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PAPER

Flexible Ureteroscopy Lithotripsy Operative Time 
Prediction Model for the Treatment of Kidney Stones

ABSTRACT
Effective time and resource management is crucial not only in the operating room but also in 
healthcare supply chains. Healthcare supply chains involve the movement of medical supplies, 
equipment, and medications from manufacturers to healthcare providers. Effective manage-
ment is crucial to ensuring that patients receive the care they need promptly. In the operating 
room, it is essential to have an information process in place to effectively manage time and 
resources during the current surgical procedure. This paper focuses on developing a pre-
dictive model for the operating time of flexible ureteroscopy for kidney stones. The model 
can forecast surgical and preoperative time based on patient characteristics and surgeon 
experience. The model can assist in planning ureteroscopy procedures and preventing sur-
gical complications, which is crucial not only for the operating room but also for healthcare 
supply chains. The paper presents a study that compares different feature selection methods 
and regression techniques. The study found that sequential backward selection combined 
with the extra tree regressor was the most effective approach.

KEYWORDS
machine learning (ML), flexible ureteroscopy lithotripsy, kidney stones, surgical time 
prediction, healthcare supply chains

1	 INTRODUCTION

Healthcare supply chains play a critical role in ensuring the timely and efficient 
delivery of medical supplies, equipment, and medications to healthcare providers. 
Effective management of these supply chains is crucial to ensuring that patients 
receive the care they need promptly. In the context of the operating room, accurate 
prediction of surgical time is crucial for efficient resource allocation and effective 
time management. However, current estimates of surgical duration are frequently 
inaccurate, resulting in delays, longer patient waiting times, and decreased operating 
room efficiency. In this context, the motivation behind this manuscript is to develop 
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a predictive model for the operating time of flexible ureteroscopy in the treatment 
of kidney stones, using advanced machine learning techniques and comprehensive 
feature selection methodologies. The proposed model aims to improve the accuracy 
of surgical time prediction, enabling more efficient planning of operating rooms, 
reducing patient waiting times, and enhancing the quality of care. Furthermore, 
the study aims to investigate the influence of surgeon characteristics, including 
age, experience, gender, and team composition, on procedure times. This will provide 
valuable insights into the factors affecting operating duration in ureteroscopy. The 
manuscript presents a comparative analysis of various feature selection methods and 
regression techniques, emphasizing the transition from conventional approaches to 
more advanced, data-driven methodologies. The proposed model, which combines 
the extra tree regressor with sequential backward selection, demonstrates superior 
performance in predicting ureteroscopy operating durations compared to traditional 
linear regression models. The study’s findings underscore the critical importance of 
accurately predicting the duration of the ureteroscopy procedure and its significant 
implications for patient safety, surgical outcomes, and resource utilization.

Operating rooms are one of the most expensive surgical resources in hospitals. 
When healthcare budgets are limited, efficiency improves as more surgeries can be 
completed within the available time in operating rooms. Precise prediction of case 
length helps in the efficient planning of operating rooms, reducing patient waiting 
times and downtime for medical and other staff, thereby improving the quality of 
care. As a result, medical services will be provided in other areas of the hospital.

The ability to accurately forecast the duration of medical procedures is crucial 
for efficiently planning operating room schedules in hospitals. This study examines 
the influence of surgeon characteristics, such as age, experience, gender, and team 
composition, on procedure timeframes. In this context, the work presented in this 
article is relevant, as it proposes a flexible model for predicting operation times for 
ureteroscopy lithotripsy in the treatment of kidney stones.

Urinary stones affect approximately 12% of the global population [1]. In some 
instances, they can vanish spontaneously and do not necessitate any treatment [2] [3]. 
However, they can also be complicated by pain and infections and, in some cases, 
impair kidney function. An intervention is necessary.

The treatment of kidney and ureteral stones can be performed using various 
techniques. Among these treatment methods, extracorporeal shock wave lithotripsy 
is one of the most commonly used treatments. Nevertheless, some stones, due to their 
size, location, symptomatic character, or the risks they pose, may require treatment 
by a natural method called ureteroscopy. Figure 1 clearly illustrates the locations of 
kidney stones in the urinary system.

Fig. 1. Kidney stone locations in the urinary system (adapted from HIE multimedia – kidney stones, s. d.)

https://online-journals.org/index.php/i-joe
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In recent years, there has been a significant increase (251.8% over the past two 
decades, according to [4]) in the use of ureteroscopy (URS) due to its minimally inva-
sive technique, which does not alter the renal parenchyma. Additionally, recent 
flexible ureterorenoscopes allow natural access to the renal cavities and enable the 
treatment of stones in situ.

The intervention involves inserting a device called a ureteroscope into the ureter. 
This optical instrument allows for work under visual control. It contains a functional 
channel through which various instruments are introduced. Some ureteroscopes 
are rigid (URSR), semi-rigid (URSSR), suitable for treating ureteral stones, or flexible 
(USSR), suitable for kidney stones. The urologist will make the instrument selection 
based on various parameters [5].

The intervention is most often performed under general anesthesia. The uret-
eroscope is naturally introduced into the bladder and then into the ureter, where 
a wire guide has been previously placed. The ureteroscope may be able to see the 
renal cavities, depending on the location of the stone or the lesion to be treated. In 
certain situations, it may be necessary for technical reasons to utilize an additional 
instrument known as a working sheath. The fragmentation of the stones can be car-
ried out in situ by ballistic waves or ultrasound in the case of the URSR and by pulsed 
laser radiation (Holmium: YAG laser) in the case of the USSR. Fragmented stones can 
also be removed using extraction forceps. At the end of the procedure, a double J 
stent (JJ catheter) can be placed to ensure drainage of the ureter.

However, the duration of the operation can impact the surgical outcome, par-
ticularly the complications of flexible ureteroscopy (FURS) [6]. Several significant 
preoperative and postoperative complications, such as sepsis, perforation, and mas-
sive bleeding, can occur with endourologic procedures such as URS or percutane-
ous nephrolithotomy (PCNL) [7] [8]. According to a previous study, serious adverse 
outcomes following URS were associated with longer operative times and fewer 
URS procedures performed in hospitals [9]. As a result, it is critical to understand 
the preoperative clinical factors that contribute to the duration of FURS operations. 
Significant factors, such as surgeon experience level, stone volume, Hounsfield units 
(HU), and preoperative stenting, have been previously documented to help predict 
the operative time for FURS [10]. However, a more precise model for predicting 
operating times based on these parameters still needs to be developed. The devel-
opment of a predictive model will significantly aid surgeons by enabling them to 
plan surgeries more accurately, predict the likelihood of additional FURS surgeries, 
provide better information to patients, and prevent surgical complications.

To maximize the use of the operating room, an accurate estimate of the pro-
cedure’s duration is necessary. Current projections are inaccurate because prior 
models used data that was not readily available for planning. Our objective was 
to utilize a comprehensive retrospective dataset to develop statistical models that 
would enhance the prediction of case duration in line with current standards.

The remainder of this paper is organized as follows: Section 2 presents the related 
works. Section 3 describes the methodology adopted for predicting operative time 
in FURS lithotripsy. The simulation results are presented and explained in Section 4. 
Section 5 discusses the experimental results. Finally, Section 6 presents conclusions 
and perspectives for future work.

2	 RELATED	WORKS

A close study of the literature reveals that the duration of the operation is closely 
associated with the outcomes of ureteroscopy and the treatment of kidney stones. 
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Secondly, some research has utilized ML algorithms to predict the duration of various 
operating procedures.

During endourological procedures for stone management, it is evident that the 
operating time significantly impacts the results of the operation. Studies have shown 
that preoperative and postoperative complications are associated with a longer 
operating time. The study in [9] demonstrates that lithotripsy and ureteroscopy can 
sometimes lead to serious complications, such as septic shock. There is also empir-
ical evidence indicating a relationship between longer operative times and compli-
cation rates. In the study of [11], a longer duration of ureteroscopic intervention is 
strongly associated with ureteral perforation. A retrospective study concluded that a 
longer duration of surgery is a significant risk factor [9]. The authors in [12] reported 
a significant correlation between operative time and ureteral lesions. In a systematic 
review conducted by [13], it was found that a longer procedure time is significantly 
correlated with a higher risk of post-ureteroscopic complications. Table 1 sheds light 
on studies correlating operative times with the outcomes of ureteroscopy and stone 
treatment.

Table 1. List of studies examining the association between operation times and the results of ureteroscopy and stone treatment

Paper Total No. 
of Patients Stone Size Complications Rate Comments

[14] 736 12.3 mm 
(3–100 mm)

4.1% (35) The longest operating times are associated with infectious 
complications (p < 0.001)

[15] 1332 12.0% (127) increased operating time (p < 0.0001) is a predictor of the 
presence of hydronephrosis after ureteroscopy

[16] 494 182.4 mm3 and  
161.3 mm3 

3.2% (16) Haemorrhage, thermal 
injury, perforation

Infectious problems were substantially linked to longer 
operating times (65.3 vs. 47.8 min p = < 0.001)

[17] 224 mean 12.6 mm  
vs. 9.9 mm

– –

[18] 3298 – – Procedures with postoperative fever (POF) or systemic 
inflammatory response syndrome complications had a 
longer median duration of surgery (57 vs. 49 minutes,  
p < 0.01)

[19] 604 20 mm 6.7% (41)
UTI

Preoperative polymicrobial urine culture (p < 0.001) and 
increased operative time (p = 0.02) were associated with 
postoperative urinary tract infection

[20] 304 – – An operation time following URS was found to be an 
independent risk factor for febrile urinary tract infection 
(p < 0.001) by multivariate analysis. The operating time limit 
for a higher risk of febrile UTI was 70 minutes

[21] 11885 – 7.4% (874)
Bleeding, fever, UTI, lung 
embolism, CVA, sepsis,
acute abdomen, AMI, pain, 
urinary retention, stent 
placement, nausea and vomiting, 
respiratory, and allergy.

Patients who had intra- or postoperative problems typically 
required procedures that were at least 10 minutes longer 
(50 (33–75) vs. 40 (25–60))

[22] 1256 – operative time is associated with post-ureteroscopic sepsis 
(p = 0.041 median operative time was 45 minutes) with 
other factors

(Continued)
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Paper Total No. 
of Patients Stone Size Complications Rate Comments

[23] 550 – 15.5% (91) Found statistically significant increase in unplanned return 
to the hospital rates in patients who had operating times 
> 120 min (p = < 0.001)

[24] 462 < 125 mm3, 125 
− 1000 mm3 and 
> 1000 mm3

– There was no significant association between the duration 
of the operation (more than 70 minutes) and postoperative 
infection:
OR 1.89, 95% CI 0.82–4.36, p = 0.14

[25] 266 – – Among the significant prognostic factors of acute 
postoperative pyelonephritis, the duration of the operation 
70 minutes) (p < 0.005)

[26] 233 425 mm3, [op 
time < 90 mins 
versus 934.6 mm 
(> 90 mins)]

6.4% [15]
High-grade fever, ureteric 
strictures requiring balloon 
dilatation

Significantly longer operating times were seen when stone 
volume increased (p < 0.001) and operator experience 
decreased (p < 0.001). Operative time had no effect on the 
rate of post-operative readmission.

[27] 2010 7 mm 14.3% (298)
Bleeding, extravasation, ureteral 
perforation, mucosal injury, 
UTI, hydronephrosis, ureteric 
avulsion, and sepsis

Complications were substantially linked with longer 
operating times (34 (20–60) vs. 45 min. (25–76) p = < 0.001).

[28] 227 2.06 cm vs.
1.66 cm

8.37% (19)
Fever and rigors, SIRS and sepsis

Long times of operations were significantly correlated with 
complication rates (99.42 min ± 19.08 vs. 73.37 min ± 19.37 
p = 0.000 (Mann-Whitney U test)

[9] 12372 – 2.39% (296) Positive correlation found between increasing length of 
surgery and the occurrence of adverse post-operative 
events. (p = < 0.001)

[29] 213 11.3 mm (renal)
7.7 mm 
(ureteric)

3.3% (7)
Pain, retained stent, stent 
migration, ureteral stricture

Renal stones took a considerably longer operating time 
(112 minutes) than did ureteral stones (70 minutes; 
p < .001). These cases had a higher preoperative stenting 
rate (55% vs. 37%, p = .014) and a significantly larger renal 
stone size (11.3 vs. 7.7 mm, P.001).

[30] 4512 9.4 mm 
(2.3; 5–20)
10.9 mm  
(3; 4–22)

6.67 % Major intraoperative problems are significantly correlated 
with longer surgery times. (p = < 0.001)

Several research studies have been conducted to predict the duration of surgical 
operations, aiming to optimize the accuracy of case duration, pre-surgical resource 
utilization, and patient waiting time without increasing surgeons’ wait times between 
cases. In [31], the authors investigated the potential correlation between the duration 
of surgery and factors associated with the surgeon, such as age, experience, gender, 
and the composition of the team. The researchers concluded that the significance of 
surgeon factors depends on the type of operation, with team composition, expertise, 
and time of day being the most frequently considered significant elements. In [32], 
the authors endeavored to enhance the accuracy of predicting the total procedure 
time by employing linear regression models that incorporate the estimated time 
controlled by the surgeon and other pertinent variables. The proposed model out-
performed both the fixed ratio model and the separately anesthesia-controlled time 
prediction method. Additionally, in [33], the authors developed models to predict 

Table 1. List of studies examining the association between operation times and the results of ureteroscopy and stone treatment (Continued)
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the duration of cases using linear regression and some supervised ML techniques to 
enhance surgical management and planning. The authors in [34] propose compar-
ing various ML techniques to estimate the duration of surgical interventions using 
a large dataset of surgical recordings. This not only allows for a comparison of tech-
niques but also enables exploration of the potential variables and factors influencing 
the duration of surgery. The authors in [35] found that using ML-generated surgical 
case length forecasts could increase the accuracy of case duration, the utilization of 
preoperative resources, and the waiting time for the patient without increasing the 
waiting time between cases for the surgeon. Table 2 presents the sizes of the datasets 
and the algorithms that performed well in each of the works mentioned above.

Table 2. Summary of the work carried out to predict the operations duration

Paper Year Dataset Size (Number of Observations) Used Model

[31] 2010 30.000 ANOVA models

[32] 2017 79.983 Linear regression

[36] 2018 472 Linear regression

[33] 2019 38880 XGBoost ML surgeon-specific models

[34] 2021 206587 Bagged Trees

[35] 2021 683 Not specified

Most of the work presented enables the prediction of the duration of surgical 
procedures based on common characteristics. The duration of a surgical interven-
tion varies from one operation to another [31], depending on the type of surgery 
and the organ being operated on. It is time to focus on each type of operation 
and analyze patient data, resource availability, surgeon experience, and the opti-
mal time of day to perform the operation. This will help determine the variables 
that affect the duration of each type of operation. Flexible ureteroscopy operative 
lithotripsy is a unique procedure that requires analysis of several characteristics, 
including stone volume, external diameter, and patient positioning during the 
operation. These characteristics vary between operations and are not consistent 
across all cases.

It is essential to propose a new approach that accurately predicts the operating 
time before surgery. This will help us understand the various factors that extend the 
operating time of FURS interventions. In this context, the authors [36] proposed the 
first model to predict the duration of a preoperative operation based on patient 
characteristics and surgeon experience. This model incorporates six characteristics: 
stone volume, maximum HU, operator experience, gender, preoperative stenting, 
and ureteral sheath diameter. In this article, Shapley values are used to investigate 
the impact of variables on prediction.

3	 METHODOLOGY

Figures 2 and 3 depict the overall process described in this article. First, a 
pre-processing step is applied to the data. This is done to identify any missing values 
and remove redundant data. This step also helps to organize and standardize the 
dataset and convert target attributes into factor attributes. In the next step, the most 
important parameters are extracted using feature selection techniques. Regression 
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techniques are applied to the selected critical, optimized features by splitting the 
dataset into training and testing phases. To predict the operation time, the regression 
algorithm is trained using unknown samples from the training data. The final step 
is to select an appropriate model and assess the results using the R-squared metric. 
The analysis identifies the most effective method for feature selection and the most 
suitable technique for regression.

Data pre-processing is a necessary initial step before applying to any ML 
project. Its objective is to simplify the training and testing process by appropriately 
transforming and normalizing all datasets. Data pre-processing consists of several 
steps, such as data cleaning and transformation, which are used to eliminate outliers 
and standardize the data into a format that can be easily used to create a model.

Feature selection is the process of choosing the most relevant features and 
reducing the number of input variables for the predictive model under development. 
Feature selection involves extracting the most important signals from our data while 
ignoring the noise. The main reasons for utilizing feature selection are to (i) speed up 
machine learning algorithm training, (ii) reduce model complexity, and (iii) facilitate 
interpretation [37]. Additionally, it minimizes overfitting and improves the model’s 
accuracy when selecting the appropriate subset. Filters, wrappers, and embedded 
methods are the three categories of feature selection methods used in the attribute 
selection step [38].

Fig. 2. Feature selection model

i) Filter methods identify the most relevant features by analyzing the data itself. 
In other words, features are scored based on the inherent characteristics of 
the data, without the use of clustering algorithms. Filtering methods are distin-
guished by their speed and scalability [39]. Typically, filter methods are used in 
the pre-processing stage [40]. Below are some of the filtering techniques:

https://online-journals.org/index.php/i-joe
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Variance algorithm calculates the variance of multiple features. It identi-
fies the features with variances greater than or equal to a specified initial 
threshold.

Correlation filter-based methods measure the strength of the relationship 
between two features. It is useful for feature selection because highly cor-
related features or those that are not correlated with others at all can be fil-
tered out. In any case, it is a multivariate feature selection method, specifically 
bivariate.

F-regression method is a fuzzy regression technique that uses fuzzy input and 
output with clear parametric dependencies between them. The use of a sim-
ilarity measure between a model and a fuzzy point is the central feature of 
f-regression [41].

Mutual information (MI) allows for the measurement of the dependence 
between two or more random variables [37]. A high MI suggests a significant 
reduction in uncertainty, while a zero MI indicates that two random variables 
are unrelated [42].

ii) Wrapper methods allow for the selection of feature subsets that contribute to 
improving the quality of the clustering algorithm results used for the selection. 
Wrapper methods have a main disadvantage in that they frequently incur a high 
computational cost and are limited to use with specific clustering algorithms [39]. 
The concept behind wrapper methods is relatively simple: evaluate various sub-
sets of features on the ML model and select the one that attains the highest score 
in a predefined objective function.

There are a variety of wrapper techniques available, including those 
listed below:
Boruta is based on the random forest algorithm and is used as a wrapper for the 

feature selection step. It is simple and quick to process and assess the degree 
of importance of the attributes. This algorithm is evaluated using the mean 
accuracy and standard deviation of the results. Boruta considers it to be the 
most important factor in this feature selection [43].

Recursive feature elimination (RFE) is a popular feature selection technique 
for datasets with small sample sizes. It follows a model, removing weak prop-
erties until all the required features are met.

Sequential backward selection (SBS): This process starts with all features 
included and removes one feature at a time.

Exhaustive feature selection (EFS): This technique evaluates all possible 
combinations of features to select the best subset of relevant variables.

iii) Embedded methods utilize both filter and wrapper techniques and have their 
own process for selecting attributes [38]. Embedded methods proceed to select 
the most relevant characteristics while executing the modeling algorithm. As 
a result, these methods are either standard or enhanced functionalities in the 
algorithm [44].

3.1	 Regression	methodology

The regression problem is a generalization of the classification problem. In 
regression, the model provides a continuously valued output rather than just an 
output from a finite set. A regression model evaluates a multivariate function with 
continuous values. In the following, a detailed presentation of the regression algo-
rithms used in this study will be provided. Figure 3 below illustrates the adopted 
methodology in this study.

https://online-journals.org/index.php/i-joe
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Fig. 3. Outline of the work

4	 EXPERIMENTAL	RESULT	ANALYSIS

4.1	 Dataset	description

The clinical data analyzed in this study are the same as in [36]. In total, 472 FURS 
procedures for the treatment of kidney stones were retrospectively analyzed. All 
treatments were conducted at Ohguchi East General Hospital between December 
2009 and December 2014.

4.2	 Performance	metrics

In machine learning, utilizing performance metrics can provide concrete data to 
support evaluation. In this study, the results are evaluated using the R-squared metric:
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1. R-squared is determined by dividing the sum of the regression model residuals 
squares (SSres) by the total sum of error squares (SStot) from the average model 
and then subtracting it from 1.

4.3	 Technical	specifications	of	the	used	calculator

In this study, all the prediction models under investigation are implemented 
in Python using the Jupyter program. We use a Lenovo T460 running Windows 
Professional 8.1 64 bits, equipped with an Intel(R) Processor Core (TM) i5-6300U CPU 
@ 2.40GHz, and 8.0 GB of RAM to conduct all simulations.
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4.4	 Simulation	results

Data distribution analysis. Figure 4 shows that the data used in this study are 
normally distributed and closely aligned along the main diagonal (Henry’s line). This 
indicates that the dataset can be approximated using a normal distribution.

To better assess the data distribution, skewness and kurtosis coefficients are cal-
culated for the data being used. The obtained values are −0.019 and −0.844 for skew-
ness and kurtosis, respectively. Since the skewness value is between −1 and 1, the 
distribution is less flattened but closer to a normal distribution. This is indicated by 
the kurtosis value, which is closer to 0.

Fig. 4. Data distribution

Obtained results. Table 3 represents the results obtained in terms of R2-score, 
using different studied regression algorithms for all features of the used dataset and 
combining them with different feature selection algorithms as previously mentioned.

Table 3. Performance evaluation results of different models using different features selection algorithms (R2-score)

Cat Boot  
Regressor

Gradient  
Boost  

Regressor

LGBM  
Regressor

RF  
Regressor

Ada  
Boost  

Regressor

Extra  
Trees  

Regressor
SVR KNeighbors  

Regressor

Hist Gradient  
Boost  

Regressor

XGB  
Regressor

Mutual  
information

0.4709 0.3613 0.3905 0.4625 0.4536 0.4841 0.1575 0.2662 0.4369 0.4489

F regression 0.3621 0.1766 0.3695 0.3918 0.4123 0.3843 0.1598 0.2703 0.3314 0.3406

SBS 0.5062 0.3928 0.4084 0.4794 0.4654 0.5163 0.1559 0.2654 0.4301 0.4436

SBS 
correlation

0.4984 0.3785 0.4237 0.4802 0.4840 0.5303 0.1563 0.2662 0.4324 0.4578

Embedded 0.4841 0.3441 0.4174 0.4780 0.4698 0.4795 0.0868 0.2223 0.4331 0.4640

(Continued)
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Cat Boot  
Regressor

Gradient  
Boost  

Regressor

LGBM  
Regressor

RF  
Regressor

Ada  
Boost  

Regressor

Extra  
Trees  

Regressor
SVR KNeighbors  

Regressor

Hist Gradient  
Boost  

Regressor

XGB  
Regressor

Embedded 
correlation

0.4858 0.3858 0.4381 0.4751 0.4622 0.4734 0.1538 0.2673 0.4595 0.4508

HRFE 0.4787 0.3871 0.4454 0.4784 0.4869 0.4733 0.0830 0.2263 0.4415 0.4560

HRFE 
correlation

0.4732 0.3776 0.4271 0.4709 0.4985 0.4715 0.1580 0.2683 0.4598 0.4410

RFE 0.3841 0.2097 0.2857 0.4235 0.4056 0.4059 0.0696 0.2296 0.2870 0.3451

RFE 
correlation

0.4674 0.3854 0.4065 0.4735 0.4617 0.5013 0.0704 0.2296 0.4461 0.4346

Boruta 0.4894 0.3767 0.4301 0.4879 0.4819 0.4894 0.0868 0.2223 0.4503 0.4725

Boruta 
correlation

0.4894 0.3767 0.4301 0.4879 0.4819 0.4894 0.0868 0.2223 0.4503 0.4725

EFS 0.4821 0.4332 0.3567 0.4813 0.4672 0.4971 0.0885 –0.0133 0.4572 0.4317

All features 0.4884 0.4195 0.4266 0.4780 0.4529 0.4712 0.0671 0.2296 0.4339 0.4340

Figure 5 illustrates a comparison of the obtained R2-score of different regression 
algorithms using all features (A) and the mutual algorithm of feature selection (B).

Fig. 5. Regression algorithms comparison using all features (A) and Mutual Information  
of features selection (B) considering provided R2 score

The Figure 6 represents a comparison of the obtained R2-score of different regres-
sion algorithms using feature selection algorithms of Boruta (A), Boruta combined 
with correlation (B), embedded (C), and embedded combined with correlation (D).

Fig. 6. (Continued)

Table 3. Performance evaluation results of different models using different features selection algorithms (R2-score) (Continued)
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Fig. 6. Algorithms comparison using Boruta (A), Boruta with correlation (B), embedded (C) and embedded 
with correlation (D) algorithms of features selection considering provided R2 score

The Figure 7 represents a comparison of the obtained R2-score of different regres-
sion algorithms using feature selection algorithms of HRFE (A), HRFE combined with 
correlation (B), SBS (C), and SBS combined with correlation (D).

Fig. 7. Algorithms comparison using HRFE (A), HRFE with correlation (B), SBS (C) and SBS with correlation 
(D) algorithms of features selection considering provided R2 score

Fig. 8. (Continued)
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Fig. 8. Regression algorithms comparison using EFS (A), F Regression (B), RFE (C) and RFE with correlation 
(D) algorithms of features selection considering provided R2 score

Figure 8 represents a comparison of the obtained R2-score of various regres-
sion algorithms using feature selection algorithms such as EFS (A), F Regression (B), 
RFE (C), and RFE combined with correlation (D).

Fig. 9. Performance of different regression models based on R2-score,  
using different features selection and all features

Figure 9 represents the performance of various regression algorithms based 
on R2-score, utilizing different feature selection methods and all features from 
the dataset.

5	 DISCUSSION

Longer operative time for flexible ureteroscopy with lithotripsy could poten-
tially be one of the risk factors for serious complications, such as septic shock, 
cardiovascular events, and blood loss [36].

The proposed approach aims to establish a predictive system for the duration of 
FURS with lithotripsy procedures to mitigate the risks of complications and improve 
operational planning. Various ML techniques, combined with several algorithms for 
feature selection, were compared in this study to develop a robust predictive system. 
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As illustrated in Table 3 and Figure 9 above, the outcomes of this study clearly 
demonstrate that algorithms based on decision trees and boosting techniques (ETR, 
ABR, RFR) have yielded favorable results compared to other methods (SVR, KNR).

When utilizing all variables in the dataset, various ML models, with the excep-
tion of the Cat Boot Regressor, Extra Trees Regressor, and RFRegressor, achieved an 
R2-score of 0.4884, 0.4780, and 0.4712, respectively, which could not exceed 0.45 as 
a result. However, by using feature selection techniques, these models were able 
to achieve results that surpassed this value, reaching 0.5303 when combining the 
Extra Trees Regressor model with the SBS and correlation technique for variable 
selection.

The high precision of the obtained results can be attributed to the benefits of 
utilizing various techniques for selecting the features. This includes a combina-
tion of a filter, represented by the correlation method, and a wrapper, specifically 
the SBS. Additionally, the regression model employed, the Extra Trees Regressor, is 
founded on an ensemble technique that enhances the predictive performance of the 
final model.

This shows that an appropriate combination of feature selection techniques and 
boosting techniques can make a learning system more efficient.

According to Table 3, employing the Extra Tree Regressor model on the chosen 
data using the SBS method in conjunction with correlation yielded the best out-
come, achieving an R2 value around 0.5303 compared to alternative data selec-
tion methods and regression algorithms. However, the results obtained by this 
combination exceed even those obtained by using all the data in the dataset. This 
highlights the significance of variable selection algorithms in removing data for 
learning systems.

In addition, the Figure 10 below illustrates the impact of the selected parameters 
on the operation time using the SBS method with correlation and the Extra Tree 
Regressor.

Fig. 10. The SHAP variables importance

Figure 10 illustrates the overall importance of the variables as calculated by the 
values of SHAP [45]. Thanks to the fact that the values are calculated for each exam-
ple in the dataset, it is possible to represent each example as a point. This provides 
additional information about the variable’s impact based on its value. For example, 
the size of the stone, which is the most important variable, has a negative impact 
when the value of this variable is high. Yellow dots represent high values of the 
variable, while purple dots represent low values of the variable.
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Fig. 11. Impact of variables for three different datasets

Figure 11 illustrates the impact of the variables for three examples from the data-
set. In orange are the variables that have a positive impact, contributing to the predic-
tion being higher than the base value. In blue, those factors have a negative impact 
(they contribute to the prediction being lower than the base value). The baseline 
value of the dataset is 90.13 minutes (average operation time). The predicted median 
surgery durations are 68 minutes in the first observation, 82 minutes in the second, 
and 103 minutes in the third. The figure also illustrates the impact of the feature on 
the model; the larger the arrow, the greater the impact.

In line with previous studies that aimed to predict the operative time of URS 
lithotripsy, such as [36] and [46], the present study clearly demonstrates that the 
most significant factor affecting the operation time is the volume of the stone. The 
predicted operative time is proportional to the stone volume; as the stone volume 
increases, the operative time also increases significantly. Therefore, achieving a 
more accurate prediction of the operating time relies on a precise calculation of the 
volume of the stone to be extracted.

Yet, Table 4 shows that the proposed model outperforms the approach published 
in [36], which also utilizes the same dataset.

Table 4. Comparison of the proposed model against the existing approach on the same dataset

Paper Year Used Model R2

[36] 2018 Linear regression 0.319

Proposed Model 2023 Extra Trees Regressor + SBS 0.5303

6	 CONCLUSION

This paper focuses on developing a FURS lithotripsy operation time prediction 
model for treating kidney stones. This model can assist in planning the operation in 
stages to prevent surgical complications. This study conducts a comparative analysis 
of various feature selection methods and regression techniques. The findings indicate 
that SBS combined with the Extra Trees Regressor was the most effective approach. 
The article also emphasizes the influence of surgeon characteristics, such as age, 
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experience, gender, and team composition, on procedure times. The study aims to 
assist surgeons in planning operations more accurately, predicting the need for addi-
tional FURS sessions, better informing patients, and avoiding surgical complications.

The results of this study can be used to enhance the quality of care and decrease 
costs in hospitals. They can be achieved by enabling more operations to be com-
pleted within the available time in the operating room, thereby reducing waiting 
times for patients and minimizing downtime for doctors and other staff.

Our future work will focus on developing a new approach to predicting the poten-
tial complications of URS. We also plan to develop a new prediction-based platform 
to assist doctors in making informed decisions prior to surgery.
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