makes the deployment difficult when trying to support 
other web platforms (such as Apache or IIS). If it is re-
quired to have two servers in the same machine, a non-
standard port must be opened, both by the IT services of 
the host university and by the client system (which might 
not be even possible if the user is at a foreign university). 

In this work the required web-based interface platform 
using basic programing languages (JAVA, HTML, AJAX, 
and Processing Language – PHP) was developed. Ar-
duino® Microcontroller will be used for interfacing the 
laboratory devices since it is inexpensive and has several 
good features when compared with commercially availa-
ble microcontrollers. 

The suggested UoB-iLab system in this work needs to 
have following features: 
• Open-source development model that gives users the 

ability to improve the product. 
• Compatibility with major PC operating systems like 

Linux, Mac, or Windows. 
• Support of running real-time applications. This spe-

cial feature is possible due to use of a separate AVR 
microcontroller programmed in assembly language.  

• Can be extended to a wide range of multidisciplinary 
applications where innovators can use it as a base to 
develop advanced projects, as it can deal with differ-
ent types of input/output protocols. 

 

The developed UoB-iLab was used to design several 
basic experiments to be used by Mechatronics engineering 
students at the Al–Khwarizmi Engineering College at the 

University of Baghdad. The students can access and run 
real-time experiments from any location at any time with-
out any special application or software to be installed on 
their PCs. Also, UoB-iLab can be integrated with other 
international resources of iLab around the world. 

II. ILAB ARCHITECTURE OVERVIEW 
From the perspective of the internet shared architecture, 

online experiments fall into two broad categories [7]. 
• A batch experiment in which the entire course of the 

experiment can be specified before the experiment 
gets running. Experiment execution takes place in 
machine time. 

• An interactive experiment in which the user monitors 
and controls one or more aspects of the experiment 
during execution. Experiment execution takes place 
in real time. 

 

iLab architecture consists of three layers: Client, Web-
Lab server, and experiment device. The WebLab server is 
responsible for managing lab server experiments for the 
students who will perform experiments, as shown in Fig. 
1. 

The WebLab server plays an important role in the man-
agement of the relationship between the lab server at la-
boratory side and the client (user) at the other side. 

The roles of the WebLab server include management of 
authorization, authentication, and registration, scheduling, 
and periodization of users. 

The lab server’s role is to control the laboratory devices 
to implement a specific set of experiments according to 
the client’s (user’s) needs. 

III. UOB-ILAB ARCHITECTURE 
The suggested design for UoB-iLab must be reliable 

and easily implemented at the University of Baghdad with 
the following design features: 

The system can be used by mechatronics engineering 
students at the Mechatronics Engineering Department at 
the University of Baghdad  

The design of the UoB-iLab architecture can be used to 
support secured authentication for clients and adminis-
tered with low cost and limited internet bandwidth. 

The suggested design for (UoB-iLab) can be imple-
mented using an Arduino® Microcontroller platform with 
a web interface. 

The design and implementation of the required web in-
terface can be used to control and interact with electronic 
and mechanical devices.  

Figure 2 shows the basic design hardware and software 
components for UoB-iLab. The required programing and 
interface languages to complete data transformation and 
acquisition between the user interface and laboratory de-
vice are also listed in Fig. 2. 

The major laboratory activities that need to be consid-
ered to complete an experiment in an integrated manner 
are as follows: 
• Switching the process of equipment and devices. 
• Getting the result values from the sensors. 
• Modifying the value of the process variables. 
• Achieving the concept of the feedback control sys-

tem. 
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Figure 2.   UoB-iLab Architecture. 

IV. MICROCONTROLLER DESIGN AND PROGRAMMING  
The Arduino® Microcontroller board is provided with a 

USB plug to connect to a computer   and a   number   of 
connection sockets that can be wired to external elec-

tronics such as motors, relays, light sensors, laser diodes, 
loudspeakers, microphones. They can be powered through 
the USB connection from the computer or by using a 9V 
battery. They can be controlled from the computer or 
programmed by the computer and then disconnected and 
allowed to work independently [34].  

Arduino is an open source code environment that makes 
it easy to write codes and upload them on the input/output 
(I/O) board. It runs on Windows, Mac OS X, and Linux. 
The environment is written in Java and based on pro-
cessing, avr-gcc, and other open source software. The 
physical computing platform is based on a simple I/O 
board and a development environment that implements 
processing. Arduino is composed of two major parts [35]: 

Part 1: the Arduino board, which is the piece of hard-
ware used to build objects. 

Part 2: the Arduino IDE, the piece of software to be run 
on computer. 

The Integrated Development Environment (IDE) is 
a cross-platform application written in Java and is derived 
from the IDE for the processing programming lan-
guage and wiring projects. It is designed to introduce 
programming to artists and other newcomers unfamiliar 
with software development. It includes a code editor with 
features such as syntax highlighting, brace matching, and 
automatic indentation, and it is also capable of compiling 
and uploading programs to the board with a single click.          
Experiments are monitored in real time. 

There is typically no need to edit files or run programs 
on a command line interface. A program or code written 
for Arduino is called a “sketch” [34].  

Arduino programs are written using C or C++. The Ar-
duino IDE comes with a software library called "Wiring” 
from the original wiring project, which makes many 
common input/output operations much easier. Users only 
need to define two functions to make a runnable cyclic 
executive program: 

setup(): a function that runs once at the start of a pro-
gram and can initialize settings 

loop(): a function repeatedly called until the board 
powers off. 
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Figure 3.  Steps of codes witting for an Experiment. 

V. INTEGRATED RELATION BETWEEN ARDUINO 
MICROCONTROLLER AND PYTHON IN UOB-ILAB 

Python programs are indeed often deployed in the con-
text of larger applications. For instance, to test hardware 
devices, Python programs may call out to components that 
give low-level access to a device. Similarly, programs 
may run bits of the Python code at strategic points to sup-
port end-user product customization without the need to 
ship and recompile the entire system’s source code. Py-
thon’s simplicity makes it a naturally flexible control tool. 
Technically, although, this is also just a common Python 
role, many (perhaps most) Python programmers code 
standalone scripts without ever using or knowing about 
any integrated components. It is not just a control lan-
guage [36].  

To support communication with the Arduino board, a 
method of interfacing is required. Standard Arduino 
boards provide RS232-style serial connection to older 
boards over a physical RS232 connection. But with such a 
port that is no longer common to modern computers, re-
cent boards include a USB for serial functionality. With 
Python, it is trivial to read and write to the serial devices 
as if it were a file on a Windows system, but there is also a 
wrapper library called pySerial that works well across all 
operating systems [35]. After installing pySerial, reading 
data from Arduino is straightforward: 

 
>>> import serial 
>>> ser = serial.Serial('COM11', 9600) 
>>> while True: 
…       print ser.readline() 
'1 Hello world!\r\n' 
'2 Hello world!\r\n' 
'3 Hello world!\r\n' 
Writing data to Arduino is easy too: 
>>> import serial #  
>>> ser = serial.Serial('COM11', 9600) 
>>> ser.write('5') 
 

It is necessary to connect to the same device that is 
connected to from within the Arduino development envi-
ronment. A symlink between the longer-winded device 
name and COM11 to cut down on keystrokes has been 
created. Note that the example above will not work on a 
Windows machine, as the Arduino serial device takes 
some time to load. When a serial connection is estab-
lished, it resets the Arduino. 

Any write() commands issued before the device initiali-
zation will be lost. A robust server-side script will read 
from the serial port until the Arduino declares itself ready, 
and it will then issue write() commands. Alternatively, it 
is possible to work around this issue by simply placing a 
“'time.sleep(2)” call between the serial connection and the 
write call. The major reason for using the python program 
in UoB-iLab is to convert the result data from Arduino 
microcontroller from binary form to another form such as 
CSV–TXT- XCL…, which enables the other program to 
analyze it easily, as shown in Fig. 3. 

VI. DESIGN AND IMPLEMENTATION OF EXPERIMENTS 
USING UOB-ILAB 

Several basic experiments were designed and imple-
mented at UoB-iLab using the same procedure given in 
Section IV to test system reliability and ability to capture 
input/output relation in real time. Figure. 4 shows steps to 
build any new experiments using an Arduino Microcon-
troller at UoB-iLab. 

 
Figure 4.  Steps to build any new experiments using the Arduino 

microcontroller at UoB-iLab. 
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Figure 5.  Schematic diagram for experiment(Controlling a DC motor). 

A. Remote control of DC motor 
Objectives of the Experiment:
The aim of this experiment is to show the capability of 

Arduino in controlling the speed of a DC motor via inter-
net in UoB-iLab project and the method of using the Py-
thon program to read and write data to the Arduino plat-
form using a USB port by converting the results from 
binary to text file.

 
The hardware requirements needed are as follows: 
• Arduino Uno board  
• Breadboard  
• DC motor (5V)  
• L293D motor driver 
• Wires  

 

The hardware configuration needed is as follows: 
The motor and motor drivers must be correctly wired to 

the IC. First, it is necessary to plug the L293d motor driv-
er into the middle of the breadboard. It can be started by 
connecting the power for this integrated circuit. After this, 
pins 8 and 9 must be connected to the 5V pin of the Ar-
duino board and pin 5 must be connected to the ground 
pin of the Arduino board. 

There are still three input pins and two pins to be con-
nected. The output pins can be connected to the terminals 
of the DC motor. The output pins used for this are pins 3 
and 6.  

The first input pin to connect is pin 1, which is called 
the Enable pin. This is the pin used to turn the motor on 
and off and to change the speed of the motor. This pin is 
connected to pin 6 of the Arduino board. The schematic 
diagram that presents the design procedure for the new 
experiment is shown in Figure 5.  

Finally, pins 2 and 7 of the L293D need to be connected 
to pins 4 and 5 of the Arduino board, respectively. These 
pins will be used to change the direction of the motor. 
The software requirements needed are as follows: 

Arduino C IDE 
• Python (with pySerial library) 
• PHP 
• HTML 
• JavaScript 

 

The electrical circuit needed is as follows: 
The complete schematic of the diagram for the DC mo-

tor control system is shown in Fig. 5. 
The L293D circuit needs to work properly before per-

forming any remote command operation. To check the 
proper function of the remote command operation, a sim-
ple command such as making the motor accelerate and 
decelerate in both directions can be performed. The script 
code is given in Appendix A.  The setMotor function has 
two inputs: direction and the speed of the motor. The first 
step is creating two digitalWrite() operations to set the 
direction of the motor: one pin of the L293D circuit will 
receive 5V, and the other one will be set at 0V. Finally, 
the analogWrite() command on the enable pin is used to 
change the motor speed using PWM. With this function, it 
is easy to command the motor to move in both directions. 
For example, to accelerate in reverse, the following script 
can be used: 

1 
2 
3 
4 

// Accelerate reverse 
for (int i = 100; i < 250; i++){ 
   setMotor(false, i); 
   delay(10);} 

The motor speed for accelerating, decelerating, and re-
versing the rotation direction can be controlled by upload-
ing the above script to the Arduino board. 

At this point, the DC motor speed control using the Ar-
duino® Microcontroller has been implemented. Three 
different software parts need to be developed to integrate 
it with the web interface system.  First, it is necessary to 
slightly modify the Arduino sketch so that it can receive 
data from the host computer. The second part will be writ-
ten in Python, which will make the interface between the 
computer and the Arduino board, by reading and writing 
data using text files. Finally, HTML, PHP, and JavaScript 
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together can be used to create a nice web interface for the 
project.

Figures 6 and 7 show the architecture of the experi-
ment, and the role of the Python program in converting 
data from Hex to txt type using the USB Port and enabling 
the PHP program to perfectly read it.  

From this experiment, it can be concluded that the Ar-
duino® Microcontroller can be integrated with high-level 
data structured languages like Python and the standard 
scripts for web development to complete low-cost, relia-
ble, real-time web- based laboratory system. 

B. Proportional-Integral-Differential (PID) 
Photoresistor Controller Experiment 

Objectives of the Experiment:  
A photoresistor is a resistor whose resistance decreases 

with increasing incident light intensity.  
A PID is a controller widely used in industrial control 

systems. A PID controller calculates an error value as the 
difference between measured process variables and a 
design setpoint. The controller attempts to minimize the 
error by adjusting the process through the use of a manip-
ulated variable as shown in Fig. 8 There are three primary 
components to think about in a PID control loop. Each 
component is prefixed with a gain constant and, when 
added together, gives the instantaneous control value that 
can be used to drive the system. 

Typically, a voltage is generated to control the system, 
so that each component can be thought of as contributing 
a particular voltage to the system’s final output.  

The voltage corresponding to the current state of the 
system (position, temperature, etc.) is called “Process 
Variable” or PV. The PV is the value that is passed to the 
PID control loop as feedback about the state of the system. 
Also, a set point voltage (SP) that corresponds to the state 
to be reached by the PV will be determined. Basically, the 
PID loop will drive the system to be a state in which the 
SP and PV are equal. A control voltage (u), which corre-
sponds to the instantaneous voltage value, will be used to  

 
Figure 6.  A mock-up of the user interface for remote control of the  

DC motor. 

drive the system toward its SP voltage. The control volt-
age u can be thought of as what is actually sent to the 
system to steer it to the desired point. Defining u (t) as the 
controller output, the final form of the PID algorithm as 
follows [37]: 

 
The constants Kp, Ki, and Kd are used to set the sign 

and contribution gain of each part of this equation. e (t) is 
the “error” corresponding to SP and PV. 

The variable t corresponds to the current time in the 
system under control and is simply a variable of integra-
tion. The proportional portion of the equation takes into 
account how far away PV is from SP. The differential part 
takes into account how fast the system is moving (if it is 
moves too fast near our SP, it will overshoot) and can be 
used to reduce the proportional portion if it is  moving too 
fast or to speed up if it is experiencing resistance despite 
its proportional contribution. 

 
Figure 7.  Architecture of experiment (Remote control of DC motor) with UoB-iLab. 
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The integral part of the equation takes into account how 
long the system has been off the set point, contributing 
more to system output the longer it is missing the SP. This 
is important because P and D contributions will typically 
lead the PV value to sag slightly above or below the SP 
value. 
 
The hardware equipment needed is as follows: 
• Arduino UNO R3. 
• Breadboard  
• Resistance 1 K 
• Resistance 220 ohm. 
• Photo resistance(10 K) 
• Potentiometer (10 K) 
• Light Diode (Led)  

 

The software requirements are as follows: 
• Arduino C IDE. 
• Processing (Java) IDE. 

 

Electrical circuit:  
Figure 8 shows the schematic diagram for the PID con-

troller for the brightness control system. 
Writing a new PID control loop is not difficult, but 

there are many details to take into account. Beauregard 
[38] is good place to start with an existing library, a set of 
ready tools that can be easily used. First it is necessary to 
install the library.  

First, download the library from following link: 
https://github.com/br3ttb/Arduino-PID-Library/archive/m 
aster.zip  

The system may suffer from external actions called dis-
turbances, such as shading or excessive light in the sensor 
or in the environment or even blocking the sensor. 

The disturbances are automatically controlled by the 
Arduino_PID, i.e., when the incident light on the LDR 
(simulated  by  a  shadow  on  the  LDR)  is decreased, the 

 
Figure 8.  Block diagram of PID Controller in a feedback loop. 

system will automatically increase the brightness of the 
LED, trying to maintain a constant ambient lighting. 

When the incident light on the LDR (a flashlight may 
increase the brightness for simulation purposes) is in-
creased, the system will reduce the brightness of the LED, 
trying to maintaining a constant ambient lighting. 

Another detail of this particular test is that the set point 
value is controlled by a potentiometer, and using the set 
point configuration via PID_FrontEnd is no longer need-
ed.  

The code can be downloaded from the following link: 
https://github.com/bcomnes/315-lab-microcontroller/blob/ 
master/code/pid_led_set_serial/pid_led_set_serial.ino 

To start with, it is necessary to use the following: 
PID myPID(&Input, &Output, &Setpoint, Kp, Ki, 

Kd, DIRECT); 
This line sets up the PID library to use a PID process 

called myPID. At any time, the program call 
 

myPID.Compute(); 
 

 
Figure 9.  Schematic diagram for (PID) Controller Experiment) 
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Subsequently, myPID will take the variables Input, Set-
point, Kp, Ki, and Kd and use them in its calculation. It 
will then write whatever it determines to Output. DIRECT 
simply tells the PID the direction the system is working in. 
For example, if the PID loop tries to make the LED dim-
mer when it should actually get brighter, then it is neces-
sary to change DIRECT to REVERSE.  

Time stamps have been used to keep track of when 
some serial line feedback has been provided and to decide 
whether to wait or to write what the system PID loop is 
doing.  

It is necessary to check if any commands have been 
sent to the Arduino every time the serial line has been 
updated. A very simple command parser has been created 
that will take 3 float variables separated by commas and 
set the value of Kp, Ki, Kd, respectively, with the new 
values. This will help in gain tuning without having to re-
flash the Arduino card every time it is necessary to change 
the tuning value. 

To complete the experiment setup, the following sche-
matic is needed: 

The photo resistor needs to be placed so that it aims into 
the LED output or to attach the LED to a wire to vary how 
close it is to the photo resistor. 

The disturbances are automatically controlled by the 
Arduino_PID, i.e., when we have a decrease in the inci-
dent light on the LDR (simulated by a shadow on LDR), 
the system will automatically increase the brightness of 
the LED, trying to maintain a constant ambient lighting. 

When there is an increase in the incident light on the 
LDR (a flashlight may increase the brightness for simula-
tion purposes), the system will reduce the brightness of 
the LED, trying to maintaining a constant ambient light-
ing. 

Another detail of this test is that the set point value that 
is controlled by a potentiometer is no longer needed for 
using the set point configuration via PID_FrontEnd.  

The following functions were used to control the exper-
iment session: 
TOGGLE_AM changes the PID mode to automatic or manual 
SETPOINT desired amount of light in the environment(from 0 to 

1024) 
INPUT  the actual value of the ambient brightness (measured 

by LDR and returned as feedback) 
OUTPUT  the control value returned by the Arduino as a PID 

controller (brightness control of the LED attached on 
pin D3) 

Kp  Proportional control's constant 
Ki  Integral control's constant 
Kd  Derivative control's constant 
TOOGLE_DR  changes the PID's direction (if output grows as 

grows the entry or the reverse of it) 
SEND_TO_AR
DUINO  

send data to the Arduino 

PID Input / 
Setpoint  

Graphical Window for the setpoint (desired value for 
brightness) and input (measure of brightness LDR) 
curves. 
 

PID Output  Graphical window for the control output of the LED. 
In the pictures, it can be notice the setpoint settled to 
950 (green line), the input variable (red line) and the 
PID control output variable (blue line) to control 
brightness. 

As shown in Figs. 10 and 11. 
Where the error = SP#PV, and the error is applied to 

the PID controller that generates the MV for process con-
trol. 
       PV = Process Variable; 

SP = Set Point; 
MV = Manipulated Variable. 

 

Each controller type (i.e., P, I, and D) can be used in-
dependently or jointly as follows: 
• P controller (often used) 
• PI controller (often used) 
• PD controller (rarely used) 
• PID controller (most used) 

 

Figure 13 shows the effect of changing the set point 
value (from 950 to 700 and then to 950 again), where the 
PID controller tracks the changes in the input variable. 

It can be observed that this system has some oscillation 
in the control (characteristic of each controlled system, 
whether it is first order, second order, etc.). 

Figure 13 shows the effect of the disturbance input on 
the system response, which is very helpful information for 
the students when they try to understand the properties of 
any control system. 

 

 
Figure 10.  PID Brightness Controller. 

 
Figure 11.  system responses for PID Brightness controller. 
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Figure 12.  Architecture of PID Brightness Controller at UoB-iLab. 

VI. CONCLUSIONS 
The Arduino® Microcontroller was used as a reliable 

controlling platform for UoB-iLab, as it is compatible 
with different types of sensors and actuators. The designed 
web interface using HTML-JAVA- PHP-JavaScript code 
can be successfully used with an Arduino® Microcontrol-
ler to develop several remote experiments to achieve dif-
ferent learning objectives for the engineering college. 

The developed application for UoB-iLab has several 
advantages: 
• Can work on any web interface and does not need 

any runtime code.  
• Can work on any operating system platform (Win-

dows, MacOs, Linux, Unix, BeOS) on PCs and mo-
bile devices.  

• Can be easily encrypted to protect the information 
from spies and hackers.  

• Can develop a new design of UoB-iLab using an 
available server like (Apache or IIS).  

 

Python programming language has been successfully 
used to efficiently read data from a USB interface with a 
microcontroller and has the ability to convert data to dif-
ferent forms (txt, csv, xcl. etc.) to make it ready for use 
with web development programs and compatible with 
major operating systems (Windows, MacOS, Linux, Unix, 
BeOS). By using a relay Arduino® Microcontroller and 
its family can deal with a device that operates using more 
than 5V.  
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APPENDIX A 
Script adopted Arduino C for Controlling a DC motor  

1 
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int motorPinPlus = 4; 
int motorPinMinus = 5; 
int motorPinEnable = 6; 
// Setup 
void setup() 
{ 
   pinMode(motorPinPlus, OUTPUT); 
   pinMode(motorPinMinus, OUTPUT); 
   pinMode(motorPinEnable, OUTPUT); 
   Serial.begin(9600); 
} 
// Loop 
void loop() 
{ 
   // Accelerate forward 
   for (int i = 100; i < 250; i++) 
   { 
      setMotor(true, i); 
      delay(10); 
   } 
   // Decelerate forward for (int i = 255; i > 100; i--) { 
      setMotor(true, i); 
      delay(10); 
   } 
   // Accelerate reverse 
   for (int i = 100; i < 250; i++){ 
      setMotor(false, i); 
      delay(10); 
   } 
   // Decelerate reverse 
   for (int i = 255; i > 100; i--){ 
      setMotor(false, i); 
      delay(10); 
   } 
} 
// Function to control the dc motor 
void setMotor(Boolean forward, int speed){ 
   digitalWrite(motorPinPlus, forward); 
   digitalWrite(motorPinMinus, !forward); 
   analogWrite(motorPinEnable, speed); 
} 

 
 
The core of this script is the function setMotor, and it will also be used 
in the rest of this project: 

 
 
 
 
 
 

// Function to control the motor 
void setMotor(Boolean forward, int speed){ 
   digitalWrite(motorPinPlus, forward); 
   digitalWrite(motorPinMinus, !forward); 
   analogWrite(motorPinEnable, speed); 
} 

 

APPENDIX B. 
Remote Laboratories architecture (1996-2014) 

No. (Reference number, Year) Microcontroller Type Web based Platform Country  
1 ([33],1996) Control Interface (MCI) and UNIX work-

station 
shell scripts on the workstation and 
corresponding batch files on the PC. USA 

2 ([1],2008; [2], 1998) Agilent 4155B Java Applet USA  
3 ([3],[4], 2004) DSTINIM400 Java Applet USA  
4 ([25],2008) ELVIS /DAC VS.NET C# Nigeria,  
5 ([5]., 2005) LabJack DAQ Java Applet USA  
6 ([7], 2006) WebLab PLD AJAX Spain  
7 ([13],2011) WebLab-PLD hardware AJAX Spain  
8 ([15], 2011) PLC S7-400 PCS7 UK  
9 ([8],2010) WebLab-PLD Ajax- java Spain  
10 ([16],2011; [26],2010) ELVIS LabView - Matlab Uganda  
11 ([11],[27], 2011) 4DH1 beam port (Nuclear Reactor) LabView USA  
12 ([6],[28],2006) XR4000(autonomous mobile Robot) Ajax – Servlet- JSP UK  
13 ([29],2010) NI-ELIVIS Java Applet USA  
14 ([30] 2014) DAQ-1200 Ajax- Visual Studio.net Australia  
15 ([31],, 2010) ELMO (HV-550XG) LabView Australia,  
16 ([10], 2011) NI-ELVIS LabView USA  
17 ([9],2010; [17], 2011) PXI-8360 LabView USA  
18 ([19],2011) Agilent USB device U2351A LabView Australia  
19 ([18],2011) VISIR workbench FLASH USA  
20 ([33]. 2012) ELVIS LabView USA  
21 ((12],[34],2011) VISIR Platform workbench LabView Sweden  
22 ([14],2011) E8408A- VXI CAD (Matlab- multism) Australia  
23 ([20],2012) ELVIS -DAQ Java Applet USA  
24 ([22], 2012) ELVIS-II LabView Uganda  
25 ([36],2011) PCI-6221 LabView Norway  
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