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PAPER

Detect Lane Line for Self-Driving Car Using Hue 
Saturation Lightness and Hue Saturation Value Color 
Transformation

ABSTRACT
Self-driving vehicles require the ability to perceive and understand their surroundings, just 
like human drivers. It entails navigating efficiently on roads, obeying traffic signs and sig-
nals, and avoiding collisions with other vehicles and pedestrians. To address the challenges 
associated with object detection in self-driving cars, an effort was made to demonstrate lane 
detection using the OpenCV library. To achieve this goal, the well-established probabilistic 
Hough transform technique is used for line detection. Before applying Hough transforms, 
several pre-processing techniques are used, including converting the image to grayscale, cam-
era calibration, and implementing a masking filter. In addition, edge detection is performed 
using the edge detection method. The study also indicates a preference for the use of HSL 
(Hue, Saturation, and Lightness) and HSV (Hue, Saturation, Value) color spaces. When HSL 
is applied, white lines appear purer and brighter, resulting in superior performance com-
pared to using HSV specifically to detect white. This algorithm proved particularly effective in 
detecting straight lanes, which achieved an accuracy ratio of 96.06%. By incorporating these 
methodologies, the lane detection algorithm implemented with the OpenCV library addresses 
the challenges of self-driving vehicles, providing them with improved perception capabilities 
similar to human drivers.
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1	 INTRODUCTION

The worst thing that can happen when driving is a road collision. They occur 
frequently, and most of the time, it is due to human error. Autonomous vehicles 
are being manufactured today in which a computer is used to drive the car. The 
general populace exhibits reluctance towards embracing the idea of self-driving 
automobiles due to its scepticism regarding the ability of machines to ensure safety. 
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Self-driving cars are characterized by their analytical behavior, which is akin to that 
of intelligent computers. This is because computers are faster and more efficient 
than human minds in their operations and lack the emotional and distracting ele-
ments inherent in human decision-making [1]. A self-driving car can sense its sur-
roundings without human help [2]. At no point is it essential to have a human driver 
drive the automobile; it does not even need a inside the vehicle. A conventional car 
can go wherever an autonomous vehicle is capable of going, and an autonomous 
vehicle can execute any duty that a trained human driver would [1]. The main ben-
efits of autonomous driving include lowering traffic congestion and pollution and 
increasing safety. Introducing autonomous vehicles (AVs) will transform the trans-
portation industry [2], along with improving the mobility for the young, the old, and 
those with disabilities [3].

Recognizing nearby objects such as pedestrians, signs, cars, lanes, animals, and 
curves in real-time is a crucial aspect of roadway environment perception. This task 
is aimed at enhancing the safety and efficacy of autonomous vehicles. The advance-
ment of AI has facilitated the comprehension of the dynamic driving milieu in real 
time [2]. Autonomous vehicles (AV) can eliminate many current parking issues. 
Passengers won't need to park near their destination as AVs become more common-
place. Instead, after dropping off the passengers at their destination, the autono-
mous vehicles (AVs) drive to the nearest or most affordable parking spot to park 
without any occupants inside [4].

On the other hand, the disadvantages of AVs may be more exposure to network 
hacks due to the current computer-controlled functions, and the legal formulation of 
obligations may prevent the use of AVs, as well a lot of jobs will be lost as a result of 
AVs in the transportation sector. Furthermore, AVs are costly, but once they are more 
widely used, their price will decrease [5].

The autonomous vehicle is classified into five levels of automation, according to 
the Society of Automotive Engineers (SAE) International [6]: Level 0 means the car 
is completely controlled by the driver, who performs all functions of acceleration 
and braking, even if they are reinforced by warning systems or interference [6]. 
Level 1 represents the lowest possible degree of automation. The vehicle has a solitary 
autonomous driving assistance mechanism capable of steering and regulating speed 
through cruise control. Adaptive cruise control is categorized as Level 1 because it 
assists solely with maintaining a safe distance behind the preceding vehicle. At the 
same time, the human driver remains responsible for other driving tasks, like steer-
ing and braking [1]. Level 2 represents a reference to advanced driver assistance 
systems (ADAS). The driver has control over the steering as well as the acceleration 
and deceleration of the vehicle. This automation falls short of self-driving because 
a human is seated in the driver's seat and can take over the vehicle at any time. 
For example, Cadillac (General Motors) and Tesla Autopilot qualify as Level 2 super-
cruise systems [7]. Then, Level 3 denotes the transition from Level 2 to Level 3 and 
holds considerable significance in terms of technology but has little to no impact 
from a human standpoint. Level 3 vehicles can detect their surroundings and make 
their own choices, such as speeding up to go around a stationary obstacle.

Nevertheless, human overrides remain necessary. The driver must maintain vig-
ilance and be ready to assume control if the system cannot fulfil the task [8]. While 
Level 4 represents the automated driving system, which is capable of executing all 
components of the dynamic driving task, subject to the conditions for which it was 
designed, irrespective of the human driver's ability to respond suitably to a prompt 
for intervention [9]. Finally, Level 5 means that throughout the entire journey, the 
driver does not need to take any action. The system's ability to accomplish the driving 
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task is not constrained by traffic or environmental factors. It is not necessary for the 
driver to always be in charge of the car. All they decide is the final destination. The 
vehicle's operating readiness needs to be verified before operation. Someone other 
than the passenger may be inspecting operational preparedness. Whether or not 
to use the automated driving system is still up to the driver. The ADS is responsi-
ble for ensuring safe functioning once activated [10]. Autonomous vehicles are typ-
ically outfitted with various sensors due to the intricate and ever-changing nature 
of the on-road driving environment, particularly concerning navigation and control 
systems. The fusion techniques employed by driver assistance systems allow for the 
optimization of sensor capabilities, resulting in heightened precision in environ-
mental perception. The sensors in this category comprise a camera, lidar, radar, GPS, 
and sonar [11]. Most camera activities, including lane detection, traffic light detec-
tion, and pedestrian identification, include object recognition and tracking. Multiple 
cameras are typically mounted all around the vehicle in current implementations to 
find, identify, and track things [12]. The sensor is designed to scan the car's surround-
ings by moving along its surface and rotating in a full circle, enabling it to capture 
a comprehensive view. The ability to detect thousands of laser pulses every second 
ensures a clear and accurate perception of the environment. This sensor utilizes 
RS technology to detect the light ray reflected from the surrounding environment 
and measure the reflected light's corresponding value. A light ray illuminates the 
object and is subsequently reflected, providing sensory input to detect the presence 
of things in the vehicle's vicinity [13]. Radar is a technological system that employs 
radio waves to determine various objects' distance, angle, and velocity. The opera-
tional mechanism of this technology is based on the utilization of electromagnetic 
radiation across different frequency spectrums [14]. The US Department of Defense 
established the Global Positioning System (GPS) in 1973; it has been used by civilians 
since 1980 [15]. The GPS receiver has the ability to acquire geolocation and time 
information from GPS satellites located in any part of the world, provided that there 
is an unobstructed line of sight to at least four GPS satellites. In autonomous cars, GPS 
is a common sensor for localization and navigation since it can give precise position 
data. A GPS sensor starts sending position data as soon as it is powered on [16–19].

Kanagaraj, et al. [20] proposed a presentation that suggests utilizing Convolutional 
Neural Networks (CNNs) with Spatial Transformer Networks (STNs) and real-time 
lane detection to improve the effectiveness of self-driving cars. The approach being 
considered involves using the Adam Optimizer on the LeNet-5 framework. In this 
study, the architecture of the LeNet-5 was analyzed and compared with the Feed 
Forward Neural Network approach. The LeNet-5 architecture showed a 97% accu-
racy rate, while the Feed Forward Neural Network had a 94% accuracy rate. Tran 
and Le [21] introduced a novel approach for identifying road lane markings, which 
can be utilized to facilitate surveillance and self-driving capabilities. The present 
study utilizes a front-facing camera to acquire images, which are then subjected 
to processing by a semantic segmentation network to extract pertinent character-
istics to identify road lane markings. The network is built using the U-Net archi-
tecture, a convolutional neural network originally developed for biomedical image 
segmentation.

The system utilizes the Hough transform technique to determine the lines in the 
outcomes of the segmentation network. Rudregowda, et al. [22] presented a method 
for detecting lanes using image processing techniques. The video is subjected to frame 
extraction and image processing techniques to identify the lanes in this context. The 
extracted frame from the video undergoes a Gaussian filter for noise reduction. As a 
direct result, color masking has been included into the frame processing to identify 
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the road lanes alone. The canny edge detection technique is then used to deduce the 
edges of these lanes. Next, the Hough transform was utilized on the area of focus in 
order to elongate the lines. The path is ultimately charted by tracing along the lines, 
and directional changes are anticipated by utilizing the vanishing point principle. 
Noman, et al. [23] utilized the IROADS database as the primary data repository. The 
prescribed technique is productive in diverse daylight conditions, encompassing 
bright, snowy, wet weather and underground environments. As the implementation 
results indicate, the proposed methodology exhibits a detection accuracy of 96.78% 
and processes each frame in an average time of 28 milliseconds.

The presence of multiple dispersed shadow regions can lead to erroneous 
lane line detections by the algorithm of lane line detection, as shown in previous 
researches [21, 22, 24]. Therefore, we want to solve this limitation by the lane line 
detection algorithm to detect accurately in dispersed shadow regions.

However, this study aims to improve the lane line detection of the roadway and 
reduce the erroneous detection from the scattered shadow areas and in foggy, cloudy 
and sunny environments.

This study is structured in the following manner: Section 2 describes the mate-
rials and methods for improving the lane detection of the roadway and reducing 
the erroneous from unfavorable environmental circumstances. Section 3 introduces 
the experimental results of lane line detection. And finally, section 4 discusses the 
conclusion.

2	 MATERIALS	AND	METHODS

The proposed system comprises three stages: images of the roadway are obtained 
through a camera affixed to the vehicle, and image preprocessing includes decreas-
ing the processing time by converting the images into a grayscale representation. 
Furthermore, the presence of disturbances depicted in the image can impede the pre-
cise identification of edges, necessitating the utilization of filters to eliminate noise. 
Several types of filters that can be employed include the bilateral filter, the Gaussian 
filter, and the trilateral filter. Figure 1 shows the proposed system's block diagram, 
which can produce two distinct segments of the lane boundary, one on the left and 
one on the right.

– RGB to HSV

– RGB to HSL

– Edge Detection

ROI Identification Hough transform
Lane lines

Recognition

Fig. 1. Block diagram of the proposed system

2.1	 Dataset

The proposed method was evaluated by analyzing datasets captured in vari-
ous environments and under different lighting conditions. Various factors, such as 
vehicle lights, street features, weather conditions, and time of day, can contribute to 
alterations in artificial lighting. Conversely, the characteristics of the road impact the 
functionality of the driving assistance system. Well-defined and linear lane markings 
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typically distinguish normal roads, whereas urban roads exhibit curved configura-
tions accompanied by markings designed to mitigate high noise levels. The system 
underwent testing under various experimental conditions that simulated realistic 
limitations. For instance, factors contributing to the complexity of driving include 
the presence of traffic lights, obstacles, and pedestrians, as well as the diverse array 
of road types, such as highways, local city roads, and tunnels. Tusimple video frame 
datasets that are publicly available were used [25].

2.2	 Image	enhancement

Image enhancement is a fundamental technique within the realm of image 
preprocessing. Using imagery is a highly effective means of conveying visual 
information [26]. Digital images are occasionally corrupted by intrusive signals 
known as noise. In digital image processing, eliminating noise is a highly sought- 
after research topic. Typically, noise deteriorates images during the training and 
acquisition processes; noise-affected images are present in many of today's imaging 
applications [27]. The system that recognizes lanes on the road can detect the mark-
ers through image processing techniques like color enhancement, Hough transform, 
and edge detection. Subsequently, the utilization of path planning and control logic 
is implemented to facilitate the appropriate adjustment of the steering angle for 
the vehicle. The success of lane detection is strongly dependent on the extraction of 
visual features and how those features are interpreted. Errors may also build from 
one processing step to the next, resulting in less accurate control output at the end 
of the operation [28, 29].

2.3	 Color	selection

Figure 1 displays the structure of the minimalistic method for lane detection. This 
research employs color segmentation to identify objects or portions of the image with 
a specific color. After the procedure, the algorithm examines only the image sections 
with the designated hues. This technique is advantageous in obtaining data about 
lane markings since such markings are mostly painted in yellow or white globally. In 
Figure 2, implement a color selection technique on RGB images to isolate exclusively 
white and yellow lane lines while blacking out the remaining portions. However, 
for optimal color selection, the HSV color space is preferred. The utilization of Hue, 
Saturation, and Value is deemed more convenient primarily because the Hue value 
inherently encompasses the chromaticity of every pixel. Color selection techniques 
on the HSV images obscures all elements except for the white and yellow lane lines. 
Subsequently, the primary RGB color space of the image was converted to HSL (Hue 
Saturation Lightness), and segregated into distinct color bands comprising H, L, and S. 
This technology is employed to identify objects or image components that exhibit a 
particular Hue. Targeted Color Selection: The goal of identifying lane lines in images 
is typically to focus on specific colors like white and yellow. HSL can provide more 
precise control over color selection by allowing for independent adjustment of the 
Hue, Saturation, and Lightness thresholds. This flexibility can help isolate the desired 
lane line colors more accurately. Less Sensitive to Lighting Conditions: The HSL color 
space is generally considered less sensitive to changes in lighting conditions com-
pared to HSV. Since the Lightness component in HSL represents the overall bright-
ness, it can help mitigate the effects of varying lighting conditions on color selection).
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2.4	 Edge	detection

An edge in an image refers to a region with a noticeable contrast or abrupt transi-
tion in intensity or color between neighboring pixels. A steep gradient denotes a sig-
nificant and abrupt change, while a shallow slope indicates a gradual modification. 
Consequently, it is possible to characterize an image as an assemblage of matrices 
that comprise rows and columns of intensity values. Representing an image in a 
two-dimensional coordinate space is feasible, whereby the horizontal axis corre-
sponds to the image's width in terms of columns, and the vertical axis corresponds 
to the image's height in rows. The canny function executes a derivative on the x and 
y axes, thereby measuring the change in intensities relative to neighboring pixels. 
Put another way, compute the gradient, or the difference in brightness, in every 
direction. Next, the computer draws the contours of the slopes using a string of white 
pixels. Adjusting the low-threshold and high-threshold parameters makes locating 
the pixels close to the gradient with the most intensity possible. If the gradient is 
greater than the higher threshold, the pixel in question is evaluated to see if it is an 
edge pixel, and if so, it is chosen. Otherwise, it is rejected. It is obtained if the gradi-
ent is connected to a robust edge if it falls between the thresholds. Completely black 
regions correspond to minor changes in intensity between adjacent pixels, whereas 
the white line represents an image region with a significant change in intensity that 
exceeds the threshold.

The goal of edge detection is to recognize the boundaries of objects in images. 
The detection process is employed to identify areas within an image that exhibit a 
sudden alteration in intensity. Recognizing an image as a matrix or array of pixels is 
possible. Each pixel in an image represents the amount of light at a specific location. 
The intensity of a pixel is shown by a numerical value between 0 and 255. 0 indicates 
no intensity or complete blackness, while 255 indicates maximum intensity or com-
plete whiteness. Gradient refers to the variation in luminance or brightness across 
a sequence of adjacent pixels. A significant slope denotes a considerable alteration, 
whereas a minor gradient signifies a gradual modification.

Original image RGB image

Fig. 2. (Continued)
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HSV image Apply HSV on the white and yellow line

RGB to HSL Apply HSL on the white and yellow line

Fig. 2. An example of implementing a color selection technique on RGB images

2.5	 Region	of	interest

It is usual practice to refer to this area of interest as a triangle, and the image pro-
portions are chosen to include the roadway lanes and mark them as the region of 
interest. Subsequently, a mask is generated, possessing identical dimensions as the 
image's, effectively constituting an array comprising exclusively of zeroes. The tri-
angle dimensions in the mask are filled with an intensity value of 255 to render the 
region of interest dimensions as white. Subsequently, a bitwise AND operation will 
be performed between the Canny image and the mask, yielding the ultimate region 
of interest. Figure 3 shows an example of a region of interest identification, and its 
vertices are demonstrated in Table 1.
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Fig. 3. Region of interest identification

Table 1. Area of interest vertices

Vertex X Y

Bottom Left  96 513

Top Left 384 324

Bottom Right 864 513

Top Right 576 324

2.6	 Hough	transform

Executing Hough transform will extract edges and convert them into lines using 
the cv2. HoughLinesP() function in OpenCV. It is important to note that the Hough 
transform requires specific parameters for its definition. For the Hough grid, the 
distance resolution in pixels was set to 1, and the angular resolution in radians 
was set to π/180. A minimum of 10 intersections in a Hough grid cell was required, 
and the maximum gap in pixels between connectable line segments was limited 
to 30. A blank image is required to apply the Hough transform and generate lines. 
These lines can be drawn on the image using a for loop and the cv2.line() function, 
where the initialized parameters are demonstrated in Table 2. Figure 4 shows how 
the Hough transform is implemented on the image.

https://online-journals.org/index.php/i-joe
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Table 2. Hough transform parameters initialization

Parameter Value

Theta(θ) 1 o = π/180

rho(p)d 1

Threshold 20

minLineLength 20

maxLineGap 300

Fig. 4. Hough transform

Averaging and extrapolating the lane lines. It is recommended to detect mul-
tiple lines with all lane lines. It is necessary to compute the mean of the various 
lines and subsequently generate a singular line for each respective lane line. It is 
imperative to extrapolate the lane lines to encompass the complete length of the 
lane line.
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3	 EXPERIMENTAL	PROCEDURE

The lane-lines algorithm has been improved and tested using various images 
depicting scenarios. The results have been presented in Figure 5. In addition, this 
demonstrates that the algorithm performs exceptionally well in different conditions, 
such as cloudy, foggy and sunny environments, as show in Figure 6.

Fig. 5. Create full-length lines from pixel points

a) b) c)

Fig. 6. The good performance of algorithm in different conditions: a) sunny environment, b) cloudy environment and c) foggy environment
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The algorithm has been validated through real-time video samples of differ-
ent driving conditions, ensuring its robustness. Lane-lines algorithm proves to be 
very robust in all previously mentioned conditions. However, the areas of scattered 
shadows impact the accuracy of lane boundary generation, as shown in Figure 7. 
Therefore, it is imperative that one should prioritize this matter in the upcoming 
tasks. The pipeline has proven acceptably fast to implement and use in real time. The 
setup was implemented using an Intel Core (TM) i7-8550U CPU with 1.80GHz and 
16GB of RAM, a moderate computing platform. Table 3 shows measurements that 
are collected from three video tests.

Fig. 7. The identification of lane lines can be rendered inaccurate due to shadow patterns

Table 3. Computation speed for the lane-line algorithm

Sample Name No. of Frames Total Time (Sec.) Frame/Sec

Challenge Video 251 23.0 23.65

SolidWhiteRight Video 222  8.0 49.81

SolidYellowLeft Video 682 48.0 14.38

Based on the last test, the processing speed has stayed below 14.38 frames per sec-
ond, sufficient for ensuring smooth operation and precise identification of lane lines. 
A higher frame rate typically results in smoother motion, while a lower frame rate 
may produce a choppier or less fluid appearance. The successful implementation of 
the lane-line detection functionality has effectively demonstrated its ability to detect 
straight lanes. The outcomes of the image processing procedure were presented in 
conjunction with the works of Farag [30] and Farag and Saleh [31]. The LaneRTD 
algorithm is subjected to additional testing using images depicting various scenar-
ios. The results presented in this study demonstrate that the algorithm exhibits high 
performance across various conditions.

In addition, the algorithm was tested on multiple real-time video samples that 
depicted various driving scenarios to ensure its robustness. The LaneRTD was 
highly reliable, except for one situation where scattered shadows caused the algo-
rithm to produce incorrect lane line detections. This is illustrated in Figure 7. This 
point is solved using the HSL property, as shown in Figure 8. Applying appropriate 
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thresholding, filtering, or segmentation techniques in the HSL color space can 
help isolate lane lines from the background and other objects, making them more 
prominent. A distinctive feature of the HSL color space is that it separates color 
information from brightness information, allowing for more accurate analysis and 
manipulation of specific color components.

Fig. 8. Final lane detected image

The performance of the tested algorithm was shown regarding the accuracy, pre-
cision, recall, and processing time as shown in Figure 9. And the results of the training 
phase of the proposed algorithm regarding the accuracy and loss are demonstrated 
in Figure 10.

80%

85%

90%

95%

100%

accuracy precision recall

CNN algorithm

Fig. 9. Demonstrating the performance of the convolutional neural network in our algorithm

For comparison, the performance of our algorithm with the currently available 
systems regarding accuracy, recall, and processing time is demonstrated in Table 4. 
We found the high performance of lane line detection based on the CNN algorithm, 
with an accuracy of 96.06% compared to a slight decrease in accuracy, ranging 
from 93.5% to 95.4%, observed in [25, 32–34] while the recall in our algorithm was 
shown at 98.76%, representing higher performance than [33]. The needed process-
ing time based on the CNN algorithm was 285 ms, which means a lower processing 
time in [34], while Marzougui, et al. [25] and Xiao, et al. [33] showed the most down 
processing time, 21.54, 113.9 (ms), respectively

https://online-journals.org/index.php/i-joe
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Fig. 10. Evaluation metrics of lane road prediction using lane line algorithm (a) Accuracy (b) Loss

Table 4. Comparison of our algorithm with the currently available systems regarding  
accuracy (Acc), recall, and processing time

Ref. Architecture Acc Recall Processing Time (ms)

Yoo and Kim [32] Graph model 93.89 – –

Xiao, et al. [33] SCNN 93.5 94.0 113.9

Chen, et al. [34] LMD-11 network 95.4 – 2470

Marzougui, et al. [25] AROI+PPHT+Kalman filter 93.82 – 21.54

Proposed System CNN 96.06 98.78% 285

Vision approaches have been found to have a shorter execution time compared 
to deep scanning techniques. However, it is essential to note that vision techniques 
have lower detection accuracy and are limited in their applicability to specific sce-
narios [25]. Concerning temporal complexity, our system exhibits a processing time 
of 285 milliseconds for the tasks of lane detection and the utilization of the chosen 
lane line algorithm. Regarding temporal intricacy, our system necessitates a process-
ing duration of 285 milliseconds for lane detection and the preferred technique for 
lane line identification.

The limitation of our study is that our algorithms didn't applicate at night and 
in dusty weather. Therefore, we recommend future research for applying this 
algorithm at night to improve the self-driving car at any time of the day and in 
dusty weather.

4	 CONCLUSION

The current methodology used the OpenCV library to detect lane lines in video 
clips, which achieved an accuracy of 96.06. This has been achieved through the 
use of HSV and HSL properties. To identify lane lines in photos, the goal is often 
to focus on specific tones, such as white and yellow. Because HSL allows separate 
adjustment of Hue, Saturation, and Lightness thresholds, it can provide more precise 
control over the color selection process. The flexibility inherent in this approach 
facilitates more accurate isolation of the desired lane line colors. HSL images are 
processed using Canny edge detection to further improve lane detection. This 
includes converting images to grayscale and applying Gaussian smoothing to reduce 
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overlapping noise. By doing this, Canny becomes more efficient at detecting the 
edges of lane lines. The Hough Transform technique is used to identify straight fea-
tures in an image and determine the boundaries of the selected lanes. This step helps 
to accurately determine the positions and directions of the lane lines based on the 
extracted edge information. By combining these methods, the present methodology 
provides a comprehensive approach for lane line detection in videos, using HSL 
color representation, sharp edge detection, and Hough Transform analysis.
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