
REMOTE LABORATORY HARDWARE MODULES BASED ON NETWORKED EMBEDDED SYSTEMS

Remote Laboratory Hardware Modules Based on
Networked Embedded Systems

Darko Fudurić, Mario Žagar, Tomislav Sečen and Marin Orlić
University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

Abstract—Networked embedded microcontrollers
integrated into remote laboratory are proposed. Hardware
and software architecture responsible for functioning of the
laboratory is discussed. Compatibility with existing
networks is mandatory, so common TCP/IP stack layer is
introduced. Open remote laboratory, based on embedded
systems is accessible from anywhere on the Internet.. It is
suitable for practical education in microcontroller
fundamentals.

Index Terms—e-Learning, Embedded systems, Remote
laboratory.

I.

II.

INTRODUCTION
Embedded, ubiquitous, pervasive, mobile, wearable,

paintable are just a few keywords of modern computing.
Total distribution and networking is a common
denominator. Knowledge and understanding of basic
principles and architectures of small computers,
microcomputers, networked microcontrollers [13] is a
necessity. One solution is to build massive laboratories,
but in an educational environment (like we have at the
University of Zagreb, Faculty of Electrical Engineering
and Computing) with many students enrolled and curious
to exploit the world of microcomputers through “hands on
experience”, building, maintenance, administrative
organization and teaching support, this proves to be
“mission impossible”.

Unlike general purpose (PC) laboratories, in which
many different exercises can be organized by simply
replacing software, a microcomputer architecture [15]
laboratory is specific and not very reusable.. Lack of
physical space (not enough classrooms), low efficiency
(one student working several hours with the equipment),
lack of teaching staff, inconvenient time (early morning,
late evening, big time gaps between the lectures and
exercises), expensive maintenance (many wires, many
people moving around) and many other reasons led to the
idea of building a microcomputer laboratory available
round the clock, all days a week, all weeks a year. And, of
course, accessible from home or any other Internet
enabled place. The first idea that naturally came to mind
was “write or buy good software simulator installable on
every PC, give it to the students and a lot of problems will
be solved”. However, there is no “hands-on experience”
and it would be much like a cooking simulation - nobody
would like to eat dishes prepared by the chef trained by a
cooking simulator. You have to have a real experience.
The second idea, to build a remote laboratory [12][14] for
microcomputer systems and processes, came as a normal
decision. The goal was to establish a laboratory in which

everything is real except that you do not need to be there.
In your client environment you must feel like you are
there.

Several entirely different problems had to be solved
such as the administration system, reservation system, a
secure and unique access to the equipment (there is no
possibility for time sharing of the small systems),
visualization of the experiments, automatic examination
and notification about the exercise results. And just when
we think that we have counted in all the problems, a small
and simple one arises – a student somehow wrote,
downloaded and started binary program execution of the
type:

START: NOP

JUMP START

and everybody (the student and teacher) is kilometres

away. Who will press the Reset button or unplug - plug
the power cord?

We have solved all the mentioned problems but their
description would exceed the size of one article, and
technologies and methodology used do not belong to a
single aspect of computing. In this paper we have focused
on the networked hardware modules in the implemented
remote laboratory.

SYSTEM ARCHITECTURE
Microcontrollers are generally divided into simple

modules with one type of simple serial communication
interface [1] like RS-232 or I2C enabled communication
and another type, more sophisticated, Internet enabled
network microcontrollers. The first concept has been well-
known for years, the latter is widely available recently.
This is the reason we should not ignore the first group. In
addition, smaller or simpler devices usually have less
power dissipation, less architecture complexity, simpler
maintenance, system implementation and evaluation
process along with some features that are not necessary
for educational purposes. For better understanding of
course materials and exercises, students need general
knowledge of microcomputer architecture with some
elementary (basic) details, which is not specific for
commercial vendor policy. Selecting one commercial
architecture and one among dozen processors offered on
the market that meets the majority of requirements noted
above is not easy.

Proposed system architecture is shown in Fig. 1. As an
exercise, students have to access the core of a remote
laboratory called VLAB server. They can connect from
one of the computers on Faculty premises or from a

iJOE International Journal of Online Engineering - www.i-joe.org 1

REMOTE LABORATORY HARDWARE MODULES BASED ON NETWORKED EMBEDDED SYSTEMS

computer on the other side of the firewall. In the first case,
Faculty network security policy can be applied directly,
but in the second case we deal with the so-called open
Internet connection. One of the side effects is the necessity
to restrict access to the remote laboratory resources
(because of malicious activities and threats on the open
Internet connection).

After successful access to the VLAB server, students
have an account and exercises related options for term-
based reservations. Within the reserved term (time slot)
students have the possibility to upload and execute the
code and see execution results. After several iterations, the
final code should be uploaded before exceeding the total
time limit allowed for the exercise.

Figure 1. Remote laboratory concept

Access to resources is determined by the applied
exercise profile. In the case of LAN-based microcomputer
boards, resource access is enabled directly through the
LAN, because target module has TCP/IP stack and already
developed communication API-s and related tools. In the
case of simpler boards with some type of serial interface
instead of a LAN interface, LAN-to-serial bridge is
required. We propose a VLAB-dedicated terminal (VLAB
DT). This is a PC-based computer with installed tools [2],
such as compilers, loaders, programmers, etc. and
interfaces related to the equipment attached on it. VLAB
DT can receive programs from remote students through
VLAB server and upload them on the related equipment,
according to the resource profile policy. Furthermore,
VLAB DT can send commands in order to execute
uploaded programs, and get back the execution results.
The results are sent as data or video streams from an
internet camera.

VLAB server is the focal point of remote laboratory
that consists of ,many modules. This allows for new
embedded networked modules to be attached when
needed and in the same time preservs the reservation
system.

From the user point of view, there are three steps in the
connection to the VLAB server, shown in Fig. 2.

Figure 2. Three steps of VLAB server usage

In the first step, clients send a reservation requests to
the VLAB server. The requests are registered and logged
on the VLAB server. Global resource scheduler redirects
each request to the relevant resource group (LAN or
serial). When the request for execution arrives, resource
time scheduler starts the processing. This is the beginning
of step 2. Command and data messages are sent to the
resource, equipped with a mechanism for accepting (user
program) and executing such messages, as well as for
retrieving execution results during the step 3.

Figure 3. VLAB resource reservation policy

After the results are retrieved, resources are released
and the next request processed. Therefore, users can
subsequently execute programs on the remote
microcomputer system.

Frequency of possible executions depends on the nature
and complexity of the program, peripheral unit delays and
environmental responses for a specific problem. We
define system inertia as the time between sending binary
program to the system and getting data and video stream
back. This lasts about a few seconds in the case when
program performs only simple operations in the memory,
such as adding two operands or blinking LED diodes.

iJOE International Journal of Online Engineering - www.i-joe.org 2

REMOTE LABORATORY HARDWARE MODULES BASED ON NETWORKED EMBEDDED SYSTEMS

Resolving phase 2 and phase 3 depends on the
microcomputer architecture, as it requires mechanisms for
capturing all microcomputer resource states after a
program is executed and returning back to the server. In
order to return the current system state, user program has
to include special service routines, which can provide
memory stream output to the VLAB dedicated terminal. It
is assumed that the user will include previously prepared
functions in binary code during or after the compilation,
but the problem is that these routines allocate some
amount of program and RAM memory. The other problem
might be if a user’s main program enters into an infinite
loop, as explained in the introduction. In that case, service
routines will never be called.

Because there is a need for stopping execution and
returning results, we need emergency mechanisms for
resolving potential user infinite-loop-like programs. This
can be accomplished by using hardware debugging
interface such as JTAG. This interface enables supervision
of user program execution through tracepoints,
breakpoints, step-by-step execution, register, memory and
processor state capture. There are many microcomputers
on the market without JTAG port, but nearly all of them
have some kind of a serial interface. We propose replacing
the JTAG port by a serial port combined with firmware
that runs in the microprocessor supervisory mode. This
requires writing a supervisory program that can clear,
upload, execute and block any user program, according to
the given JTAG-simulated commands through the serial
port. The accomplishment of this task requires self-
programmable processor architecture feature, which
means that the program can change itself. The supervisory
program has to provide memory capture of the user
memory area and special function registers (SFR) which
are used in order to control the on-chip peripherals.
Implementation depends on concrete microcomputer
architecture, because we need to simulate JTAG hardware
supervisory features by software. We have found that
microcomputers with boot loader capability are a suitable
replacement and the solution is given in the next chapter.

III. APPLICATION AND IMPLEMENTATION
Atmel AVR family architecture [7] is one of the

preferred architectures suitable for educational and
experimental purposes that we have in our lab, with
several practical exercises. Almost every microcontroller
from this family has FLASH, EEPROM and SRAM
memories, auxiliary units such as counters, timers,
memory, pulse-width modulation units, RTC clocks, A/D
converters [6], PWM channels etc. Replacement with a
serial port and boot loader is possible because many
processors such as ATMEGA64 have a boot loader
section placed at the end of FLASH memory. This section
is suitable for our supervisory program named AVR Boot
Loader (BL). Flow diagram is shown in Fig. 4.

The reset source can be distinguished from the BL or
user program. For example, ATMEGA64 processor has
five reset sources: Power-on Reset, External Reset,
Watchdog Reset, Brown-out Reset and JTAG AVR Reset.
We use the Power-on Reset and Watchdog Reset. In either
case, BL is executed first.

Figure 4. Supervisory boot loader architecture

In the event of power-on reset, the boot loader sends the
“ready” message through RS-232 or USB port to the time
scheduling module which responds with user binary code
and the expected execution time interval. After receiving
the user program, the BL overwrites the user program area
with a received program (AVR architecture has a self-
programmable feature), starts the Watchdog timer with the
expected execution time interval just before it jumps to the
first instruction of the user program. After the execution,
every user program has to enter into the infinite loop or
sleep mode, so the watchdog timer started by the boot
loader will always reset the processor and enter into the
boot loader program again. The BL then sends a command
that signals the end of the execution to the time-
scheduling module, and waits for memory capture
commands. Capture commands regarding the memory
type (FLASH, EEPROM or RAM) and memory address
range are executed and memory image in INTEL HEX
format is returned to the VLAB server. The time-
scheduling module compares the returned memory and
registers with the correct or expected values, and provides
laboratory result marks.

Figure 5. Boot loader and Application section

Tiny-based platform does not need the time scheduling
module because it has multi-threaded OS which handles
the user connections automatically. The AVR platform
does not have an operating system.

iJOE International Journal of Online Engineering - www.i-joe.org 3

REMOTE LABORATORY HARDWARE MODULES BASED ON NETWORKED EMBEDDED SYSTEMS

The last point that should be noted is how to protect the
BL from being overwritten by a user program. Regarding
the different memory types and read/write permissions,
AVR architecture has 11 levels of protection. We select
one of the two suitable protection levels that protect the
BL from being erased or overwritten from the application
section (Fig. 5).

We have implemented a few practical exercises [3].
The target system consists of several parts: LED array
with four LED BCD segments, STEP motor with drivers,
temperature sensor and 16x2 text LCD unit, all shown in
Fig. 6.

Figure 6. VLAB system hardware based on Atmel AVR

microcontroller family

The main board consists of the target microcontroller
ATMEGA8 from Atmel2 AVRTM family. Fig. 7 shows
the physical realisation of the VLAB system concept.

 The main board is connected to the other parts via a
multiplexed bus, because it does not have enough I/O
lines to support all the connected modules at once. Target
microcontroller can be reprogrammed directly from the
VLAB server, via the RS-232 interface, using the
dedicated uploader tool.

VLAB DT server is PC with Linux Debian 3.1 OS,
kernel version 2.6. Video LAN media server is used for
video streaming.

Figure 7. VLAB system hardware in action

Modules based on LAN interface used as parts of
VLAB are shown in Fig. 8. One of them (Rabbit2000TM

embedded module) is used for “hot reset” of the other
(TINI S400 series module), if this system hangs up.

Figure 8.

IV.

TINI S400 and RABBIT2000TM modules

CONCLUSION
When speaking in terms of distributed and distance

learning in computer science, remote laboratories are an
important facility for learning and practicing. Various
systems can be controlled remotely, allowing students to
practice on real systems. This is available from anywhere
and at any time. Reserving a real, hardware resource, a
microcontroller of some kind, can be done in advance or
dynamically in order to prevent collisions between
different users. After making a reservation, students
program remote resources in any supported language and
tool. The exercise, if successful, can be graded
automatically, thus reducing the workload of the teaching
staff.

Web-based experiments have been developed for both
engineering/students and science experiments. That way it
is much easier and cheaper to learn or demonstrate
experiments, since there is no need for the rather
expensive equipment or for students to travel to the lab.
The remote laboratory enables various models and
simulations that are not feasible with regular equipment.

Remote laboratory can be applicable in various ways
and fields, such as electronics, computer engineering,
chemistry, physics, probability and statistics, medicine,
robotics etc.

The broad-spectrum solution to the distance learning or
working exercises is not currently resolved, because our
system depends on the laboratory equipment features and
configuration, as well as on the exercise problem domain.
This means that solving distance learning or working
problem for another type of laboratory, for example,
chemistry or biology, cannot be done in the same way it is
currently done, because the input vectors to the system
and output results and data from the system are naturally
different. There are two rules which should be fulfilled to
make this fact irrelevant:

• transformation from the designed digital input
vectors into problem domain input vectors can be done
transparently and uniquely

• the effects or responses produced in the problem
domain as a response to the input vectors can be
transformed into the result domain transparently and
uniquely.

It should be noted that transparently and uniquely
means that the function between our digital domain and a

iJOE International Journal of Online Engineering - www.i-joe.org 4

REMOTE LABORATORY HARDWARE MODULES BASED ON NETWORKED EMBEDDED SYSTEMS

specific analog system domain can be implemented
successfully and with expected performance, which
should not depend on the digital domain. The digital
domain can be improved in the future with additional or
improved hardware, algorithms and methods for acquiring
and fetching data from other system output (A/D
conversion), which can also be achieved with better
representation of digital input vectors via sophisticated
D/A converters etc. For example, there may be a need for
wide-range response types from the target system such as
analog input signal frequency band and peak-to-peak
level, or faster sampling frequency etc. If we find how to
generalise these two subsystems in the future, we can say
that we have reached a broad-spectrum distance learning
and working solution.

ACKNOWLEDGMENT
The authors would like to thank all the people involved

for extensive discussions in the initial phases of the work,
participation and support during all related working
activities and for comments provided on the early
versions. Unfortunately, we cannot list them all.

REFERENCES
[1] T. Noergaard, “Embedded Systems Architecture: A

Comprehensive Guide for Engineers and Programmers,” Elsevier,
pp. 257–283, 2005.

[2] A. S. Berger, “Embedded Systems Design: An Introduction to
Processes, Tools and Techniques”, CMP Books: 1st edition ,
December 15, 2001.

[3] Embedded System Design: A Unified Hardware/Software
Introduction, Wiley; I.S.ed edition, October 17, 2001

[4] P. Marwedel, “Embedded System Design”, Springer; 1 edition,
December 14, 2005.

[5] Marin Orlić, Tomislav Sečen, Mario Žagar and Darko Fudurić,
“Enhanced learning by experimentation with remote laboratory
equipment”, REV 2007.

[6] Fudurić Darko, Davor Antonić, Žagar Mario, “Features of the
Embedded Computer System for Data Acquisitions in
Humanitarian Demining”, MATEST 2005. NDT for the public
benefit, 2005.

[7] R. H. Barnett, S. Cox, L. O'Cull, “Embedded C Programming And
The Atmel AVR”, Thomson Delmar Learning; 2 edition, June,
2006.

[8] Aravind Kumar, Alagia Nambi, "Implementation Of Mobile
Information Device Profile On Virtual Lab," itcc , p. 612, 2003.

[9] Paul I-Hai Lin, Melissa Lin, "Design and Implementation of an
Internet-Based Virtual Lab System for eLearning Support," icalt ,
pp. 295-296, 2005.

[10] S. Kolberg, T. A. Fjeldly, “Web Services Remote Educational
Laboratory”, International Conference on Engineering Education,
October 16–21, 2004, Gainesville, Florida.

[11] R. Berntzen, J. O. Strandman, T. A. Fjeldly, M. S. Shur,
“Advanced solutions for performing real experiments over the
internet”, International Conference on Engineering Education,
August 6 – 10, 2001 Oslo, Norway.

[12] J. Rusten, S. Kolberg, “Online FPGA laboratory for interactive
digital design”, International Conference on Engineering
Education, October 16–21, 2004, Gainesville, Florida.

[13] H. Shen, M. S. Shur, T. A. Fjeldly and K. Smith, “Low -cost
modules for remote engineering education: performing laboratory
experiments over the internet”, 30th ASEE/IEEE Frontiers in
Education Conference, October 18 - 21, 2000 Kansas City, MO.

[14] T. A. Fjeldly, M. S. Shur1, H. Shen, and T. Ytterdal, “Automated
Internet Measurement Laboratory (AIM-Lab) for Engineering
Education”, 29th ASEE/IEEE Frontiers in Education Conference,
November 10 - 13, 1999 San Juan, Puerto Rico.

[15] T. A. Fjeldly, J. O. Strandman, R. Berntzen, “LAB-on-WEB – a
comprehensive electronic device laboratory on a chip accessible
via internet”, International Conference on Engineering Education,
August 18–21, 2002, Manchester, U.K.G. Eason, B. Noble, and I.
N. Sneddon, “On certain integrals of Lipschitz-Hankel type
involving products of Bessel functions,” Phil. Trans. Roy. Soc.
London, vol. A247, pp. 529–551, April 1955.

AUTHORS
D. Fudurić, BSc is with the University of Zagreb,

Faculty of Electrical Engineering and Computing,
Department of Control and Computer Engineering (e-
mail: darko.fuduric@fer.hr)

M. Žagar, PhD is with the University of Zagreb,
Faculty of Electrical Engineering and Computing,
Department of Control and Computer Engineering (e-
mail: mario.zagar@fer.hr).

T. Sečen, BSc is with the University of Zagreb, Faculty
of Electrical Engineering and Computing, Department of
Control and Computer Engineering (e-mail:
tomislav.secen@fer.hr).

M. Orlić, MSc is with the University of Zagreb,
Faculty of Electrical Engineering and Computing,
Department of Control and Computer Engineering (e-
mail: marin.orlic@fer.hr).

Manuscript received July 18, 2007. This work is supported in part by
the Croatian Ministry of Science, Education and Sports, under the
research project “Software Engineering in Ubiquitous Computing”.

Published as submitted by the author(s).
Paper presented at REV2007 conference, Porto, Portugal, June 2007.

iJOE International Journal of Online Engineering - www.i-joe.org 5

mailto:darko.fuduric@fer.hr
mailto:mario.zagar@fer.hr
mailto:tomislav.secen@fer.hr
mailto:marin.orlic@fer.hr

	I. Introduction
	II. System architecture
	III. Application and implementation
	IV. Conclusion
	Acknowledgment
	References
	Authors

