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PAPER

Empowering AI-Diagnosis: Deep Learning Abilities 
for Accurate Atrial Fibrillation Classification

ABSTRACT
Artificial intelligence (AI) is a powerful technology that can enhance clinical decision-making 
and the efficiency of global health systems. An AI-enabled electrocardiogram (ECG) is an 
essential tool for diagnosing heart abnormalities such as arrhythmias. The most prevalent 
arrhythmia globally is atrial fibrillation (AF), which is an irregular heart rhythm that origi-
nates in the atria and can lead to other heart-related complications. A trusted AI classification 
of AF is explored in this study. Deep learning (DL) has been used to analyze large amounts of 
publicly available ECG datasets in order to classify normal sinus rhythm (NSR), AF, and other 
types of arrhythmias. A convolutional neural network (CNN) has been proposed to extract ECG 
features and classify ECG signals. Based on a 10-fold cross-validation strategy, we conducted 
experiments involving three scenarios for AF classification: (i) a balanced set, an imbalanced 
set, and an extremely imbalanced set; (ii) a comparison of ECG denoising algorithms; and 
(iii) the classification of AF, NSR, and other arrhythmia types (15 classes). As a result, we have 
achieved 100% accuracy, sensitivity, specificity, precision, and F1-score for the AF, NSR, and 
non-AF classifications, both for balanced and imbalanced sets. In addition, for the classifica-
tion of AF, NSR, and other types of arrhythmia (15 classes), the performance results achieved 
an accuracy of 99.77%, sensitivity of 96.48%, specificity of 99.87%, precision of 97.03%, and 
F1-score of 96.68%. The results can empower AI diagnosis and assist clinicians in classifying 
AF on routine screening ECGs.
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1	 INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia worldwide, presenting an 
increased risk of stroke and heart failure. Within the general population, diabetes 
mellitus (DM), high blood pressure, and coronary artery disease are widely recog-
nized as the primary risk factors, affecting 1–2% [1]. During this abnormal heart rate, 
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ventricular fibrillation often occurs, causing chaotic contractions in the ventricles. 
This can be seen in the screening of an electrocardiogram (ECG) [3]. A cardiologist 
or well-trained physician visually analyzes the recorded ECG data as a frequent 
non-invasive diagnostic tool for identifying AF. However, this laborious process is 
prone to human errors [4]. Furthermore, AF frequently goes undetected because it 
is usually asymptomatic and difficult to differentiate from a normal sinus rhythm 
(NSR) and other types of arrhythmias (non-AF) [1]. Hence, it is necessary to auto-
matically detect AF for early diagnosis and prevention of related complications [5]. 
Unfortunately, the automatic detection of AF is a complex problem, and state-of-the-
art performance is typically achieved through the use of machine learning (ML). 
Lack of ML still requires human intervention for feature representation [6–9].

Artificial intelligence (AI)-enabled ECG classification utilizing deep learning (DL) 
can offer a superior solution for AF classification through end-to-end learning. With 
automated feature engineering, DL assists in decision-making instead of replac-
ing clinical decisions. Convolutional neural networks (CNNs) are widely used deep 
learning algorithms for biomedical signal processing. These networks are applied in 
one-dimensional (1D) AF classification and have shown promising results [10–14]. 
CNN models used for AF classification can perform both feature extraction and clas-
sification without the need for manual feature extraction [9]. Such a network con-
sists of multiple back-to-back layers connected in a feed-forward manner, including 
convolutional, normalization, pooling, and fully connected layers [15]. The 1D-CNN 
technique is useful for extracting features from time sequence data for robust AF 
classification [9, 10]. However, the intermittent nature of AF poses a challenge when 
it comes to screening for this condition.

The classification of an ECG signal input into its respective class is performed at 
the final layers of DL models. The classification can take two forms: binary classi-
fication, which distinguishes between AF and non-AF, or multi-class classification, 
which involves multiple categories. Some studies have selectively included related 
arrhythmias, such as atrial flutter (AFL), which have morphological differences 
from AF but still carry a similar risk of stroke. To enhance the detection of AF using 
DL in AI, this study examines the classification of AF, NSR, and other arrhythmias, 
such as AFL. The study conducts a comprehensive experiment with diverse data 
proportions, aiming to simulate real clinical conditions.

2	 RELATED	WORKS

Artificial intelligence-enabled ECG deep learning-based AF classification has 
been extensively explored in state-of-the-art methods. The excellence of AI is demon-
strated through its ability to achieve outstanding performance in processing ECG 
signals using various techniques. The implementation of single-lead ECG for AF 
diagnosis has achieved tremendous research potential in biomedical signal pro-
cessing. Nguyen et al. [16] propose stacking a support vector machine (SVM) and 
CNN. They employed five-fold cross-validation, in which each ECG recording was 
divided into fixed-length segments of 4096 points from the PhysioNet and comput-
ing in Cardiology Challenge 2017. They implemented SVM to analyze the statisti-
cal features of the prediction sequences of ECG signals. From the experiment, they 
achieved an average F1 score of 84.19% for AF, NSR, noisy, and other classifications.

Chen et al. [10] combined two powerful DL algorithms, namely CNN and long 
short-term memory long short-term memory (LSTM), for the classification of AF, 
NSR, ventricular bigeminy (B), pacing rhythm (P), AFL, and sinus bradycardia (SBR). 
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They have segmented the signal into 10-second intervals. They have explored 
ECG databases from the MIT-BIH arrhythmia database, PhysioNet/Computing in 
Cardiology Challenge 2017, the MIT-BIH NSR database, and the MIT-BIH AF data-
base. They proposed seven convolutional layers, seven pooling layers, and two 
blocks of LSTM. From the experiment with five-fold cross-validation, they achieved 
an accuracy of 96.62%, a sensitivity of 95.40%, and a specificity of 96.80%. Petmezas 
et al. [12] have also experimented with the combination of CNN and LSTM for AF, 
NSR, AFL, NSR, AFL, and atrioventricular junctional rhythm (AVJ). The model was 
trained using the MIT-BIH AF database with 10-fold cross-validation. They achieved 
a sensitivity of 97.87% and a specificity of 99.29%.

Serhal et al. [17] investigated the use of continuous wavelet transform and 
two-dimensional CNN for classifying AF and non-AF from the paroxysmal AF (PAF) 
prediction challenge database and PTB-XL ECG dataset. From both ECG databases, the 
ECG signals have been segmented into five-minute intervals before and during AF 
and 10 seconds, respectively. They proposed three convolutional layers, three pool-
ing layers (MaxPooling), and a fully connected layer with two dense layers. Based 
on the tested data, they successfully obtained accuracy rates of 95.7%, 98.8%, and 
95.8% from leads D1, D2, and V1, respectively. Ma et al. [18] proposed a CNN-LSTM 
model for automatic classification of AF signals using the MIT-BIH AF database for 
training. The proposed architecture consists of a one-dimensional convolution layer 
with a corresponding one-dimensional pooling layer as well as a two-dimensional 
convolution layer with a corresponding two-dimensional pooling layer. From the 
experiment, they achieved an accuracy of 97.21%, a sensitivity of 97.34%, and a 
specificity of 97.08%.

3	 MATERIAL	AND	METHOD

3.1	 Data	preparation

The experimental data for AF, NSR, and non-AF classification was obtained from 
various ECG databases, including PhysioNet and another repository (see Table 1). 
We have explored three ECG databases from the PhysioNet repository: the MIT-
BIH AF [19], the Arrhythmia database from Chapman University, Shaoxing People’s 
Hospital (Shaoxing Hospital Zhejiang University School of Medicine), and Ningbo 
First Hospital [20], and The PhysioNet/Computing in Cardiology Challenge 2017 [21].  
MIT-BIH AF consisted of 23 long-term ECG recordings, mostly with paroxysmal 
AF [19]. The ECG records were sampled at a rate of 250 Hz, and each recording 
has a duration of ten hours. The arrhythmia database from Chapman University 
and Shaoxing People’s Hospital consists of various ECG morphologies that belong 
to recorded abnormalities. The records were sampled at 500 Hz. For AF, NSR, and 
non-AF, the total number of records used was 1,780, 1,826, and 7,040, respectively. 
The PhysioNet/Computing in Cardiology Challenge 2017 [21] was sampled at a fre-
quency of 300 Hz. The total number of records used in this study consisted of 5,154 
samples of NSR and 771 samples of atrial fibrillation.

The China Physiological Signal Challenge 2018 [22] is another repository of ECG 
records used for this experimental study. The ECG recordings were sampled at a 
rate of 500 Hz, and the records consisted of 918 instances of NSR, 1,098 instances of 
AF, and 4,861 instances of non-AF. The main highlight of this experimental study is 
the utilization of different ECG morphologies with varying frequency sampling. The 
sample plot of AF, NSR, and non-AF recordings can be presented in Figure 1.

https://online-journals.org/index.php/i-joe
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Table 1. The ECG recordings database

ECG Dataset Frequency  
Sampling Class Total  

Records

MIT-BIH Atrial Fibrillation [19] 250 Hz AF 23

A large-scale 12-lead electrocardiogram database for 
arrhythmia study (Chapman University, Shaoxing 
People’s Hospital (Shaoxing Hospital Zhejiang 
University School of Medicine), and Ningbo First 
Hospital) [20]

500 Hz NSR 1,826

AF 1,780

Non-AF Sinus Bradycardia (SB) 3,889

Sinus Tachycardia (ST) 1,568

Atrial Flutter (AFL) 445

Sinus Irregularity (SI) 399

Supraventricular Tachycardia (SVT) 587

Atrial Tachycardia (AT) 121

Atrioventricular Node Reentrant 
Tachycardia

16

Atrioventricular Reentrant Tachycardia 8

Sinus Atrium to Atrial 
Wandering Rhythm

7

The PhysioNet/Computing in Cardiology 
Challenge 2017 [21]

300 Hz NSR 5,154

AF 771

The China Physiological Signal Challenge 2018 [22] 500 Hz NSR 918

AF 1,098

Non-AF First-degree atrioventricular block (IAVB) 704

Left bundle branch block (LBBB) 207

Right bundle branch block (RBBB) 1,695

Premature atrial contraction (PAC) 556

Premature ventricular contraction (PVC) 672

ST-segment depression (STD) 825

ST-segment elevated (STE) 202

a) AF b) NSR

c) Non-AF (Atrial Flutter) d) Non-AF (Atrial Tachycardia)

Fig. 1. (Continued)
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e) Non-AF (Atrioventricular
Node Rentrant Tachycardia)

f) Non-AF (Sinus Bradycardia)

g) Non-AF (Sinus Tachycardia) h) Non-AF (Supraventricular Tachycardia)

Fig. 1. The sample of AF, NSR, and non-AF recordings

3.2	 ECG	preprocessing

To obtain valuable information from the ECG signal, it must be processed. The 
challenge of ECG preprocessing is to filter and reduce ECG noise components, making 
it easier to identify various cardiac disorders. This study proposes the steps of ECG 
preprocessing to achieve effective noise removal and accurate feature extraction. 
The process consists of two main steps:

•	 ECG denoising. The discrete wavelet transform (DWT) is an effective approach for 
processing non-stationary signals. A signal can be decomposed using the wavelet 
transform on the time-frequency scale plane [23]. This study used various mother 
wavelet functions, namely Daubechies (db), symlet (sym), biorthogonal (bior), coiflet 
(coif), and haar wavelet. Signal-to-noise ratio (SNR) is a measure used in signal pro-
cessing to compare measurement for level of a desired signal with the level of back-
ground noise. The unit of the SNR is decibels (dB). An SNR greater than 0 dB implies 
that the signal level exceeds the noise level. The higher the ratio, the better the quality 
of the signal. The results of the different wavelet families used in this study are listed 
in Table 2. Table 2 displays the averaged SNR for all ECG records for five wavelet 
families: db, sym, bior, coif, and haar. ECG records. Among the averaged SNR values, 
sym5 achieved the highest average SNR of 11.81 dB. Overall, sym5 outperformed all 
wavelet functions studied and is the best function for this experimental study.

Table 2. The SNR of wavelet families

Wavelet Averaged SNR (dB)

db2 11.70

db4 11.58

db5 11.70

db6 11.58

db7 11.48

(Continued)
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Wavelet Averaged SNR (dB)

sym5 11.81

sym6 11.60

sym7 11.69

sym8 11.58

bior1.3 11.22

bior3.5 11.18

bior6.8 11.52

coif4 11.51

coif5 11.54

haar 11.30

•	 ECG Segmentation. The aim of segmenting the ECG signal is to locate the tem-
poral and morphological characteristics in order to detect patterns of AF, NSR, 
and non-AF. In our previous study [13, 14], we successfully segmented the ECG 
records into 2,700 nodes (each containing at least one RR-interval) for the clas-
sification of AF, NSR, and non-AF. To identify AF, the QRS complexes are irregu-
larly irregular with varying RR intervals. The total number of ECG episodes, after 
being segmented into 2,700, can be listed in Table 3.

Table 3. The total of ECG episodes after segmentation preprocessing

ECG Dataset Class ECG Episodes (2,700 Nodes)

MIT-BIH Atrial Fibrillation AF 262

The China Physiological Signal Challenge 2018 NSR 1,981

AF 2,297

Non-AF 11,443

Chapman University, Shaoxing People’s Hospital NSR 1,771

AF 1,726

Non-AF 6,824

The PhysioNet/Computing in Cardiology 
Challenge 2017

NSR 15,747

AF 2,316

Total 44,367

3.3	 Convolutional	neural	networks	architecture

The 1D CNN is well-suited for real-time and low-cost applications in biomedical 
signal processing [12, 24–26]. The computational complexity of a 1D CNN is lower 
than that of a two-dimensional CNN. The configuration of a 1D CNN is determined 
by the following hyperparameters [27]: (i) the number of hidden CNN layers or neu-
rons; (ii) the filter size in each CNN layer; (iii) the subsampling factor in each CNN 
layer; and (iv) the pooling and activation functions. In CNN layers, 1D forward prop-
agation is defined as [28].

Table 2. The SNR of wavelet families (Continued)
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The proposed architecture of the CNN can be found in Table 4 and Figure 2. 
It consists of 13 convolution layers (stride = 1) with rectified linear unit (ReLU) acti-
vation functions, five pooling layers (stride = 2), kernel sizes of 64, 128, 256, and 512, 
and a fully connected layer. The proposed architecture has also been implemented 
in our previous study for AF classification tasks [13, 14]. We present the pseudocode 
of the CNN architecture in Algorithm 1.

Table 4. The proposed CNN architecture

Layer Types Kernel Size Stride

1 Conv +	ReLU 3 × 64 1

2 Conv + ReLU
Pooling

3 × 64
2

1
2

3 Conv + ReLU 3 × 128 1

4 Conv + ReLU
Pooling

3 × 128
2

1
2

5 Conv + ReLU 3 × 256 1

6 Conv + ReLU 3 × 256 1

7 Conv + ReLU
Pooling

3 × 256
2

1
2

8 Conv + ReLU 3 × 512 1

9 Conv + ReLU 3 × 512 1

10 Conv + ReLU
Pooling

3 × 512
2

1
2

11 Conv + ReLU 3 × 512 1

12 Conv + ReLU 3 × 512 1

13 Conv + ReLU
Pooling

3 × 512
2

1
2

14 Fully Connected 1000 –

15 Fully Connected 1000 –

16 Fully Connected 3 –
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Fig. 2. The proposed CNN architecture

Algorithm 1: Pseudocode of CNN Architecture

Parameters: input x (2700, 1), output y (2700, 1)
1. For each epoch do:
  #CNN Feature Extraction
2.    For each convolution layer do:
3.     For each sample in x do:
4.      Calculate a

ij

m  from x by Equation 1
5.     End for
6.    End for
 #Dimension of a is (2700, 512)
 #Max Pooling Layer
7.    For each sample in a do:
8.     Extract the maximum value
9.    End for

4	 RESULTS	AND	DISCUSSION

We conducted an experiment using stratified K-fold cross-validation to divide the 
training and validation sets. It aims to reduce the variance of the performance esti-
mate and allows you to use more data for training. In this study, we have implemented 
10-fold cross-validation, which divides the dataset into ten random groups of equal size. 
To investigate and explore this experimental study, we aimed to empower the diagnosis 
of AF, NSR, and non-AF. We conducted the study based on several important cases: (i) we 
partitioned the dataset into balanced and imbalanced sets; (ii) we compared the effec-
tiveness of the DWT and denoising autoencoder (DAE) for ECG denoising; and (iii) we 
trained the proposed model for AF, NSR, and other arrhythmia classification (15 classes).

4.1	 Case	1:	The	balanced	and	imbalanced	dataset

This study has explored multiclass classification (AF, NSR, and non-AF) with vary-
ing numbers of total episodes in each class, which are imbalanced. In a classification 
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task, having balanced data makes training a model easier because it helps prevent 
the model from becoming biased towards one class. Unlike cases with balanced 
data, imbalanced data is difficult to fix. The number of classes constitutes a signifi-
cant portion of the dataset (majority class). The minority class constitutes a smaller 
proportion. Hence, it can lead to potential bias in the trained model. Table 5 pres-
ents the total number of episodes that have been categorized into balanced, imbal-
anced, and extremely imbalanced data. For a balanced set, we have divided the AF, 
NSR, and non-AF into 6,601, 7,818, and 6,824 episodes, respectively. For the imbal-
anced set, there are 6601 episodes of AF, 19499 episodes of NSR, and 6824 episodes 
of non-AF. Then, for the highly imbalanced set, there are 6601 AF, 19499 NSR, and 
18267 non-AF episodes.

Table 5. The investigation of balanced, imbalanced, and extremely imbalanced set

ECG Dataset Class
Number Episodes

Balanced Set Imbalanced Set Extreme
Imbalanced Set

MIT-BIH Atrial 
Fibrillation

AF 262 262 262

The China Physiological 
Signal Challenge 2018

NSR – 1,981 1,981

AF 2,297 2,297 2,297

Non-AF – – 11,443

Chapman 
University, Shaoxing 
People’s Hospital

NSR – 1,771 1,771

AF 1,726 1,726 1,726

Non-AF 6,824 6,824 6,824

The PhysioNet/
Computing in Cardiology 
Challenge 2017

NSR 7,818 15,747 15,747

AF 2,316 2,316 2,316

Total Episodes 21,243 32,924 44,367

The results for the balanced, imbalanced, and extremely imbalanced data can 
be presented in Figure 3. The boxplot is used to display the distribution of numeri-
cal data and skewness by showing the data quartiles, including the minimum, first 
quartile, median, third quartile, and maximum. Figures 3a–c show the performance 
results of the distribution for balanced, imbalanced, and extremely imbalanced sets, 
respectively. Figures 3a–c show that some outliers differ significantly from the per-
formance results. Figures 3a and b for balanced and imbalanced data show that 
the performance can reach 100% accuracy, sensitivity, specificity, precision, and 
F1-score. Different from the extremely imbalanced set (refer to Figure 3c), the per-
formance results were obtained at around 83%. The results perform poorly and are 
lower than those of the balanced and imbalanced sets due to the skewed or biased 
distribution of AF, NSR, and non-AF. The proposed algorithm is biased in favor of 
one class because it receives a disproportionately high number of samples from 
that class. It does not learn what distinguishes the other class and does not compre-
hend the underlying patterns that enable us to differentiate between AF, NSR, and 
non-AF classes.
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a) Balanced set b) Imbalanced set

c) Extremely imbalanced set

Fig. 3. Boxplot of the 10-fold cross-validation results for a balanced, imbalanced,  
and extremely imbalanced set

To visualize the performance of the proposed model on a set of validation data, a 
confusion matrix (CM) can be presented in Figure 4. Figure 4 shows the prediction 
results on the validation set for the balanced, imbalanced, and extremely imbalanced 
datasets. It can assess where false positives and negatives were made in the pro-
posed model. Figures 4a and b show perfect classification, with no errors occurring. 
However, in the case of Figure 4c, there is one misclassified AF as NSR and 17 mis-
classified AF as non-AF. In addition, for the non-AF classification, there are 22 cases 
misclassified as AF. In our data experiment, the distribution of the non-AF class exhib-
its a variety of abnormality morphologies, with the majority of non-AF cases being 
comprised of other arrhythmia morphologies. The various abnormal morphologies 
of other arrhythmias belong to one class, non-AF. Hence, the misclassification mostly 
occurs from non-AF to AF. AF is the most common type of treated heart arrhythmia.

a) Balanced set a) Imbalanced set c) Extreme Imbalanced set

Fig. 4. Confusion matrix of the balanced, imbalanced, and extreme imbalanced set for AF classification
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4.2	 Case	2:	Comparison	of	DWT	and	DAE	for	ECG	denoising

To generalize the proposed experimental model, we compared the effectiveness 
of DWT and DAE for ECG denoising. In our previous works [29, 30], we explored the 
use of DAE for removing noise and artifacts from ECG signals. Denoising algorithms 
based on DL have been explored for performing ECG signal denoising [29–34]. DAE 
learns the parameters for different noisy conditions, which consist of encoding (lower- 
dimensional representation) and decoding layers (feature extraction). To ensure a 
fair comparison, we re-trained a proposed architecture using 13 convolutional lay-
ers and five max-pooling layers with the help of DAE. The selected mother function 
of DWT (sym5) is used for baseline SNR (target). The initial input x, is corrupted by a 
stochastic mapping  x q x x∼ ( | ). The DAE used corrupted data x  as input, which was 
initially transformed into a hidden representation using the encoder. The text was 
then reconstructed using a decoder. We trained a DAE to propose an architecture 
based on hyperparameter tuning (see Table 6). We have adjusted the number of 
epochs (100, 200, and 300) and the batch size (8, 16, 32, 64, 128, 256, and 512). Based 
on Table 6, the optimal parameters are 200 epochs, 256 batch sizes, and a learning 
rate of 0.00095. This conclusion is drawn from the discrepancy between the recon-
structed value (34.14 dB), as well as the target value (36.11 dB) and the lowest loss 
value (0.02596050052903). The presentation of reconstructed (yellow color) and raw 
(blue color) signals can be seen in Figure 5. Figure 5 shows the morphology of the 
reconstructed signal near the raw signal.

Table 6. The hyperparameter tuning of the DAE model

Epoch Batch Size Target Value (dB) Reconstructed Value (dB) Loss Value

100 8 34.6125 17.6964 0.0445

16 34.6125 27.8053 0.0291

32 34.6125 17.6964 0.0445

64 34.6125 17.6964 0.0445

128 34.6125 28.2868 0.0349

256 34.6125 17.6964 0.0439

512 34.6125 17.6964 0.0431

200 8 34.6125 17.6964 0.0445

16 34.6125 17.6964 0.0445

32 34.6125 17.6964 0.0445

64 34.6125 17.6964 0.0445

128 34.6125 25.7426 0.0260

256 34.6125 29.0016 0.0260

512 34.6125 24.7656 0.0389

300 8 34.6125 17.6964 0.0445

16 34.6125 17.6964 0.0445

32 34.6125 17.6964 0.0445

64 34.6125 17.6964 0.0445

128 34.6125 38.9717 0.0202

256 34.6125 17.6964 0.0439

512 34.6125 17.6964 0.0440

https://online-journals.org/index.php/i-joe


iJOE | Vol. 19 No. 17 (2023) International Journal of Online and Biomedical Engineering (iJOE) 145

Empowering AI-Diagnosis: Deep Learning Abilities for Accurate Atrial Fibrillation Classification

Fig. 5. The reconstructed signal using DAE

The performance results of DAE-CNN can be seen in Figure 6. Figure 6 shows the box 
plot of the first, second, and third quartiles for DAE-CNN. The average performance result 
is 94.78% for accuracy, sensitivity, specificity, precision, and F1-score. However, when 
comparing it to DWT-CNN, DWT-CNN outperformed DAE-CNN. The results of DAE-CNN 
achieve less than 50% sensitivity, precision, and F1-score. Different from DWT-CNN, the 
performance achieved an 83% accuracy, sensitivity, specificity, precision, and F1-score 
above 83%. With DAE, the noisy ECG signal is fed into the network and mapped into a 
lower-dimensional manifold, making noise filtering much more manageable. However, 
DAE is prone to a high risk of overfitting. Additionally, it is not effective in handling 
highly non-linear data. DWT is useful for representing the subtle variations in the signal 
f (t) at different scales. Additionally, the function f (t) can be expressed as a linear combi-
nation of functions that represent variations at different scales.

Fig. 6. Box plot of DAE-CNN performance results

4.3	 Case	3:	AF,	NSR	and	other	arrhythmia	classification	(15-classes)

To empower our AI-enabled ECG, we trained the proposed model to classify NSR, 
AF, SB, ST, AFL, SI, SVT, AT, IAVB, LBBB, RBBB, PAC, PVC, STD, and STE (15 classes). 
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We have specified the non-AF class to include specific arrhythmia types. As we 
mentioned earlier, AF often goes unnoticed because it typically does not cause 
symptoms, and it is difficult to differentiate an irregular heartbeat from an NSR or 
other types of arrhythmias. The performance results of each class in a 10-fold cross- 
validation strategy are shown in Figure 7. Figure 7 visualizes the varying results of 
accuracy, sensitivity, specificity, precision, and F1-score from a 10-fold classification 
of 15 classes, including NSR, AF, and other arrhythmia types. There are some outlier 
values between 68% and 85% for the performance metrics used. With the excel-
lence of our proposed model, we achieved an average (second quartile) of 96.58% 
accuracy, 94.21% sensitivity, 97.04% specificity, 93.81% precision, and a 93.94% F1 
score. The experiments concluded that the performance of multiclass classification 
reached remarkable results for AF diagnosis in clinical practice.

Fig. 7. Boxplot of NSR, AF and other arrhythmia classification (15-classes) performance

The visualization of CM for NSR, AF, and other arrhythmia classifications 
(15 classes) can be presented in Figure 8. Figure 8 plots the distribution of the num-
ber of classes that were successfully classified as actual classes (ground truth). The 
misclassification mostly occurs with LBBB and RBBB, which are wrongly classified 
as AF, PAC, PVC, STD, and STE. LBBB may be due to conduction system degeneration, 
while RBBB represents the abnormality of the human heart in the intraventricu-
lar electrical conduction system. In a specific case, confirming the onset of LBBB or 
RBBB can be challenging if no prior ECG exists. The morphologies of LBBB, RBBB, 
AF, PAC, PVC, STD, and STE tend to be similar due to the prevalence of LBBB, which 
increases ventricular myocardial infarction, and RBBB, which is associated with 
arterial hypertension.

Although the results look promising, there are some limitations to our study 
for possible avenues for future research and improvements. First, this study only 
focused on classifying NSR, AF, and non-AF. We did not detect episodes of AF and 
NSR. Second, more datasets can be generated to achieve more robust performance. 
Third, though the results were well-performed, we have only generalized the pro-
posed DL model to validation data, not to testing data. Testing data can be applied to 
evaluate the performance and optimize it for improved results.
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Fig. 8. CM of NSR, AF and other arrhythmia classifications (15-classes)

5	 CONCLUSION

A powerful AI-enabled ECG based on the CNN algorithm achieves outstanding 
performance with varying large amounts of ECG datasets publicly. In this study, the 
proposed architecture of CNN deals with three cases: (i) a balanced, imbalanced, and 
extremely imbalanced set, (ii) a comparison of the ECG denoising algorithm; and (iii) 
the classification of AF, NSR, and other arrhythmia types (15 classes). As a result of 
a 10-fold cross-validation strategy, the following findings were obtained: (i) for AF, 
NSR, and non-AF classification, we achieved 100% accuracy, sensitivity, specificity, 
precision, and F1-score for both balanced and imbalanced sets; (ii) DWT outper-
formed DAE in this study for ECG denoising; and (iii) for the classification of AF, NSR, 
and other arrhythmia types (15 classes), the performance results were 99.77% accu-
racy, 96.48% sensitivity, 99.87% specificity, 97.03% precision, and 96.68% F1-score. 
We conclude that our AF classification experiment has successfully applied of AI to 
healthcare.
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