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PAPER

Designing an Ethical and Secure Pain Estimation System 
Using AI Sandbox for Contactless Healthcare

ABSTRACT
Pain estimation in patients having communication difficulties is vital for preventing adverse 
consequences such as misdiagnosis, delayed treatment, and increased suffering. Traditional 
pain assessment tools relying on observer-based ratings and patient self-reporting are ham-
pered by subjectivity and the need for continuous human monitoring, which have the poten-
tial to lead to inaccurate or delayed pain estimation. This paper presents an extensive literature 
review, a conceptual framework, and a systematic procedure for helping researchers develop 
a contactless, multimodal pain estimation system that leverages AI-based automation of stan-
dard pain assessment tools and scales within an AI sandbox environment. Our proposed 
concept aims to improve the efficiency of traditional pain estimation systems while reducing 
subjectivity and physical contact. This approach offers potential benefits, such as more accu-
rate and timely pain assessment, reduced burden on healthcare professionals, and improved 
patient experiences. Moreover, the integration of the AI sandbox allows researchers and devel-
opers to experiment with AI models, algorithms, and systems safely and securely, ensuring that 
AI systems are reliable and robust before deployment. We also discuss potential challenges and 
ethical considerations related to the use of AI in pain estimation, emphasizing the importance 
of addressing these concerns to ensure the safe and responsible integration of this technology 
into healthcare systems. The paper lays a foundation for future research and innovation in 
pain management, ultimately contributing to better patient care and advancements in the field.
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1	 INTRODUCTION

Accurate pain assessment is crucial for effective pain management in clinical 
settings. The widely used methods for assessing pain in patients rely on self-reporting 
of their pain level. For this purpose, a number of standard tools are used. For exam-
ple, the Numeric Rating Scale (NRS) has been validated as a measure of pain inten-
sity in populations with different types of pain [1]. However, it is only applicable to 
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patients who can verbalize their pain intensity. Visual Analogue Scale (VAS) is a psy-
chometric measuring instrument that uses a straight line to represent pain intensity, 
with the endpoints labeled as “no pain” and “worst pain imaginable”. However, it 
requires clear vision and may be challenging for some patients, such as children and 
mentally challenged patients [2]. Functional Pain Score (FPS) assesses pain by associ-
ating numbers with functional impairments. It provides a more objective indicator 
to help clinicians understand how pain affects a person’s life. The Wong-Baker pain 
scale has been validated and has good test-retest reliability. However, it may not be 
suitable for children or adults who do not understand its vocabulary [3]. Iconic Pain 
Assessment Tool (IPAT) is a web-based instrument for the self-report of pain quality, 
intensity, and location in the form of a permanent diary [4]. However, it shares the 
same limitations due to being a self-report system. Similarly, several other self-report 
pain scales such as McGill [5], Mankoski [6], brief pain inventory [7], and descriptor 
differential scale [8] all require patients to verbalize their pain intensity, which is not 
suitable for the type of the patients under discussion.

The self-reporting tools have limitations in infants, patients with cognitive impair-
ment or dementia, and critically ill patients receiving mechanical ventilation or seda-
tion. They require patients to understand pain ratings and accurately interpret the 
experience of noxious stimuli as painful events [2]. For these patients, behavioral pain 
assessment tools are widely used, which are based on observing the patient’s physiolog-
ical parameters and body expressions to determine the level of pain. Several behavioral 
pain scales exist such as for infants (e.g., NIPS [9], CRIES [10], FLACC [11]), for elderly 
people with severe dementia (e.g., PACSLAC [12], DOLOPLUS2 [13], PAINAD [14]), 
and for critically ill and/or unconscious patients (e.g., BPS [15], CPOT [16], NVPS [17]). 
However, behavioral pain assessment tools are subjective and rely on observer-based 
methods, which can lead to inter-rater variability and inconsistent treatment of patient 
pain management [18], [19]. The mentioned limitations entail objective and reliable 
pain assessment tools. Not only must these tools be robust, they must also be portable 
and interactive to facilitate ease of use, requiring minimal setup or calibration effort.

Automated pain estimation through physiological data has been extensively stud-
ied to improve pain assessment and management [20]. A myriad of AI-driven tech-
niques has been employed for pain estimation using uni- and multi-modal approaches. 
Most of these techniques utilize facial expression recognition as a strong indicator 
of pain intensity [21]–[23]. The facial features and landmarks or geometric features 
obtained from the mouth area are used to estimate the intensity of the pain (Jerritta 
et al., 2022). Analysis of conversations between patients and medical professionals in 
emergency triage has also been used to identify pain intensity [24]. Similarly, com-
bining vocalization with facial expressions has also emerged as a promising tech-
nique for infant cry and pain estimation [25]. However, at a practical and commercial 
level, automatic, real-time pain estimation is still in infancy. Painchek [26] is the first 
and only clinically validated pain estimation tool based on a smartphone app-based 
device that combines a facial expression assessment component with input from 
five other domains (voice, movement, behavior, activity, body) to yield a pain score 
for application in geriatric and pediatric settings. However, this system is not fully 
automatic. After identifying a facial micro-expression, the app requires completing 
the checklist in other domains to calculate a numerical pain score. It also requires 
clinical competence on tool’s contents, domains and descriptors [26].

It is crucial to recognize and address the safety and ethical risks associated with 
the development and deployment of an AI-driven system to minimize the potential 
harms [27], [28]. In the context of European ethics guidelines for trustworthy AI [29], 
one of the primary safety concerns with an AI-driven solution is reliability and 
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robustness [30], particularly in a safety-critical application such as pain estimation. 
Ensuring that the pain estimation system operates securely and accurately under 
various conditions and circumstances is essential to prevent catastrophic failures.

There are several types of contactless healthcare monitoring systems, including 
camera-based, radio frequency-based, and wearable sensors [31], [32]. Recent research 
has focused on developing non-contact sensors that can monitor vital signs such as 
respiratory rate, oxygen saturation, heart rate, and body movement [31], [33]–[35]. These 
sensors are based on technologies such as deep learning, artificial intelligence, and the 
Internet of Things [33]–[35]. Some examples of contactless healthcare monitoring sys-
tems include TeleVital, a non-contact health assessment system that uses a webcam 
to measure vital signs [34], and RhythmEdge, a low-cost, deep-learning-based contact-
less heart rate estimation system [35]. Researchers have also developed non-contact 
monitoring systems for human physiological signals and body movement, which use 
custom-designed low-cost accelerometers and phased-array Doppler sensors [31], [32].

Recent advances in contactless healthcare technology have enabled mobile-based 
screening tools that can measure vital signs and provide health risk assessments 
using mobile and desktop devices. Anura™ is a video-based contactless health mon-
itoring technology that can measure vital signs and provide health risk assessments 
using only a smartphone video camera [36]. Contactless human activity recognition 
using deep learning with flexible and scalable software-defined radio has been devel-
oped to assess and contrast deep learning approaches [37]. Mobile telehealth facili-
tates the contactless and real-time interaction of healthcare professionals, doctors, 
and patients for patient diagnosis, case discussion, decision-making, and personalized 
medicine. Remote patient monitoring (RPM) using non-invasive technology could 
enable contactless monitoring of acutely ill patients in a mental health facility [38].

The potential benefits of these technologies include the ability to monitor patients 
remotely, which can reduce the burden on healthcare systems and improve patient 
outcomes. Patients can receive care from the comfort of their own homes, which can 
be especially beneficial for those who are unable to travel to healthcare facilities. 
These technologies can also provide real-time monitoring of vital signs, which can 
help healthcare professionals detect and respond to health issues more quickly.

However, there are also potential drawbacks concerning ethics and security. The 
most important ethical issues of medical IoT include security, access control, and 
privacy [39]. Organizations capable of continuous surveillance via IoT devices must 
consider ethics and its effects. When devices connect to the internet, users have no 
true privacy. Organizations can monitor consumers through smart devices, includ-
ing homes, appliances, cars, wearables, and water and gas meters. The vendors can 
monitor and track conversations, locations, timing, actions, and behaviors through 
interconnected wireless devices. Despite the promise of ambient intelligence to 
improve the quality of care, the continuous collection of large amounts of sensor 
data in healthcare settings presents ethical challenges, particularly in terms of pri-
vacy, data management, bias and fairness, and informed consent [40]. Patient data 
security is a challenge in telehealth monitoring, which jeopardizes patients’ health 
information without an end-to-end encrypted communication service [41].

Ethical risks in the development of an AI-enabled pain estimation system, involv-
ing bias, fairness, transparency, and accountability [42], require addressing potential 
biases in training data to prevent discriminatory outcomes and promote fairness. 
Ensuring transparency allows users to understand AI decision-making processes, 
fostering trust and facilitating ethical issue resolution. Accountability, involving 
clear responsibility lines, redress mechanisms, and regulatory frameworks, holds AI 
developers and users responsible for their systems’ ethical behavior.
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The potential safety and ethical risks associated with the development and 
deployment of an AI-enabled pain estimation system underscore the importance of 
a controlled environment where the system can be thoroughly tested and validated 
before deployment. In this way, regulatory and ethical standards can be upheld, 
and potential risks and negative consequences can be minimized [43]. Moreover, 
the demand for multi-stakeholder collaboration has grown, with policymakers in an 
increasing number of countries implementing mechanisms such as regulatory sand-
boxes. This underscores the significance of knowledge sharing across technology 
and jurisdiction in a rapidly evolving field [44].

To devise an efficient automated pain estimation system, we advocate the utilization 
of an AI sandbox environment. This environment integrates multi-modal features—
spanning visual, audio, and physiological aspects discernible through audio-visual 
indicators—ensuring a holistic pain assessment. This environment should encapsu-
late AI-driven pain hierarchical classification algorithms [45], [46], sophisticated facial 
recognition capabilities, and the ability to collect vital signs using contactless methods, 
eliminating the need for physical contact. Leveraging the AI sandbox ensures that 
the AI system effectively fuses data pertaining to the well-accepted behavioral pain 
scales from diverse sources to deduce an encompassing assessment of a patient’s pain. 
A pivotal realization in holistic pain estimation is recognizing the intertwined nature 
of physical and emotional pain indicators [47], [48]. As such, the AI must be adept at 
recognizing micro facial expressions, variations in body posture, and even subtle vocal 
cues. Given that the well-accepted behavioral pain scales encompass these subtleties, 
it’s crucial to base the AI-driven pain estimation on them. By doing so, we leverage 
their evidence-backed, structured approach, supporting the AI system with a scien-
tifically validated foundation. Beyond accurate pain measurement, integrating the 
system within an AI sandbox also underscores the need for rigorous pre-deployment 
testing and ensuring important concerns like data security and privacy are met.

AI’s potential in healthcare, especially in pain estimation systems, is undeni-
able. As we advance, the field is witnessing myriad defensive technologies designed 
specifically to counter the security and privacy challenges associated with AI. For 
instance, methods like detection and filtering, data provenance, and standardized 
management are enhancing data collection integrity. Coupled with this, image recon-
struction, quality monitoring, and data randomization are steps toward augmenting 
data processing security and quality. During the AI model’s training phase, certified 
defenses ensure robustness, while a range of technologies caters to the needs of 
the inference and integration stages [49]. Moreover, the evolution of Fog-assisted or 
edge computing architectures is noteworthy. They pave the way for a secure health-
care data collection and transmission system while ensuring efficiency through low 
computational demands and optimal compression rates [50]. We believe that these 
technological advances not only make AI-driven pain estimation systems secure but 
also heighten their accuracy, which is paramount in healthcare scenarios.

In this paper, we introduce a conceptual framework aimed at crafting a secure, 
automated system for pain estimation. This system utilizes non-contact sensing 
methods grounded in standard pain scales and tools. The proposed model is not 
only deeply rooted in robust theoretical foundations, but also offers a systematic 
pathway to the development of an AI sandbox for non-contact pain estimation. This 
AI sandbox serves as a controlled and safe experimental space for testing AI-driven 
applications before they are deployed. This study provides a blueprint for research-
ers, healthcare professionals, policy makers, and technology developers to create 
and implement secure, non-contact AI systems for pain estimation.

The structure of this paper is as follows: Section 2 offers a comprehensive review 
and critical analysis of current automated pain detection techniques. In Section 3, 
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we delve into the theoretical aspects of AI sandbox, illustrating its significance in 
crafting AI healthcare applications. Section 4 outlines the systematic process for 
creating an AI sandbox dedicated to non-contact pain estimation. It delves into the 
specifics of the AI sandbox development, pain detection tools, data collection meth-
ods, pertinent modalities, cues, pain indicators, and the various pain scales used. It 
also expands on the development of a computational and sensing platform and the 
methodologies employed in pain estimation. Additionally, it delves into the crucial 
topics of data protection, privacy, and how AI decisions are explained. In Section 5, 
the focus shifts to the evaluation and validation procedures for the pain estimation 
system. Ethical considerations surrounding this field are discussed in Section 6. 
Section 7 identifies potential hurdles and challenges that might arise during system 
implementation. Finally, Section 8 wraps up the paper with conclusive remarks.

2	 RELATED	WORK

Recent research on automated pain estimation utilizes one or a combination of 
three types of modalities: audio, visual, and physiological. Different cues related 
to these modalities have been used, which are listed in Table 1. These modalities 
can be further divided into behavioral and non-behavioral. While the former rep-
resents the direct, contactless measurements of modalities, the latter represents a 
contact-based approach.

Table 1. Overview of different modalities and cues for assessing emotions

Signal Type Modality Cues Description

Behavioral Audio Crying, moaning, groaning, 
gasping, and sighing

Audible sounds of distress or 
discomfort

Video Facial expressions Visual cues of emotions displayed 
on the face

Body gestures Physical movements 
conveying emotions

Facial skin temperature Temperature changes on the face 
indicating emotional states

Non-behavioral Physiological ECG, EEG, HRV, SCL, EMG, fINRs, 
fMRI, RR, BP, HR, SCR, STemp, 
SIP, GSR, PPG, BM, BVP, HRG

Signals that provide information 
on the body’s physiological state

Notes: ECG: Electrocardiogram, EEG: Electroencephalogram, HRV: Heart Rate Variability, SCL: Skin 
Conductance Level, EMG: Electromyogram, fINRs: Functional Near-Infrared Spectroscopy, RR: 
Respiratory Rate, BP: Blood Pressure, SCR: Skin Conductance Response, STemp: Skin Temperature, 
SIP: Sweep Impedance Profiling, GSR: Galvanic Skin Response, PPG: Photoplethysmogram, BM: Body 
Movements, BVP: Blood Volume Pulse, HRG: Heart Rate Gain.

Recent research has investigated several modalities for automated pain estimation. 
These modalities have been used in unimodal as well as multimodal methods. Facial 
Expression Recognition (FER) and physiological signals have been predominantly 
used for automated pain estimation, either separately or in combination. While facial 
expressions are consistently associated with pain and convey most of the pain-related 
information as compared to other behavioral indicators [51], the physiological signals 
are strongly related to the autonomic nervous system’s role in pain response [52]. 
Since addressing more modalities gives better insight into pain and its varieties, a 
number of different combinations of multimodal methods have been investigated.
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Table 2 details the methods employed for automated pain estimation in the past 
few years. It can be seen that methods based on physiological signals have been 
widely used for pain estimation. Especially, EDA has predominantly been used in both 
unimodal and multimodal approaches. FER is the primary modality in contactless 
approaches, which highlights the importance of visual cues and the potential of lever-
aging computer vision techniques for pain estimation. Fewer approaches utilize audio-
based modalities, which entail further exploration and research. Though contact-based 
approaches have been prevalent, the growing number of contactless studies suggests 
an increasing interest in developing non-intrusive methods for pain estimation. Though 
heart rate, heart rate variability, and respiration rates have been traditionally used as 
contact-based modalities, the recent advancements in computer vision have paved the 
way for measuring them using a contactless method called remote photoplethysmogra-
phy (rPPG) [53]. The physiological cues, shown in the visual modality column of Table 2, 
have been measured through contactless methods. Figure 1 shows the frequency of 
each distinct modality combination used for automated pain estimation.

Table 2. Existing pain estimation methods and the modalities used

Reference Visual Physiological

CO
NT

AC
T-

BA
SE

D 
M

ET
HO

DS

Korving et al., 2022 [57] – EDA

Kong et al., 2021 [58] – EDA

Kong et al., 2021 [59] – EDA

Kong et al., 2020 [60] – EDA

Chen et al., 2022 [61] – EEG and fINRS

Erdoğan et al., 2020 [62] – HR, BP, STemp

Al-Qerem et al., 2020 [63] – HR, BP, STemp

Hassan et al., 2020 [64] – EMG, ECG

Lopez et al., 2018 [65] – SCR, HR

Thiam et al., 2020 [66] – EDA, EMG, ECG

Pouromran et al., 2021 [67] – EDA, EMG, ECG

Bellmann et al., 2020 [68] – EDA, EMG, ECG

Badura et al., 2021 [69] – EDA, EMG, RR

Lopez et al., 2019 [70] – fNIRS

Santana et al., 2019 [71] – fMRI

Truong et al., 2020 [72] – SIP, PPG, EEG, GSR

Vu et al., 2022 [73] – SIP, PPG, EEG, GSR

Gouverneur et al., 2021 [74] – ECG, EDA, EMG

Kasaeyan et al., 2021 [75] – ECG

Walter et al., 2020 [76]* FER, BM HR, EDA

Casti et al., 2020 [77]* FER HR, SCR

Xu et al., 2019 [78] FER EDA

Khan et al., 2023 [79] – BVP

Yang et al., 2021 [80] FER HR, RR, GSR, STemp, BM

Winslow et al., 2021 RR, HRV

(Continued)
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Reference Visual Physiological

CO
NT

AC
TL

ES
S 

M
ET

HO
DS

Xin et al., 2021 [81]* FER, BM –

Wu et al., 2023 [82] FER –

Morabit et al., 2021 [83] FER –

Aydın et al., 2023 [84] FER –

Semwal et al., 2020 [85] FER –

Lee et al., 2020 [86] FER –

Thuseethan et al., 2020 [87] FER –

Alghamdi et al., 2022 [88] FER –

Bargshady et al., 2020 [89] FER –

Rudovic et al., 2021 [90] FER –

Fontaine et al., 2022 [91] FER –

Thiam et al., 2020 [68] FER –

Rathee et al., 2022 [92] FER –

Huang et al., 2022 [93] FER, HRG –

Souza et al., 2021 [94] FER, HR –

Castillo et al., 2020 [77] FER, HR –

De Sario et al., 2023 [95] FER –

Liu et al., 2018 [96] FER –

Wu et al., 2022 [97] FER

Note: *Methods using vocalizations.

Fig. 1. Frequency of the modalities used in automated pain estimation

Table 2. Existing pain estimation methods and the modalities used (Continued)
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The growing interest in contactless methods is due to the fact that the methods 
depending on wearable and contact-based sensors come with several drawbacks. 
Continuously wearing sensors can cause discomfort, potentially affecting patient 
compliance. Furthermore, these methods typically entail specialized lab settings 
or particular subject postures, adding to the limitations of their applicability [54]. 
Therefore, ambient monitoring can offer a superior approach to pain estimation, 
addressing the limitations of wearable and contact-based sensors. In addition, 
research on automated pain estimation signifies the importance of using multiple 
behavioral cues instead of single ones [55], [56] to better capture the subtleties of 
pain. By seamlessly gathering various physiological and audiovisual signals with-
out direct contact and employing machine learning for analysis, it presents a more 
practical and feasible solution for this pressing issue. Hence, behavioral-based 
pain indicators are preferable as they utilize contactless sensing (such as cameras). 
Additionally, behavioral-based parameters can be monitored continuously for the 
desired time duration without causing any discomfort to the patient.

While a large part of the relevant literature utilizes only FER or physiological sig-
nals for pain estimation, the effectiveness of using these methods independently is 
debatable. Some studies show that several factors such as fear, anxiety, and psycho-
logical stress can affect physiological measurements [98]–[100]. Additionally, it has 
also been found that a lack of changes in vital signs does not necessarily imply an 
absence of pain [101]. Similarly, due to the subjectivity of FER and its variation from 
person to person, estimating pain levels accurately solely on FER can be difficult [83]. 
Additionally, factors such as facial paralysis (e.g., locked-in syndrome [102]), cultural 
differences, individual differences, and context also affect FER [103]. Therefore, it is 
essential to incorporate a diverse range of behavioral cues and employ multimodal 
models when developing AI-enabled pain estimation methods.

There are certain limitations of AI-enabled pain estimation methods which need 
to be addressed for clinical use. A common limitation is that these methods usually 
collect data based on a pain stimulus or a pain-inducing protocol applied to healthy 
individuals, which may not fully represent real-world pain experiences. The major-
ity of the pain estimation methods also lack clinical validation in a clinical environ-
ment and/or are based on data collection from a smaller sample size which raises 
questions on generalization. Some methods are even limited to a single pain type 
(e.g., should pain) and do not address other pain types.

The existing techniques only provide a preliminary classification of pain [104] 
and do not make full use of standard, well-validated behavioral pain assessment 
tools designed specifically for critically ill patients who are unable to effectively 
communicate their pain levels. While it is evident that a myriad of multimodal 
combinations has been used for pain estimation, their efficacy is difficult to ascer-
tain without a rigorous clinical evaluation, especially when they are not based on 
well-validated subjective pain scales. Some AI-enabled methods have attempted 
to automate the manual pain estimation scales, e.g., FER based on Prkachin and 
Solomon Pain Intensity (PSPI) scale [105], [106]. However, PSPI only evaluates 
active facial action units along with their intensities and assigns a score; therefore, 
its efficacy for critically ill, unconscious, or patients on ventilation cannot be ascer-
tained, pain estimation of such patients requires more modalities to be observed 
such as compliance with the ventilation. To the best of our knowledge, no study 
addresses the automation of behavioral pain scales for patients with communica-
tion difficulty (or inability). These pain scales have been validated through rigorous 
clinical trials and serve as standards for the mentioned conditions. Also, they do 
not rely on a single pain indicator (such as FER), but comprise a diverse set of pain 
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indicator items including facial expressions, body movements, and vocalizations, 
to name a few.

Finally, the lack of transparency in AI-enabled automated pain estimation tech-
niques is also a major concern, as it makes it difficult to understand how the system 
arrives at its conclusions. Developing more transparent models that provide clear 
explanations of how they make their assessments could increase trust in these sys-
tems and improve their usability in clinical settings.

In this context, a potential solution is to combine traditional observer-rated 
pain assessment tools with AI-enabled techniques to improve pain assessment 
accuracy and reduce the limitations of these methods. Despite their subjective rat-
ings, these tools still serve as a reliable criterion for pain [15], [107]. Hence, the 
observer-based criterion of these pain assessment scales can be converted to an 
AI-enabled system to reduce inter-observer variability in pain assessment, which 
is a major limitation of observer-rated scales. At the same time, it may result in a 
more objective measure of pain, which is particularly useful in cases where the 
self-report methods are no more valid due to the patient’s cognitive or communica-
tion impairments. In addition to that, real-time and continuous monitoring of pain 
can be ensured, which can help in detecting pain episodes otherwise missed by 
intermittent assessments. More importantly, the burden on healthcare staff could 
be significantly reduced, eliminating the need for their availability to perform 
frequent pain assessments.

To address these limitations, it is essential to develop an AI-driven pain esti-
mation system that operates within an AI sandbox environment and utilizes a 
wider set of modalities for a more nuanced estimation of pain. By incorporating 
the AI sandbox, the system allows researchers and developers to safely experi-
ment with pain estimation models and algorithms, ensuring that the pain esti-
mation techniques are reliable, robust, and optimized before deployment. This 
innovative approach provides an objective measure of pain that can reduce 
inter-observer variability, objectifying the standard observer-rated pain assess-
ment tools, and offering a real-time, continuous measure of pain for critically ill 
patients. The AI sandbox integration ensures the mitigation of potential risks and 
the recognition of inadvertent consequences before the pain estimation system is 
broadly adopted.

3	 AI	SANDBOX

An AI sandbox is a controlled virtual environment that allows researchers, devel-
opers, and organizations to experiment with AI models, algorithms, and systems 
safely and securely [108]. By simulating real-world scenarios and conditions, AI 
sandboxes enable users to test, validate, and optimize AI solutions without risking 
unintended consequences, ensuring that AI systems are reliable and robust before 
deployment. The importance of an AI sandbox lies in its ability to mitigate poten-
tial risks and uncover unintended consequences before AI systems are widely 
adopted. By providing a controlled environment, AI sandboxes allow developers 
and researchers to fine-tune algorithms, identify biases, and rectify potential safety 
issues without exposing users or society to harm.

The development and deployment of an AI-enabled pain estimation system neces-
sitate an AI sandbox to test the system on diverse datasets and simulate different 
patient populations. This allows researchers to identify any biases or inaccuracies in 
the AI system’s diagnostic capabilities, such as a tendency to inaccurately estimate 
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pain in specific demographic groups. By refining the pain estimation models and 
algorithms, it can be ensured that the system is both accurate and unbiased before 
being deployed in actual clinical settings.

4	 CONCEPTUAL	FRAMEWORK	FOR	CONTACTLESS,	MULTIMODAL	
PAIN	ESTIMATION	WITHIN	AN	AI	SANDBOX	ENVIRONMENT

4.1	 Overview	of	the	concept

A multimodal, real-time pain estimation system combines multiple data sources 
and signals, utilizing visual and auditory modalities. This includes a combination of 
visual data such as stature, gait, facial expression, ambient sounds, and dialogues. 
The sensing setup of the system comprises sensitive microphones and cameras 
which can provide high-quality and accurate data even under low-light condi-
tions or occlusion. The data associated with the pain indicators is collected from 
various clinical and hospital settings and is subsequently used to develop and train 
multimodal models [109] that can detect pain and discomfort. Spatio-temporal anal-
ysis can be applied that takes into account both spatial and temporal information of 
the video feed to improve estimation accuracy. The vision models are developed to 
detect facial expressions, upper limb movements, and body postures, while the audio 
models are developed to detect pain sound input and compliance with ventilation. 
In addition, the efficacy of a multimodal, unified model for pain estimation is worth 
investigating. This model takes all the modalities as input and translates them into a 
pain value, providing a more accurate assessment of pain intensity.

Based on the acquired values of the pain indicator, the system predicts a pain 
value representing the pain intensity on the pain assessment scale. To address 
data privacy and protection, robust mechanisms for data anonymization and 
protection are developed in compliance with GDPR. Finally, narrative and visual 
explanations of the AI decisions are generated to give further insights into the 
AI decisions. This enhances transparency and trust in the system and provides 
valuable information for healthcare providers to make informed decisions about 
patient care.

An important aspect of the pain estimation system is its development and deploy-
ment within an AI Sandbox before its implementation in a real clinical setting. The 
steps involved in the development of the pain estimation AI sandbox are detailed in 
the next section.

4.2	 Development	of	pain	estimation	sandbox

Implementing an AI sandbox for the pain estimation system involves two 
phases, as shown in Figure 2. The first phase involves creating a controlled and 
isolated environment tailored for the development of pain estimation models. The 
primary objective is to maintain data privacy, security, and regulatory compliance 
throughout the development process. This involves selecting a secure and com-
pliant computational infrastructure that ensures scalability, flexibility, and adher-
ence to healthcare regulations. Implementing stringent access controls is crucial 
to limit data access to authorized team members only, protecting sensitive patient 
information.
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Healthcare data must be securely stored, with encryption and de-identification 
measures in place to maintain compliance with data protection regulations [89]. 
AI sandbox systems should utilize a “privacy by design” concept encompassing 
a range of legal, privacy, and security policies and measures to ensure the nec-
essary protection of personal health data. At the heart of the sandbox’s security 
lies encryption. Every piece of data, whether at rest within the system’s storage 
mechanisms or in transit between system components, is encrypted. The choice 
of advanced encryption standards, such as Advanced Encryption Standard (AES-
256) [110] for data-at-rest and the Transport Layer Security (TLS) [111] protocol for 
data-in-transit, ensures that even if malicious entities gain unauthorized access, 
deciphering the actual patient information remains a complex challenge. These 
encryption standards are widely recognized for their resistance to cryptographic 
attacks on healthcare data and are pivotal in maintaining the confidentiality of the 
data [112], [113].

Ensuring the integrity of healthcare data is also vital [114]. By employing cryp-
tographic hash functions, such as SHA-256 which is widely used for ensuring health-
care data integrity [115], or its advanced variants such as [116], the system can 
ascertain that the data, once stored or transmitted, retains its original state when 
later retrieved or received. Any discrepancy in the hash values would serve as a red 
flag, indicating potential data alteration. Further supporting this is the use of digital 
signatures, which not only promise data integrity but also its authenticity [117]. Any 
modifications post-signature application would render the signature verification 
process void, signaling a breach in data integrity.

Beyond encryption and data integrity verification, the AI sandbox is fortified 
with multiple safeguards to ensure data fidelity and privacy. A critical component 
here is data de-identification. Before any data enters the sandbox, personally iden-
tifiable information is either masked or replaced with pseudonyms, ensuring that 
individual users remain anonymous [118]. This de-identification process, coupled 
with role-based access control, guarantees that only authorized personnel with a 
legitimate purpose can access the data, and even then, the data they access doesn’t 
compromise patient privacy.

To continually assess the system’s resilience against threats and vulnerabili-
ties, regular security audits are conducted. These audits, complemented by threat 
modeling [119], [120], ensure that the system remains prepared for both known 
and emergent security challenges. Threat modeling, in particular, is instrumen-
tal in understanding the assets at risk, the potential threats to these assets, and 
the risks associated with those threats. And, in the unforeseen event of a secu-
rity breach, a well-defined incident response plan is in place, outlining the precise 
steps to be taken, from data recovery strategies to communication plans and legal 
considerations.

Network segmentation is also essential to isolate the AI sandbox from production 
environments, preventing potential security risks from affecting clinical systems. At 
the same time, continuous monitoring and logging of activities within the sandbox 
helps detect potential threats and ensures ongoing security and compliance.

Establishing backup and disaster recovery plans safeguards the AI sandbox 
against data loss or system failures. For instance, having a plan in place to restore 
EHRs from secure backups in case of a cyberattack or system failure ensures the con-
tinuity of healthcare services. Conducting regular audits and risk assessments helps 
identify and address vulnerabilities or non-compliance issues, further enhancing 
the security and reliability of the AI sandbox.
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The second phase involves creating the AI sandbox, which comprises several 
crucial steps to develop and refine the models pertaining to predicting pain indica-
tors and estimating pain. Data preparation is the cornerstone of effective AI models. 
In healthcare, this step entails the collection, preprocessing, and anonymization of 
EHRs while adhering to data protection regulations, such as HIPAA or GDPR [121]. 
For instance, personal information replaced with pseudonyms and data encryption 
can be employed to maintain privacy and security.

Monitoring and iterating the models is essential for continuous improvement. In 
the pain estimation system, this involves collecting various types of feedback, such 
as analyzing key performance indicators like accuracy, sensitivity, and specificity 
for classification models (e.g., for facial expression recognition) and R-square score 
and root mean square error for regression models (e.g., estimating the pain level), 
gathering input from medical professionals, and conducting pilot studies in real-
world healthcare settings. Additionally, error analysis should be performed, and 
feedback should be obtained from doctors, nurses, and pain management experts. 
These insights can help identify areas for improvement, allowing the models to be 
refined to better align with real-world scenarios and user expectations.

Implementing version control and collaboration tools is vital to ensure effec-
tive teamwork and maintain a history of model development [122]. Using version 
control systems and collaboration platforms helps manage changes, track prog-
ress, and facilitate collaboration among healthcare professionals across all steps of 
the development process. This aids in maintaining a streamlined workflow while 
developing and refining pain estimation models. The team working on the pain esti-
mation system might use a version control system to track changes to the models’ 
code and a project management tool to coordinate tasks and communication among 
team members.

Fig. 2. Phases of implementing pain estimation sandbox

4.3	 Selection	of	a	pain	assessment	tool

The focus of our study is the patients with communication inabilities or difficul-
ties. Such patients comprise infants, critically ill and/or on ventilation, and patients 
with cognitive impairment or dementia. Some widely used pain assessment scales 
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separately address these target groups. These pain scales utilize a diverse range of 
pain indicators to address the communication impairment of the patients. Besides 
using facial expressions as pain indicators, these scales also utilize other behav-
ioral indicators such as body movements, compliance with ventilation, vocaliza-
tion, breathing patterns, and upper limb movements. Each indicator has a certain 
number of associated behaviors which describe the intensity of the pain related to 
it. Each pain behavior is assigned a score. The total score of all the pain behavior 
represents the pain intensity. A higher score indicates a higher level of pain [123]. 
Table 3 shows the pain indicators related to each cue in BPS and COPT scales. It 
can be seen that the data of the pain indicators is multimodal (audio, visual). Pain 
indicators such as facial expressions, upper limb movements, and body movements 
can be obtained by analyzing the images captured by cameras. Similarly, the pain 
indicators data related to compliance with ventilation can be obtained by audio 
modality. Table 3 summarizes the widely used pain assessment scales for our tar-
get groups.

Table 3. Standard pain assessment scales and their indicators

Targeted Group Pain 
Assessment Scale Pain Indicators/Items

Infants NIPS Facial expression, cry, breathing patterns, arm movements, leg movements, and state of 
arousal [124]

CRIES Crying, oxygen requirement, changes in vital signs, facial expression, and sleep state [10]

FLACC Facial expression, leg movement, activity, cry, and consolability [125]

Elderly people with 
severe dementia

PACSLAC Facial expressions, verbalizations, body movements, changes in interpersonal interactions, 
changes in activity patterns, mental status changes, changes in intake of food or fluids, changes 
in sleep patterns, changes in body care and grooming, and changes in vital signs [126]

DOLOPLUS-2 Facial expression, body language, verbalization, consolability, changes in habits, mental 
confusion, autonomy, sleep disorders, appetite, and social interactions [127]

PAINAD Breathing, negative vocalization, facial expression, body language, consolability [128]
(Herr et al., 2004)

Critically ill and/or 
unconscious patients

BPS Facial expression, movements of upper limbs, and compliance with a ventilator [129]

CPOT Facial expression, body movements, muscle tension, and compliance with the ventilator [130]

NVPS Facial expression, body movements, muscle tension, compliance with the ventilator, and 
vocalization [131]

4.4	 Designing	and	developing	a	contactless	sensing	and	processing	platform

This section discusses the development of a contactless sensing and processing 
platform for pain estimation.

Integration of multimodal sensors. The sensing component of the contact-
less pain estimation system comprises visual and auditory sensors to capture pain 
indicator data. The data related to facial expressions, upper limb movements, com-
pliance with ventilation or vocalization, body movements, and muscle tension is 
collected by a network of visual sensors. This includes two high-resolution RGB 
cameras and one near-infrared (NIR) camera. The RGB cameras capture color infor-
mation, while the NIR camera enhances the system’s ability to operate under low-
light conditions and provides additional depth information. This setup also ensures 
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comprehensive coverage of the patient’s face and upper body, enabling more accu-
rate estimation of pain indicators under low-light conditions commonly found in 
clinical settings.

All cameras are equipped with high-resolution image sensors to provide detailed 
images of the patient’s face and upper body. The RGB cameras operate in the visible 
light spectrum, while the NIR camera captures images in the near-infrared spec-
trum, enabling it to function effectively in low-light conditions. The NIR camera can 
be installed at the head of the bed, slightly above one of the RGB cameras. The angle 
should be such that the NIR camera captures a direct view of the patient’s face and 
can pick up the minute changes in facial expression that could be indicative of pain. 
The RGB cameras are positioned at different angles, such as one at the head of the 
bed, one at the foot of the bed, and one on each side. The side RGB cameras should 
be ideally aligned with the patient’s midsection. This configuration addresses the 
issue of occlusion, capturing various views of the patient’s face and upper body. 
The images from multiple visual sensors are combined to form a more complete 
representation of the patient, resulting in a more accurate and reliable pain predic-
tion system.

For auditory sensing, a sensitive microphone is positioned near the patient’s head 
to record sounds associated with pain, such as vocalizations, coughing, or changes 
in breathing patterns. The microphone captures compliance with the ventilator or 
vocalization, e.g., the pain indicators in the CPOT scale. To assess body movements 
and muscle tension without contact, the system relies on advanced computer vision 
techniques (e.g., [132]) to analyze the visual data from the RGB cameras. By tracking 
the patient’s upper limbs and body posture changes, the system can evaluate body 
movements and muscle tension indicators, e.g., in the CPOT scale.

Real-time processing and computing platform. The data captured by the mul-
timodal sensors is sent to a processing and communication platform that runs data 
pre-processing, fusion, and pain prediction algorithms. While onboard processing 
in smart visual sensors (cameras) can be advantageous, processing power and other 
essential parameters must also be taken into account. If the optimal setup consists of 
homogeneous or heterogeneous image sensors without onboard processing capabili-
ties, a compact, energy-efficient, and processing-efficient computing platform is inte-
grated with the image sensors to effectively run machine learning algorithms. The 
other factor to be considered for the computing platform is its small form factor, as it 
is intended to be a compact point-of-care device. A trade-off between computational 
efficiency and energy consumption must be found.

The camera network sends the captured images to the computing platform. The 
images captured from the heterogeneous setup are resized and registered using a 
suitable feature-based registration method into a single composite image. A weighted 
approach is applied to the registered images to fuse the information from both RGB 
and NIR images. The weights are determined based on factors such as camera con-
figuration, lighting conditions, and the relative importance of each modality for pain 
estimation. This fused image enables the system to analyze the pain indicators more 
effectively.

By incorporating heterogeneous visual and audio sensors with various 
parameters and specifications, the computing platform facilitates a comprehensive 
and accurate analysis of pain indicators. The communication component utilizes a 
wireless channel to transmit the results of pain estimation to a centralized location. 
Figure 3 shows the sensing, analysis, and transmission of pain estimation results to 
a centralized location.
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Fig. 3. A depiction of contactless sensing, analysis, and transmission of pain estimation 
 to a centralized location

4.5	 Data	collection	and	management

This step is crucial to the development of accurate models for pain estimation, as 
it aims to capture a wide range of pain indicators and ensures the precision of the 
pain estimation models. To achieve this, data is collected from various clinical and 
hospital settings, including different patient populations, medical conditions, and 
pain intensities. The collected data encompasses all the indicators of the selected pain 
assessment scale. These indicators are captured using the developed sensing and 
processing platform. The auditory indicators, such as compliance with the ventila-
tor, are captured through sensitive microphones and sound analysis, as changes in 
breathing patterns can indicate discomfort or pain. Muscle tension is inferred from 
changes in posture and movement patterns, providing a more complete picture of 
the patient’s pain experience.

All the behavioral pain assessment scales described in Table 3 utilize a diverse 
range of modalities that can be captured through a contactless setup of heteroge-
neous sensors (audio, visual). Some of the indicators in PACSLAC and DOLOPLUS-2 
scales may require long-term data collection and analysis for pain estimation, e.g., 
changes in activity patterns, sleep disorders, social interactions, etc. For the demon-
stration of our concept, we select one pain scale from each group. Automating these 
observer-rated pain assessment scales entails collecting the same data related to 
each pain indicator as acquired by a human observer. However, in a contactless 
automated system, this data has to be collected by relevant acoustic and visual 
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sensing devices. Table 4 describes the audio-visual pertaining to each pain indicator. 
The cues mentioned in the table have been mentioned according to the audio-visual 
data collection. That is, they specifically mention what specific audio-visual features 
can be analyzed for each pain indicator.

Table 4. Audio-visual data collection for behavior pain scales

Pain Indicator Pain Behavior Pain Scale Data to be Collected Cues to be Analyzed

Facial expression Relaxed/neutral CPOT, NIPS Face video capture Smooth and unwrinkled skin, neutral eyes, and lips in 
a neutral position [133]

Tense CPOT, NIPS Face video capture A furrowed brow, tightened lips, clenched jaw, 
frowning, brow lowering, orbit tightening, and little 
levator contraction [134][135]

Grimacing CPOT, NIPS,  
BPS

Face video capture Lowering of the eyebrows, squeezing of the eyes, 
wrinkling of the nose, raising of the upper lip, and 
opening of the mouth [136]

Body movements Normal position CPOT Capturing video of 
body posture

Absence of movements, absence of protective, restless, 
or guarding behavior [137]

Protection CPOT Capturing video of 
body posture

Guarding the painful area, slow & cautious movements, 
touching or rubbing the pain site [137]

Restlessness CPOT Capturing video of 
body posture

Constant shifting, inability to remain still, attempting to 
sit up, moving limbs/thrashing [137]

Compliance with 
ventilation

Tolerating 
ventilator

CPOT, BPS Capturing video of the 
chest and abdomen

Chest and abdomen movement synchrony with 
ventilator, no coughing, no alarms [137]

Coughing but 
tolerating

CPOT, BPS Collecting audio data using 
a microphone

Audio: detection of brief coughing and alarm sounds; 
Visual: occasional chest and abdomen movement 
desynchronization [138]

Fighting ventilator CPOT, BPS Capturing video of the 
chest and abdomen

frequent coughing and alarm sounds, chest and 
abdomen movement desynchronization, agitation 
signs, blocking ventilation [137]

Unable to control 
ventilation

BPS Capturing video of the 
chest and abdomen

Chest and abdomen movement desynchronization, 
severe agitation, inability to synchronize with 
ventilator [137]

Vocalization No vocalization COPT Collecting audio data using 
a microphone

Absence of vocalization, no audible sounds 
related to pain

Sighing, moaning COPT Collecting audio data using 
a microphone

Low-pitched vocalizations, audible exhales, deep 
breaths [139]

Crying out COPT Collecting audio data using 
a microphone

Acoustic characteristics of the cry, such as pitch, 
duration, and intensity [140]

Breathing  
patterns

Relaxed/normal NIPS Face video capture Capturing the changes in blood flow and skin color 
through rPPG [53]

Irregular NIPS Face video capture Capturing the changes in blood flow and skin color 
through rPPG [53]

Arm movements Relaxed/neutral NIPS Capturing video of the 
upper body, focusing on 
arms and shoulders

Detecting arms, analyzing arm movement, muscle 
tension, and positioning consistent with relaxed or 
neutral posture

Tense or flexed NIPS Capturing video of the 
upper body, focusing on 
arms and shoulders

Detecting arms, analyzing arm movement, muscle 
tension, and positioning showing tension

(Continued)
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Pain Indicator Pain Behavior Pain Scale Data to be Collected Data to be Collected

Leg movements Relaxed/neutral NIPS Capturing video of the 
lower body, focusing on 
the legs and feet

Detecting leg, analyzing leg movement, muscle 
tension, and positioning consistent with relaxed or 
neutral posture

Tense or flexed NIPS Capturing video of the 
lower body, focusing on 
the legs and feet

Detecting legs, analyzing leg movement, muscle 
tension, and positioning showing tension or flexing 
(e.g., kicking, legs held tightly)

State of arousal Calm or sleeping NIPS Collecting audio data 
using a microphone; Face 
video capture

Audio: no significant change in vocal patterns; 
Visual: facial landmarks consistent with a calm or 
sleeping state

Agitated or awake NIPS Collecting audio data 
using a microphone; Face 
video capture

Audio: changes in vocal patterns; Visual: facial 
landmarks and expressions indicating agitation 
or alertness

Upper 
limb movements

No movements BPS Capturing video of upper 
limb posture

Absence of movements, relaxed positions

Partially bent BPS Capturing video of upper 
limb posture

Partially bent positions (e.g., slight flexion of fingers 
or wrists)

Fully bent with 
finger flexion

BPS Capturing video of upper 
limb posture

Fully bent positions with finger flexion (e.g., clenched 
fists, flexed elbows)

Permanently  
retracted

BPS Capturing video of upper 
limb posture

Permanently retracted positions (e.g., arms held close 
to the body, limited movement)

Muscle tension Relaxed CPOT Capturing video of upper 
limb posture

Smooth, easy movements during passive flexion/
extension, relaxed muscle tone when at rest and 
being turned.

Tense, rigid CPOT Capturing video of upper 
limb posture

Resistance to passive flexion/extension, visibly strained 
muscle tone, tightened muscles when at rest and 
being turned.

Very 
tense, or rigid

CPOT Capturing video of upper 
limb posture

Strong resistance to passive flexion/extension, visibly 
rigid muscle tone, severely tightened muscles when at 
rest and being turned.

The data collection process starts by setting up data annotation protocols which 
involve consultations with clinical and pain management experts, physicians, and 
nurses having extensive experience in pain management. A detailed set of guide-
lines outlining the expected outcomes for each pain indicator are developed. The 
guidelines also include examples of correctly annotating data and a description of 
the factors to be analyzed for each pain indicator.

In the next step, requisites for data collection are established which involve set-
ting up the necessary equipment, such as the cameras, microphones, and computing 
platform, to collect and process the audio-visual data. After collecting the data, it 
is pre-processed to ensure its compatibility with annotation tools and techniques. 
Video data is processed to extract visual features such as facial landmarks, body 
postures, limb movements, etc. Whereas, audio data is processed to extract vocaliza-
tions, coughing, and crying sounds. The processed data is stored securely to ensure 
privacy and compliance with relevant regulations.

Subsequently, the data is annotated by pain management experts, physicians, and 
other relevantly trained professionals using the established protocols. It is essential 
to maintain the quality during the annotation process by monitoring the consistency 

Table 4. Audio-visual data collection for behavior pain scales (Continued)
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and accuracy of the annotators. Inter-rater agreement measures are also imple-
mented to assess the consistency of annotations among multiple annotators.

4.6	 Developing	machine	learning	models	for	pain	estimation

The objective of this stage is the development of machine learning models tai-
lored for pain estimation. This is accomplished by developing and training multi-
modal models, which use audio and visual cues to predict pain levels, based on a 
diverse array of pain indicators. Each pain scale encompasses different indicators, 
each of which comprises several classes and associated scores. The aim is to accu-
rately predict a specific class for each pain indicator, and then aggregate these indi-
vidual scores to arrive at a comprehensive pain score. This can be achieved through 
the deployment of a singular, integrated model composed of multiple sub-networks 
(models), each tailored to address a specific pain indicator.

In simpler terms, the integrated model could be a combination of several indi-
vidual pain indicator models, each addressing a multi-class problem. For instance, 
in the case of the CPOT scale, the integrated model will incorporate four separate 
sub-networks, each of which is dedicated to predicting different states of facial 
expressions, body movements, muscle tension, and vocalization. The scores associ-
ated with each state are then compiled to provide the final overall pain score.

An alternative to the combined models’ approach is the development of a unified, 
multimodal model. Leveraging efficient fusion techniques for integrating data from 
multiple modalities, such a model can provide effective pain score estimation [141]. 
Recent advances in multimodal transformer models, capable of encoding raw 
input data concurrently across a broader array of modalities [142], open up new 
possibilities. The potential of these models for developing a comprehensive multi-
modal pain estimation system is certainly worth exploring.

4.7	 Data	protection	and	privacy

Data protection and privacy compliance with GDPR must be ensured. Robust 
mechanisms for data anonymization and protection for the contactless sensing 
system must be developed [143]. All the identifiable information, such as patient 
names or medical records, is removed from the data before it is used for training 
the models. Differential privacy techniques are applied during model training to 
withhold information about individual patients [144]. To ensure that the data cannot 
be linked back to specific individuals, pseudonymization techniques, such as using 
unique identifiers for patients, are used [145]. In addition to that, access to the data 
is restricted to authorized personnel only. Protection from unauthorized access is 
provided by implementing security protocols such as encryption and secure data 
storage. It is also essential to conduct regular audits and reviews to ensure adher-
ence to GDPR [146]. Any necessary updates or changes to the data protection and 
privacy measures need to be made promptly to ensure continued compliance.

4.8	 Generating	narrative	and	visual	explanations	of	the	results

Generating clear and informative explanations of the results generated by the 
real-time pain estimation system is essential. The explanations can be provided 
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either in narrative or visual form (or both) which can further help enhance the 
transparency and trust in the system. At the same time, explanations also provide 
valuable information for healthcare providers to make informed decisions about 
patient care.

Narrative explanations are helpful to give an insight into the system’s perfor-
mance as well as its accuracy and precision in pain prediction. The explanations 
about the decisions made by the AI system provide an overview of how the various 
pain indicators are combined to generate the pain intensity score, and what the 
influence of each indicator on the pain prediction is. The narrative explanations, 
written in clear and concise language, are made accessible to both healthcare pro-
viders and patients. An automated narrative can be generated by fine-tuning a large 
language model.

Narrative explanations are further complemented by visual explanations which 
comprise interactive graphs, charts, and diagrams that can help healthcare providers 
and patients understand the system’s performance and the factors that contribute 
to pain intensity scores. Due to their user-friendly and easy-to-understand presenta-
tion, visual explanations make it easier for healthcare providers to communicate the 
results to their patients in a simple form.

The narrative as well as visual explanations are further made available to 
medical experts and researchers through a user-friendly and intuitive interface, 
allowing medical experts to easily access and evaluate the explanations, and facil-
itating the medical researchers to gain insight into AI decisions to find the influ-
encing factors.

4.9	 Pain	estimation	sandbox

Pain estimation sandbox operates as a secure, controlled environment, facilitat-
ing the seamless ingestion and preprocessing of multiple modalities pertaining to 
pain indicators in hospitals or research centers while adhering to data protection 
regulations, as shown in Figure 4. The data is then preprocessed within the sand-
box, including steps like image resizing, normalization, and data augmentation, to 
improve model training. Based on the evaluation results, the model is refined by 
adjusting hyperparameters, incorporating additional data, or employing advanced 
techniques like transfer learning [147]. Feedback from medical professionals, such 
as pain management experts, is also gathered, ensuring the model meets real-world 
requirements and expectations.

The models for pain indicators recognition and pain estimation are integrated 
into a simulated healthcare environment within the AI sandbox to test their perfor-
mance under realistic conditions. For instance, these models might be put to the test 
in a virtual patient monitoring setup to assess their proficiency in accurately iden-
tifying and scoring levels of pain based on a patient’s visual and auditory cues. This 
step helps identify potential issues that might arise during deployment and ensures 
seamless integration with existing healthcare systems.

Once the models and the algorithms have been thoroughly tested and validated 
within the sandbox, they are deployed in a real-world healthcare setting, an intensive 
care unit or a postoperative recovery room. Continuous monitoring and feedback 
collection from end-users, such as nurses, clinicians, and pain experts, ensure the 
model remains accurate and effective over time. Any necessary updates or improve-
ments are made within the AI sandbox before being deployed to the production 
environment.
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Fig. 4. Pain estimation sandbox

5	 EVALUATION	AND	VALIDATION	OF	THE	PAIN	
ESTIMATION	SANDBOX

Conducting a clinical evaluation of the developed real-time pain prediction sys-
tem is essential before deploying it in real scenarios. The evaluation needs to be car-
ried out in various clinical and hospital settings to test the system’s performance in 
real-world scenarios. The evaluation is primarily focused on assessing the accuracy 
and reliability of the system, as well as its usability and user acceptance. The eval-
uation involves testing the system’s effectiveness in detecting and managing pain 
for patients with dementia and other cognitive disabilities. The results of the clini-
cal evaluation are used to refine and improve the system and ensure that it meets 
the needs of both patients and healthcare providers. The findings of the evaluation 
must be documented in a report, which can be made available to stakeholders and 
medical experts.

Engaging medical practitioners directly in the evaluation process can add signif-
icant depth to the validation of the AI system. Hence, to strengthen the evaluation 
mechanism and ensure that the AI system aligns more closely with clinical interpre-
tations, a user-friendly interface could be integrated. This interface will allow med-
ical technicians and physicians to effortlessly input annotations, share comments, 
and rate the perceived pain levels based on their expertise and observations. By 
integrating these professional insights into the system’s learning loop, the AI sys-
tem can be provided with enriched datasets and additional reference points. This 
dynamic feedback mechanism will further fine-tune the system’s accuracy, bridging 
the gap between automated AI interpretation and human clinical expertise. This 
symbiotic relationship, wherein the AI learns from clinical observations while sup-
porting medical professionals with its predictions, will be pivotal in enhancing the 
credibility and precision of our pain estimation system.

We underscore the significance of implementing robust testing frameworks for 
AI systems, especially within the realm of contactless healthcare. It is of paramount 
importance to establish test beds with diverse datasets to fully grasp the capabilities 
and boundaries of AI algorithms. Such diversity ensures the simulation of various 
real-world scenarios, pushing the boundaries of AI and confirming its adaptability. 
Particularly in pain estimation, challenges often arise from sparse datasets, or even 
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initial datasets that might be limited or heavily anonymized [148]. This underscores 
the necessity of utilizing a blend of datasets. While expansive datasets enable the 
system to discern overarching patterns, smaller, specific datasets improve the AI’s 
performance in rare or less frequent cases. The overarching goal is to subject the 
system to a comprehensive spectrum of pain manifestations, ranging from the most 
prevalent to the most atypical.

Simulated patient cases, rooted in genuine clinical experiences and medical lit-
erature, should be seamlessly incorporated. They serve as an evaluative tool, exam-
ining the AI’s performance under realistic conditions and spotlighting areas ripe for 
enhancement.

Holzinger’s elucidation of the interactive machine learning paradigm for health-
care solutions [149] offers a blueprint that resonates with our stance. Holzinger 
describes it as a system where “algorithms interact with agents, optimizing their 
learning behavior through these interactions, where agents can also be humans” [149]. 
Building on this foundation, we advocate a human-in-the-loop methodology. This 
interactive framework, which combines algorithmic computations with human 
insight, promises a depth of understanding that traditional methods might overlook.

6	 ETHICAL	CONSIDERATIONS

Pain is the most common reason why patients begin to seek medical attention 
and care [150]. Ethical considerations in pain management usually relate to two 
main issues: i) pain management as a human right, and ii) patient-physician rela-
tionship [151]. Since pain management as a human right is ethically important to 
provide for patients, all new technological devices and tools to support this initia-
tive are recommended. In addition, new technological innovations are also able to 
support the positive development of patient-physician relationships in all phases of 
care processes. Although the intention to provide technological support for those 
ethically important needs would be well justified, the developers should put special 
focus on data protection and privacy issues.

It is important to draw attention to patients’ privacy concerns in designing pain 
management systems. Privacy concern means a situation where a person feels that 
his personal space is threatened, and it influences his behavior [152]. Reducing 
privacy concerns while persons adopt new e-health services and technologies is 
important for successful adoption [153]. For example, an organization’s ability to use 
a person’s sensitive data reduces trust in that organization [154]. Health and medi-
cal organization can increase the trust of patients and their willingness to provide 
personal data to the use of organizations by providing benefits to them [155]. Thus, 
trade-offs between patients’ personal data and personal benefits are recommended 
as patients feel that they will also receive personal value if they provide consent to 
use their data in medical research and care processes. Prior health research [153], 
[156], [157] points out that demographics, information type, situational factors, and 
patient’s preferences towards the opinions of organizations impact their privacy 
concerns. In addition, the authors in [153] show that females and healthy adults 
have more security and privacy concerns than males and the ailing elderly. Health 
status also affects patients’ attitudes toward organizations that collect and use their 
personal information [158]. Persons’ experiences with genetics also affect their 
willingness to participate in medical gene studies [159].

World Health Organization’s guidance [160] for ethics and governance of arti-
ficial intelligence for health states that the key ethical principles for the use of 
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artificial intelligence for health are protecting patients’ autonomy, promoting 
human well-being, human safety and the public interest, ensuring transparency, 
explainability, and intelligibility, fostering responsibility and accountability, ensur-
ing inclusiveness and equity and promoting AI solutions that are socially responsi-
ble and sustainable. Adapting those key principles in designing AI-based healthcare 
and medical services and technologies is expected to increase human autonomy, 
trust, transparency, and explainability while using those AI solutions. The lack of 
transparency and explainability of AI solutions is a key challenge in healthcare 
[161]. Similarly, unwanted biases, discrimination and misleading and inconclusive 
evidence cause several challenges from the ethical perspective [162].

Pain estimation systems using an AI sandbox in medical and healthcare contexts 
should increase patients’ autonomy, safety, and well-being. That means that the AI 
sandbox may not limit patients’ ability to choose measurement systems that pro-
mote ethical risks and decrease their safety and well-being during the medical care 
processes. An essential question is whether an AI sandbox as a closed system poten-
tially creates new ethical or privacy challenges compared to AI systems that have 
secured data access or integration to Internet-based services. Although the closed 
system is evidently more secure from vulnerabilities and attacks, it does not have 
real-time data integration and sharing with other medical or healthcare systems. 
This might limit its user experience, remote use, and multimodality. Transparency 
and explainability are not dependent on external data integration if they are 
embedded software features that function as part of the AI system. Accountability, 
responsibility, and sustainability are typically related to the adaptation and usage 
processes, not software features and functionalities or data integration. A pain 
management system running in the closed AI sandbox operates with data, algo-
rithms and other software resources that AI solutions can use within the sandbox 
without any direct external integration and real-time access. Thus, its ability to per-
form real-time analytics by integrating external data sources and the ability to use 
external infrastructure resources for calculation and computing processes is partly 
blocked. This might potentially weaken its usability, performance, and intelligence 
but simultaneously, practitioners and users can trust its privacy, security, and eth-
ical capability.

The challenge of protecting patient data spans various phases of healthcare [163]. 
Before the care process, patients must grant informed consent regarding data col-
lection and its subsequent use. Often, patients exhibit a greater willingness to share 
their data when aware of the potential benefits [155]. During the care process, data 
transmission and processing from devices to cloud-based computing and storage 
is crucial from privacy and security perspectives. Although privacy protection still 
lacks widely accepted technical standards, it should be implemented with general 
technical standards from the whole system perspective [164]. Analyzing highly 
anonymized data in healthcare challenges the capabilities of machine learning 
algorithms due to the difficulty to learn the internal connections and meanings of 
information cues from the lean information of anonymized data sets [165], [166]. 
In addition to anonymization, encryption of patients’ data is important for privacy 
and medical data protection in healthcare devices. Especially systems that include 
several sensor devices that transmit data to cloud servers require high-level security 
features. In this connection, the studies such as [167] describe an IoT-based health-
care system where plain text is encrypted to cyphertext by using a secret key with 
an initial vector i.e., a random number for each counter to safeguard the plain text 
data even from potential internal threats.
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7	 IMPLEMENTATION	AND	ADOPTION	BARRIERS

While designing a secure and ethical pain estimation system using an AI sand-
box for contactless pain detection, certain challenges related to data uploading and 
updating, data anonymization, and consent management must be addressed.

7.1	 Data	uploading	and	updating

Uploading and updating data from external databases to the AI sandbox sys-
tem is a critical step that requires careful consideration of potential vulnerabilities 
and malicious attacks. This process is a potential entry point for attacks, and hence, 
ensuring a secure data transfer mechanism is crucial.

One approach to mitigate these risks is the use of secure and encrypted data trans-
fer protocols, such as Secure File Transfer Protocol (SFTP) or Secure Copy Protocol 
(SCP), which provide strong authentication and secure communications over net-
works. Data integrity checks should also be employed during the data transfer pro-
cess. Checksums or hash values can be computed for the data before and after the 
transfer. If these values match, the data integrity is confirmed. If not, it suggests the 
data may have been tampered with during the transfer.

Furthermore, a dedicated intrusion detection system (IDS) could be employed to 
monitor the data transfer process and system activities, detect possible malicious 
activities, and alert system administrators. Regular audits and updates of security 
policies and practices are also essential to ensure the continued security of the data 
transfer process.

7.2	 Data	anonymization

Regarding the anonymization of personal data, it is most secure to perform this 
process within the AI sandbox system. This approach minimizes the exposure of per-
sonal data during transfer and storage. The anonymization process should employ 
techniques such as data masking, pseudonymization, and generalization to ensure 
that personal identifiers are sufficiently altered or removed.

If the anonymization process needs to be performed outside of the AI sandbox, 
additional security measures should be implemented. This could include the use of 
secure and encrypted connections for data transfer, restricting access to the data to 
authorized personnel only, and employing strong data anonymization techniques.

7.3	 Consent	management

When data is saved, shared, and used outside of the AI sandbox, appropriate 
consent management strategies need to be implemented. Clear and explicit consent 
should be obtained from patients or their legal guardians before their personal data 
is used. This includes informing them about how their data will be used, who will 
have access to it, and the measures in place to protect their data.

In situations where patients may be too sick or old to provide consent, alterna-
tive consent mechanisms should be employed. This could involve obtaining consent 
from a legal guardian or a designated health proxy. In all cases, the principle of 
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minimal data usage should be applied—only the data necessary for the intended 
purpose should be used. Additionally, a robust data governance framework should 
be implemented to ensure ongoing oversight of data use. This includes monitoring 
and auditing data usage, implementing mechanisms for data subjects to withdraw 
consent or request data deletion, and ensuring compliance with applicable data 
protection laws and regulations.

7.4	 Promoting	acceptability	and	user	trust

The successful implementation and adoption of the AI sandbox for contactless 
pain detection hinge on user acceptability and trust. Earning this trust requires trans-
parency about the AI system’s workings, decision-making processes, and potential 
risks and benefits. Clear, understandable explanations about these aspects can foster 
this transparency. Robust data security and privacy measures are crucial for estab-
lishing user trust. The system needs to demonstrate a strong ability to safeguard 
sensitive health data and maintain user privacy. Regular audits and transparent 
reporting about these measures can bolster this trust.

The AI system must be user-centric, designed to cater to users’ needs and pref-
erences with intuitive, easy-to-use features. Actively seeking and incorporating 
user feedback into system enhancements can ensure the system aligns with users’ 
expectations. In addition, continuous engagement with users and stakeholders can 
cultivate a sense of ownership and involvement, further enhancing user trust and 
acceptability. Regular communication, training, and opportunities for user feedback 
and involvement in system development can facilitate this engagement.

8	 DISCUSSION

As we traverse further into the realm of technological progress, remarkable 
advancements in both sensing technologies and machine learning have paved the 
way for contactless data acquisition. This revolutionary development mitigates 
the necessity for invasive or contact-based sensors, expanding the potential for 
research in a plethora of healthcare applications.

Our exploration serves as a practical case study demonstrating how AI sandbox 
technologies can be harnessed effectively in healthcare. This scenario illustrates the 
potential for these technologies to address existing challenges in healthcare, while 
also emphasizing the critical need to uphold ethical considerations and security in 
the design and implementation of AI-based solutions. Through this lens, our research 
offers a new perspective on the role of AI within healthcare, specifically in refining 
and enhancing pain estimation procedures.

While the domain of automated pain estimation has been explored extensively, 
there is a notable lack of focus on the automation of established, clinically validated 
pain tools. These tools, underpinned by empirical evidence, hold the potential to 
offer a more intricate understanding of pain levels. The widely used, unimodal 
method of pain estimation leveraging facial expression recognition, either through 
automated methods or observer-based tools is prone to inter-subject variability, 
facial paralysis, as well as cultural and personal differences. Therefore, it must 
be augmented with other modalities. Furthermore, physiological signals—while 
often used as indicators—can be influenced by other emotions like stress, fear, and 
anxiety, adding an additional layer of complexity to the pain estimation process. 
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Moreover, these signals have not been emphasized in traditional pain assessment 
tools. Therefore, our research underscores the need for considering additional 
modalities, including contactless behavioral cues, for more effective pain estimation.

In particular, our work highlights the under-recognized role of vocalization in 
pain estimation. Despite its significance in various pain scales, the existing litera-
ture has not fully acknowledged its contribution to accurate pain estimation. Our 
proposal emphasizes the automation of standard pain scales, suggesting that this 
approach could enhance the precision of pain assessments, particularly for patients 
with communication difficulties.

In practical terms, our work provides a detailed plan for a contactless, multimodal 
pain estimation system within a secure AI sandbox, forming a blueprint for real-
world implementations. It focuses on automating standard pain scales, improving 
pain understanding, and addressing the limitations of current methods through the 
inclusion of various modalities. This enhances pain estimation accuracy and con-
tributes to better pain management strategies. The application of AI sandbox for this 
purpose presents an opportunity to address several practical challenges in the field 
of healthcare. It offers a controlled environment for rigorous system testing, evalua-
tion, and improvement. It also ensures security, data privacy, and reliability during 
operation. Our practical contributions extend to data collection and management. 
We identify specific cues for each pain indicator across pain scales, enabling com-
prehensive data gathering. When paired with advanced machine learning, this data 
can yield highly accurate and reliable pain prediction models.

The wealth of existing literature corroborates the potential of contactless moni-
toring methods in healthcare. Progress in computer vision, speech processing, and 
machine learning has created a dynamic pathway for gathering and analyzing cues 
from various pain indicators for efficient pain estimation. The facial expression 
analysis, a well-researched area, could be exploited further, in combination with 
other modalities, for the automation of standard pain scales. Additionally, the Facial 
Action Coding System [168] could be employed to further interpret the cues listed 
in Table 4. There is a good potential for augmenting facial expression recognition 
with other cues as discussed in this paper. Several other pertinent techniques, such 
as vision-based vital sign monitoring [169], adaptive breath monitoring [170], upper 
limb tension detection [171], infant cry detection [172], and posture monitoring of 
bedridden patients [173], among others, could be fruitfully applied to automate the 
discussed pain scales.

However, the adoption of a closed pain management system poses several chal-
lenges, including issues related to usability, intelligence, and real-time analytics. 
This is primarily because closed systems cannot directly access external databases, 
Internet-based cloud computing, and machine learning resources. Thus, our study 
underscores the necessity for further research to strike the right balance between 
security measures, user settings, and seamless integration with other systems such 
as patient and care process information.

9	 CONCLUSION

In this study, we have advanced the concept of automating standard pain scales, 
particularly for patients having cognitive impairments or communication challenges. 
To that end, we have offered a meticulously devised roadmap for creating a contact-
less, multimodal pain estimation system in a secure AI sandbox environment. While 
detailing a comprehensive systematic approach for data collection and analysis of 
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each pain indicator falls outside the purview of this study, our work brings forth 
significant insights and valuable contributions. These contributions encompass 
the delineation of multimodal cues linked with standard pain scales, the establish-
ment of a systematic framework for generating a contactless pain estimation system 
within an AI sandbox, and a thorough investigation of pertinent ethical and pri-
vacy issues, all of which are based on robust theoretical foundations. This compre-
hensive approach seeks to assist researchers as they chart their course through the 
expanding territory of secure, automated, and contactless healthcare systems.

As we look to the future, we anticipate that our study can act as the foundation for 
future investigations in this realm. There are substantial opportunities for advancing 
this research in multiple directions, such as improving the trustworthiness of pain 
recognition, expanding the dataset to include a wider range of pain indicators, and 
further refining the models for more accurate pain estimation. Additionally, more 
emphasis can be placed on integrating these systems into real-world healthcare  
environments and assessing their performance and impact in these settings.
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