
	 40	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

iJOE  |  eISSN: 2626-8493  |  Vol. 20 No. 1 (2024)  | 

JOE International Journal of

Online and Biomedical Engineering

Weerasinghe, S., Perera, I. (2024). Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices. International
Journal of Online and Biomedical Engineering (iJOE), 20(1), pp. 40–57. https://doi.org/10.3991/ijoe.v20i01.44021

Article submitted 2023-08-13. Revision uploaded 2023-10-24. Final acceptance 2023-10-31.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Optimized Strategy in Cloud-Native Environment
for Inter-Service Communication in Microservices

ABSTRACT
Cloud computing has become a prominent technology in the software development industry.
The term “cloud-native” is derived from cloud computing technologies and refers to the
development and deployment of applications in a cloud environment. In the software
industry, most enterprise-grade software buildings use the microservice architecture and
cloud natively, ultimately leading to an expansive development in the software develop-
ment framework. Microservices are deployed in a distributed environment and function as
independent services. However, they need to communicate with each other in order to ful-
fill the functional requirement. Additional latency will be introduced when communicating
with other services. Hence, it will impact the overall application response time and through-
put. This research proposes a solution for the aforementioned problem in the cloud-native
environment. A Request-response-based TCP communication solution has been developed
and tested in the cloud-native, containerized environment. Experimental results showed
that the turnaround time of the proposed solution is shorter than that of traditional HTTP
communication methods. Furthermore, the results summarize that both vertical and hori-
zontal scaling are improving the overall performance of the systems performance in terms
of response time. Conclusively, the proposed solution improved the microservice perfor-
mance and preserved the existing cloud-native qualities, such as scalability, maintainability,
and portability.

KEYWORDS
cloud native, microservice, inter-service communication

1	 INTRODUCTION

As user requirements become increasingly complex, it is challenging to
efficiently address them using a monolithic architecture. Consequently, companies
have begun transitioning to microservice architecture in software development to
better accommodate these evolving needs. This approach involves breaking down
large, monolithic applications into small, reusable services that can be utilized

Sidath Weerasinghe(),
Indika Perera

Department of Computer
Science & Engineering,
University of Moratuwa,
Moratuwa, Sri Lanka

weerasingheldsb.20@
uom.lk

https://doi.org/10.3991/ijoe.v20i01.44021

https://online-journals.org/index.php/i-joe
https://online-journals.org/index.php/i-joe
https://doi.org/10.3991/ijoe.v20i01.44021
https://online-journals.org/
https://online-journals.org/
mailto:weerasingheldsb.20@uom.lk
mailto:weerasingheldsb.20@uom.lk
https://doi.org/10.3991/ijoe.v20i01.44021

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 41

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

across multiple applications. In a monolithic architecture, all components are
tightly coupled. Therefore, scaling the application necessitates scaling the entire
system, which can be inefficient and costly. With microservices, components
are loosely coupled and can be scaled independently, allowing for more efficient
resource utilization. Each microservice can be developed, tested, and deployed
independently. This makes it easier to incorporate complex user requirements, fix
bugs, and update the system without impacting the entire application. In contrast,
in a microservices architecture, components are designed to be resilient and capa-
ble of continuing to function even if other components fail. With a microservices
architecture, developers have the flexibility to select the most suitable technol-
ogy stack for each component, potentially resulting in improved scalability and
reliability. Many of these patterns are pioneered by companies such as Netflix,
which is famous for migrating from a monolithic architecture to a microservice
architecture.

In a microservice architecture, each microservice must communicate with
one or more microservices to fulfill the functional requirements. Two main
methods are used for inter-service communication: synchronous and asynchro-
nous. Numerous technologies are involved in these two communication methods.
In every environment, networking plays a crucial role in the system, as network
behavior is constantly changing and serves as a dynamic resource. Working in a
dynamic environment can be challenging, requiring individuals to take responsi-
bility for environmental changes. For instance, when a particular service sends a
large message request to another service over the network, it consumes resources,
ultimately affecting the overall network. As a result, the message flow will slow
down. As a result, inter-service communication during execution will cause addi-
tional latency in the operation. As a result, the application’s overall performance is
likely to degrade in terms of both application response time and throughput. In a
microservices architecture, individual microservices use their own data sources.
To tackle the performance challenges that come with this setup, caching mecha-
nisms have been implemented. However, there is still no standard method or guide-
line being implemented to improve application performance in service-to-service
communication.

Cloud-native is a modern software development and deployment approach
that utilizes cloud technologies and related methods to construct and deploy soft-
ware that is more resilient, easily scalable, and flexible. It is a modern approach
to developing and managing software that leverages cloud computing to enhance
the delivery of software products. The cloud-native approach involves developing
applications as a set of small, autonomous services running in their own containers,
which can be deployed and managed independently. These services communicate
with each other using lightweight protocols, such as HTTP, which makes it easier to
build and maintain complex applications. Containers offer a lightweight and porta-
ble environment for applications, enabling them to seamlessly transition between
development, testing, and production environments. Overall, cloud-native is a con-
temporary approach to microservice software development that harnesses the capa-
bilities of cloud computing to construct and deploy scalable, resilient, and adaptable
services. It enables organizations to enhance the delivery of software products by
leveraging the latest tools and technologies available in the cloud computing eco-
system. Cloud-native containerized environments are the optimal deployment envi-
ronments for microservice-based architectural software. However, the performance
issue continues to escalate due to the need for microservice containers to exchange

https://online-journals.org/index.php/i-joe

	 42	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

data over the network. This research primarily focuses on developing a method to
optimize inter-service communication in microservice architectures deployed in
cloud-native environments.

2	 LITERATURE REVIEW

2.1	 Background

In the early days, software was developed using a monolithic architecture.
However, due to the constant complexities of user requirements, monolithic archi-
tectural software did not have the capability to accommodate those changes in
requirements at that time. Service-Oriented Architecture (SOA) was introduced with
the separation of concepts. Subsequently, most software companies adopted the
SOA architecture for their development. The Enterprise Service Bus is utilized in
the SOA architecture for service orchestration, which has proven to be a major bot-
tleneck for that architecture. Nevertheless, SOA has gained additional quality attri-
butes, such as maintainability, scalability, and security, in comparison to monolithic
architecture. To address the challenges of SOA architecture, developers have intro-
duced a microservice-based architecture to software development. This research
conducted several test cases to evaluate the performance of SOA and microservice
architecture in terms of response time and throughput. In addition, the study calcu-
lated the resource consumption and associated costs for these two architectures [1].
The test results showed that the microservice architecture can overcome the bot-
tleneck of the SOA architecture and is a cost-effective solution compared to the
SOA architecture.

A systematic review was conducted following the PRISMA model to examine
the past, present, and future [2]. Microservices research began in the early 2000s.
Most of the research conducted on microservice architecture focuses on frame-
works, observability, and cloud computing. Most high-tech companies, such as
Spring Boot, Vertx, and Go Micro, focus on developing and improving their frame-
work. However, the microservice architecture is facing performance issues related
to latency and throughput due to interservice communications in a distributed
environment. In previous studies, we evaluated inter-service communication in
the microservice architecture using commonly used communication mechanisms
such as HTTP, gRPC, and WebSocket [3]. The HTTP protocol is frequently used for
interservice communication in microservices, and most microservice frameworks
also support this communication method. According to our research findings, the
gRPC protocol outperforms other protocols. Nevertheless, managing the message
flow will be more challenging than with the HTTP protocol, as most enterprise soft-
ware relies on HTTP-based communication. In that regard, only a few frameworks
support gRPC communications. It was also observed that latency and throughput
depend on the content of the messages communicated between the microservices.
All these tests are run in a VM-based environment. Currently, most microservices
are deployed in cloud-native environments because the quality attribute can be
easily achieved through the correct microservice architecture in cloud-native
environments. Based on all the research findings, we have determined that the
majority of enterprise software is developed using HTTP for inter-service commu-
nication. This research also examines the behavior of HTTP-based communication
to evaluate and propose a solution.

https://online-journals.org/index.php/i-joe

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 43

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

2.2	 Related work

Most software architects consider various software quality attributes, including
scalability, performance, portability, security, and many others. Antonio Bucchiarone
and his team investigated the process of achieving scalability by transitioning from
a monolithic architecture to a microservice architecture in the mission-critical
banking and financial sectors [4]. Through transitioning to the microservice archi-
tecture, they reduced system complexity and simplified integrations with lower
coupling and higher cohesion. With this separation, the researcher was able to
adjust the required services based on traffic. Budapest University of Technology
conducted a comparative review of monolithic and microservice architectures to
assess the performance impact of concurrent requests [5]. The researcher utilized
the JMeter tool to generate concurrent requests and measure the response time and
throughput of both microservices and monolithic architecture software. The test
results indicated that microservices and monolithic software exhibited similar per-
formance factors under normal load. However, under high load, the response time
and throughput degraded in the microservice architecture. Momil Seedat and the
research team systematically mapped the transition from monolithic architecture to
microservice architecture and presented a technique for identifying microservices
within the monolithic architecture using the concept of domain-driven modeling [6].
This model includes domain analysis, bounded context discovery, domain service
selection, microservice identification, and aggregation. The technique proposed by
the research team can help enhance overall application performance and can be
applied to the system transition model. However, that is not a suitable option for
software with a lower level of complexity. The Ministry of Technical and Vocational
Education in Libya conducted a study on the structural differences between micro-
services and monolithic architecture [7]. According to their research study, the
monolithic architecture is suitable for small software developed by a small team.
However, if the software is complex and requires several teams to build it, then
microservice architecture is the best fit for that scenario. Nowadays, most soft-
ware is built to enterprise-grade standards, and such software handles complex
logic. Therefore, as we move forward, all software development is involved with
microservice development.

In the realm of deployment strategies, microservices are constantly evolving
due to technological advancements. Most of the research on microservices is con-
ducted using on-premise virtual machines (VMs) or enterprise-grade cloud VMs.
The microservice architecture software is also deployed in the same environments.
A team of researchers at the University of Bozen-Bolzano studied different micros-
ervice architectural patterns and principles, taking into account their deployment
using DevOps techniques. According to research, microservice orchestration and
data storage patterns are identified as emerging areas within the scope of micros-
ervices. In the DevOps context, continuous integration and continuous deployment
(CI/CD) pipelines, cloud orchestration and coordination, and scalability are identified
as major research trends. When examining similar research studies, it is evident
that cloud-native development and deployments are playing a significant role in
the context of microservices. Nane Kratzke and Peter-Christian Quint systematically
reviewed the cloud-native application, starting from the perspective of cloud com-
puting, and identified isolated engineering. Trends with the technologies [8]. They
are developing microservices in a cloud-native manner, utilizing DevOps, softwa-
reization, elastic platforms, loose coupling, and APIs. The microservice focuses on

https://online-journals.org/index.php/i-joe

	 44	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

developing independent services that can be horizontally scalable and deployed on
elastic platforms such as Kubernetes [9], Apache Mesos [10], and Docker Swarm [11].
With DevOps and softwareization technologies, automation, rapid releases, and
software builds are facilitated. Concordia University Montreal and Ericsson Inc.
conducted research on the Availability Management Framework for cloud-native
microservices [12]. This research primarily focuses on deploying microservices in a
cloud-native environment using container orchestration techniques. The research
team at Vellore Institute of Technology, Chennai, evaluated the impact of replacing
on-premise applications with cloud-native applications [13]. They have introduced
the cloud-based AppStream, which is deployed in the AWS cloud, and compared the
cost, response time, and storage usage with on-premises deployment. According to
the statistics, migrating to the cloud reduces overall deployment costs as well as
response time and required storage. Manish Saraswat et al. conducted an analysis
of leading cloud providers in their respective areas of expertise [14]. According to
the researchers, Azure Cloud is ideal for users of Windows-based operating systems,
AWS Cloud is suitable for stable services, and Google Cloud is well-suited for users
working with container-based models and innovations. Most microservices are
now deployed as containers. According to Manish Saraswat, Google Cloud provides
greater value for container orchestrations.

In a cloud environment, similar to the on-premise setup, microservices also need
to interact with other microservices or cloud services to process the required output.
In a VM-based environment, microservices utilize various protocols to commu-
nicate with other services, including HTTP, HTTPS, Web Sockets, gRPC, and other
messaging protocols, such as JMS and AMQP, which are increasingly popular for
microservices communications with a publisher-subscriber architecture. They are
facilitated by well-known message brokers such as Apache Kafka, Apache ActiveMQ,
and RabbitMQ [15]. Most of the microservices are currently deployed in container-
ized environments. Therefore, such environments also require a proper mechanism
for inter-service communication. The KTH Royal Institute researched the service
mesh architecture in the Kubernetes environment for microservices [16]. The Istio
service mesh has been utilized for researching and evaluating software quality
attributes [17]. According to research analysis, service meshes bring ease of use to
application developers. However, after using these tools and technologies, appli-
cation performance degraded in terms of latency, CPU, and memory consumption.
Further studies have found that Service Mess lacks sufficient testing tools and tech-
nologies in the quality assurance area. Certain industrial articles highlight the four
types of communication models in Kubernetes environments: container-to-container
communications, pod-to-service communications, pod-to-pod communications, and
external-to-internal communications [18].

3	 METHODOLOGY

This research aims to implement an optimized solution for inter-service com-
munication in microservices deployed in cloud-native environments, ensuring
minimal performance impact during message passing between the microservices.
When introducing a solution for inter-service communication, it is essential to focus
on message transfer protocol, network layer resource consumption, communication
style, and programming complexity. The message transfer protocol is very important
because the OSI layer used for communication is solely determined by that decision.

https://online-journals.org/index.php/i-joe

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 45

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

Most applications use the application layer for communication because it supports
a wide range of libraries. If an application can utilize the network layer for mes-
sage transport, it can achieve better performance compared to using the application
layer. These protocols handle the addressing, routing, and swift delivery of packets
to their destinations. By prioritizing efficiency at the network layer, overall network
performance can be improved. The consumption of resources at the network layer
directly impacts communication. Each time, the application needs to send the small-
est possible network packet to conserve network resources; otherwise, communi-
cation can be impacted by network congestion, latency, and bandwidth limitations.
Asynchronous communication is gaining popularity for event-driven programming.
Most applications use publish-subscribe model for asynchronous communication
and the message broker.

Fig. 1. Architecture

When considering all the facts, the optimal solution should utilize the TCP layer
for communicating with other services. Conversely, messages should be trans-
mitted to other services in a compressed format over the network. The solution
should utilize pub-sub communication with message delivery and a guarantee
of exact one-delivery. As shown in Figure 1, when communicating with the TCP
layer protocol, there should be a mechanism to ensure message reliability. When
considering these requirements, the MQTT and AMQP protocols with topics and
queues would not be a better solution in this scenario due to their complexity
and performance overhead. Cloud-native environments are dynamically scaled
up and down, so these protocols do not include built-in mechanisms for service
discovery. Scaling can be more challenging because of the necessity of manag-
ing message routing and queues. The selected method must support serialization
and deserialization without causing performance overhead to minimize network
resource consumption during message transmission between microservices over
the network. Additionally, it should also facilitate dynamic scaling in cloud-native
environments.

https://online-journals.org/index.php/i-joe

	 46	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

3.1	 Technology selection

According to the literature review, the majority of enterprise software companies
use container orchestration engines for deploying microservices when adopting
cloud-native technologies. Kubernetes, the most powerful container orchestra-
tion engine, offers robust capabilities for application deployments, including easy
vertical and horizontal scalability, high availability, and maintainability [19].
There are various ways to use Kubernetes, including managing it through cloud
providers, installing it on on-premise servers using Kubeadm/Kops, and run-
ning MiniKube on desktop machines [20]. Major cloud providers such as AWS,
Google, and Azure offer managed Kubernetes services known as Amazon Elastic
Kubernetes Service (EKS), Google Kubernetes Engine (GKE), and Azure Kubernetes
Service (AKS). Any Kubernetes engine can be used for the proposed solution. For
research purposes, the Google Kubernetes Engine has been utilized in this scenario.
Google manages GKE [21] and offers additional features. Kubernetes manages the
containers and container clusters running on the Google Cloud infrastructure. The
Google Cloud provider manages the underlying architecture and administration of
Kubernetes, allowing users to deploy their containerized applications to the GKE
platform. Kubernetes follows the master and worker patterns in its architecture.
For the worker node, individuals can determine the specifications and other worker
pools based on the nature of the microservice. However, the master node is fully
managed by the Google Cloud provider. Therefore, the provider also ensures quality
attributes such as security, high availability, and resilience. With the latest autopi-
lot GKE feature, application developers do not need to worry about the nodes and
node capacity of the worker node cluster. GKE is responsible for the entire cluster
infrastructure, including both the master and the worker nodes. Researchers from
Google state that the autopilot feature can save up to 85% of resources and improve
operational efficiency [21].

Redis serialization protocol (RESP) is a protocol to communicate with its clients [22].
This protocol utilizes the serialization communication style and the binary-safe pro-
tocol mechanism. This approach minimizes bandwidth usage when transforming
data between Redis and the clients, and vice versa, compared to other protocols.
Microservices can communicate with each other using a TCP-based connection,
which offers lower bandwidth and higher speed. This is achieved using RESP with-
out defining a new protocol. Redis streams also communicate with clients using a
stream-oriented connection, similar to Unix sockets [23]. One microservice acting
as the publisher can publish messages to the stream using the stream key, while the
consumer microservice can subscribe to the stream keys. With those subscriptions,
consumers are able to access the published content. The primary advantage of Redis
streams over other streams, such as Kafka, is that Redis manages the append-only
data structure. This feature facilitates real-time messaging, as Redis streams per-
sist messages and ensure the exact delivery of published messages. Furthermore,
Redis provides high availability and fault tolerance through its built-in replication
mechanism. When considering microservice-inter-service communication, message
reliability is crucial. Therefore, the Redis stream architecture matches the proposed
communication mechanism.

In the proposed system, inter-service communication is enabled through Redis
streams using the RESP protocol. When the microservice pods are initialized, they
establish a TCP-based connection with the Redis pod and maintain the connection
until the pod is terminated. As a result, when sending and receiving messages,
microservices do not need to worry about opening and closing connections.

https://online-journals.org/index.php/i-joe

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 47

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

The opening and closing times of network sockets will not affect this solution,
thereby enhancing the overall performance of the microservice. Messages sent
and received via the RESP protocol using TCP-based connections, such as Unix
sockets, are serialized and sent as byte buffers to minimize network-level con-
sumption in comparison to other protocols. In the proposed solution, all the HTTP
headers were used when sending and receiving messages. The developer needs
to utilize the developed library to send and receive requests, and the response
is the same as for the HTTP clients. Software developers will be able to utilize
the developed library without altering the existing programming architecture of
the system.

4	 IMPLEMENTATION

This section emphasizes the implementation aspects of the proposed system.
The Java language is widely used as a programming language, and the Spring Boot
framework is one of the most popular microservice frameworks. The literature
review reveals that the majority of researchers and industry applications utilize the
Java language and the Spring Boot frameworks to develop research-based micros-
ervices and enterprise applications. Based on those guidelines, we decided to utilize
the Java and Spring Boot framework to implement this research component. The lat-
est iterations of the Spring Boot framework support the development of cloud-native
applications. The OpenJDK docker base image has been used for creating the docker
images since those images are optimized for the Java runtimes and are lightweight
compared to a Linux image.

Figure 2 illustrates the component architecture of the microservices and their
interfaces with external clients and other internal microservices. This research
has implemented a communication layer within the research component. When
designing the solution, the microservices are divided into several internal compo-
nents, including the API interface layer, the business logic and data access layer,
and the communication layer. Through this segregation, it was able to separate
the communication layer from the other layers. No changes were made to the API,
business logic, or data access layers, as this implementation primarily focuses on
the communication layer. Another reason for exclusively changing the commu-
nication layer is that modifying the API layer would have an impact on all other
external microservice consumers. Hence, that would not be the best approach
to introducing the new development. Most developers use HTTP client libraries
to call each microservice and facilitate inter-service communication. This imple-
mentation has also followed the industry standard pattern and implemented the
request/response-based stateless client. However, the client that has been imple-
mented utilizes the pub/sub model and streams in the background, which are
not visible to the developer. Similar to the HTTP client, developers can utilize the
implemented library and progress through their development without encoun-
tering any complexity. To facilitate stream communication, Redis streams were
utilized with the assistance of the Redis server. The Spring Boot Starter Data Redis
library has been utilized at the program level to enable stream communication
with the Redis server. This library is one of the most commonly used dependen-
cies in the Spring Boot framework, providing high-level and low-level abstrac-
tions for integrating with the Redis server. The implemented communication layer
consists of three main components: consumer, stream subscription handler, and

https://online-journals.org/index.php/i-joe

	 48	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

publisher. The consumer component is responsible for consuming the messages.
In other words, this refers to receiving responses based on the subscription. The
publisher is responsible for sending the messages to other microservices via the
Redis server based on the stream key. The stream subscription handler manages
all stream subscriptions.

Fig. 2. Low-level component architecture

Figure 3 shows the request flow with the implemented solution. External appli-
cations or clients send HTTP/HTTPS requests by invoking the APIs exposed by
the API request controller in the externally facing microservice. When micros-
ervice A is created, it establishes a Unix socket-based TCP connection with the
Redis server, facilitated through the Kubernetes pods. After establishing a connec-
tion with the open TCP ports on the Redis and microservice pods, the connection
remains active until the microservice pod is terminated. After the connection is
established, subscriptions are created based on the stream keys, which are mapped
to the services exposed in the microservices, similar to the HTTP services in the
previous scenario. The stream key serves as an endpoint address in the HTTP
communication model. This means that if a request needs to be sent to another
microservice, the message must be published to the stream key subscribed to by
the other microservice. The necessary business logic and other data access layers
are executed based on the HTTP request received by Microservice A. Based on
those outputs, Microservice A created an EventStructure object, which will be sent
to other microservices as a message. The EventStructure object serves as a facil-
itator, encapsulating most of the characteristics of the HTTP request, including
the HTTP method, headers, body, and other details. The EventStructure object is
serialized and passed as a byte buffer over the established TCP connection using
the RSEP protocol. In line with that, it was possible to minimize network consump-
tion when transmitting messages across the network. Every EventStructure object
receives a unique ID when the messages are stored as a callback reference to map
the response.

https://online-journals.org/index.php/i-joe

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 49

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

Fig. 3. Request/Response flows

Figure 3 illustrates the flow of the response in the implemented research
component. According to the stream key, microservice B consumes the subscription
messages from microservice A. The stream consumer component processes the mes-
sage by mapping it back to the EventStructure object. The system then extracts message
information, similar to how an HTTP request developer retrieves request metadata
from the EventStructure object. Subsequently, Microservice B processes its business
logic and prepares the response as an EventStructure object. The stream publisher
retrieves the reply stream key from the received EventStructure object and sends the
processed request to the corresponding stream. The stream consumer of microser-
vice A processes this message, maps the response to the API request using the unique
ID, and sends the response back to the client as an HTTP response.

All microservices and Redis servers are hosted on the Google Kubernetes Engine
(GKE). Based on these findings, the literature review revealed that GKE is the most
renowned Kubernetes engine in comparison to other Kubernetes services. Google
is the first cloud provider to offer the Kubernetes engine for consumer use, and it
offers more valuable features than other cloud services. The autopilot cluster mode
has been chosen to create the Kubernetes cluster because GKE optimally manages
cluster resources, making it more cost-effective. In the latest release, the container
ID serves as the container runtime for Kubernetes pods. Kubernetes Ingress was

https://online-journals.org/index.php/i-joe

	 50	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

utilized to expose the API of the client-facing microservice (Microservice A) to
external parties. In Kubernetes, an Ingress is an API object that controls external
access to services within a cluster. It acts as a traffic controller, allowing inbound
connections to reach internal services based on specified rules. The Ingress resource
functions as a configuration layer that exposes HTTP and HTTPS routes outside the
cluster to services within the cluster. Furthermore, the NodePort service is used to
expose the TCP ports for communication between services in each microservice and
the Redis server pod. In Kubernetes, a NodePort service provides a way to expose
a service externally by assigning a specific port to all nodes within the cluster.
NodePort services can be discovered using their port number and the IP address
of any node in the cluster. The use of TCP connections enabled the transmission of
messages via the RESP protocol. All pods are deployed as Kubernetes’ “Deployment”
type. In Kubernetes, a deployment refers to a resource object used to manage the
deployment and scaling of microservices. Deployments offer a declarative method
for defining and managing the desired state of application deployments in a cluster.
They offer a higher-level abstraction that simplifies the management of replica sets
and pods, enabling efficient scaling, rolling updates, and self-healing capabilities.

4.1	 Quality attributes

Quality attributes are among the most crucial aspects of software development.
Most decision-makers consider quality attributes when making decisions. Scalability,
performance, availability, traceability, maintainability, and portability are the most
critical quality attributes of microservice architecture [24]. The cloud-native solu-
tion enabled the achievement of the required quality attributes for the implemented
research component.

Scalability: Scalability can be divided into vertical and horizontal scaling. Both
types of scalabilities can be easily achieved with the provided cloud-native solution.
The requested resource size and the maximum limit of resources can be defined for the
microservice container at the pod level. The memory and CPU limits are defined in a
way that allows for easy adjustment, enabling the allocated resources to be increased
or decreased for specific microservices. Vertical scaling can be achieved either
by using the kubectl command to invoke the Kubernetes APIs or through the GKE
web console. Vertical scaling does not impact the logic of the implemented solution.
However, it enhances the overall capabilities of the application. Horizontal scaling is
very challenging when distributed systems are using the asynchronous communica-
tion pattern. The implemented solution utilized the Redis stream, which is responsible
for delivering only one message to a single consumer. Horizontal scaling will result
in multiple subscriptions for the same stream key, but Redis ensures that it delivers
messages to only one consumer. The Redis stream originates from the EventStructure
object to inform other microservices about the sender of the message. Therefore,
based on that mechanism, the response can be sent to the correct recipient. Horizontal
scaling can also be easily achieved by adjusting the replica count of the deployment
using kubectl commands or the GKE web console. The Redis service includes service
discovery and load balancing. As a result, the developer does not need to spend time
considering it when scaling the applications. As a result, message duplication does not
occur with this implementation, ensuring the exact delivery of the message.

Availability: The cloud-native solution is deployed in a Kubernetes environment,
so if one of the pods is terminated, Kubernetes is responsible for promptly creat-
ing new pods. At the Kubernetes deployment level, the system can be scaled, repli-
cate the pods, and ensure high availability for that microservice. Another scenario

https://online-journals.org/index.php/i-joe

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 51

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

involves maintaining high availability when implementing the new release. In the
on-premises solution, we observed certain downtimes for the new release. However,
the new cloud-native architecture is designed to implement a rolling update strat-
egy for pushing new releases. Rolling updates is a default deployment strategy in
Kubernetes. It involves gradually updating the microservice pods, one at a time, while
keeping the remaining pods running. The rolling update process replaces old pods
with new ones, ensuring that microservices remain accessible during deployment.
In addition to the microservice, the research component includes the Redis server.
Redis supports both the master-slave architecture and the Redis clustering solution.
However, neither data sharding nor automatic partitioning is utilized to achieve
improved solutions in master-slave architecture. This involves deploying multiple
Redis pods using the Redis deployment, with one serving as the master Redis pod
and the others as Redis slave pods. The master pod handles ‘write operations’, while
slave instances replicate data from the master pod to handle “read operations.”

Traceability: At the development level, logging is enabled using the log4j2
library, which is performed asynchronously. As a result, there is no overhead for the
microservice application. The Redis level also provides real-time messages on the
transport layer, which can be viewed using Redis GUI clients. By using those com-
binations, it was able to achieve end-to-end traceability. Support teams can easily
identify issues by reviewing these options, ultimately minimizing the effort required
to troubleshoot and resolve issues.

5	 RESULTS AND DISCUSSION

This research primarily focuses on inter-service communication within the micros-
ervice architecture of the cloud-native environment. Based on this, the researcher has
designed and implemented a solution that is supported for running in the Kubernetes
environment as a cloud-native platform. The solution has demonstrated high perfor-
mance in terms of response time and throughput compared to traditional methods.
This research critically evaluates the implemented solution compared to the traditional
inter-service communication method in a cloud-native environment. The traditional
HTTP method and the implemented solution were deployed in the Google Kubernetes
environment, and several test cases were executed to retrieve the data.

Fig. 4. Deployment architecture for testing

https://online-journals.org/index.php/i-joe

	 52	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

Figure 4 illustrates the deployment of components in the Google Cloud environ-
ment for testing purposes. Apache JMeter is used to generate traffic and functions
as a third-party client or application. The literature review identified that JMeter
had been used to generate loads in both academic and software industry testing.
The Google Kubernetes Engine Autopilot has provisioned a Kubernetes cluster for
deploying applications. The Nginx Ingress controller has been utilized to enable an
external JMeter to access the services running within the Kubernetes cluster. The
JMeter client and the Kubernetes cluster are located in the same subnet to minimize
network latency. The JMeter has been deployed using the n1-standard-4 VM type,
which includes 4 virtual CPUs and 15GB of memory. The following test cases have
been executed to assess the system and its behavior.

Table 1. Executed test cases

Test Case

Controlled throughput to 100TPS and sent GET / 1KB payload requests. Then checked the turnaround time
difference between the implemented solution and the traditional HTTP method.

Controlled throughput to 200TPS and sent 1KB payload requests. Changed the Pods allocated CPU
from 1 core to 4 cores and analyzed the turnaround and application response times with the
implemented solution.

Controlled throughput to 200TPS and sent 1KB payload requests. Changed the Pods allocated Memory
from 1 GB to 4 GB and analyzed the turnaround time and application response time with the
implemented solution.

Controlled throughput to 200TPS and sent 1KB payload requests. Changed the Pod count from 1 to 4 and
analyzed the turnaround time and application response time with the implemented solution.

Table 1 lists all the test cases identified in this research to assess the suitabil-
ity of the solution in a cloud-native environment. Each test scenario measured the
turnaround time based on the logs, excluding any processing time. This data only
includes the time taken for the request and response between Microservice A and
Microservice B. Each test case was executed for one hour and repeated three times to
identify the variations in the data. The logs were captured using the Google Logging
service and then processed using Python scripts to analyze the data.

Fig. 5. Turnaround time graph

Figure 5 illustrates the turnaround time for traditional HTTP and the implemented
solution methods. Spring Boot Rest Templates have been utilized to facilitate

https://online-journals.org/index.php/i-joe

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 53

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

inter-service communication among the microservices. RestTemplate is a class in the
Spring Framework that simplifies making HTTP requests and handling responses
in a restful manner. Most synchronous-based microservices use this library to facil-
itate inter-service communication. According to the graph, it is evident that the
implemented solution has a shorter turnaround time compared to the traditional
HTTP method. This indicates that with the implemented solution, microservice
A will receive a response from microservice B in a shorter amount of time. In the
implemented solution, there are no socket open and close activities as in the HTTP
method. When transferring data through the network, it is serialized and passed as a
byte buffer record, resulting in low network consumption. Due to these two reasons,
the implemented solutions outperform the traditional method.

The test only considers communication between one microservice and another
in real-world scenarios; several microservices need to communicate with each other
to meet business requirements (e.g., Netflix) [25]. Although there is only a millisec-
ond improvement in each microservice call and in communication between micros-
ervices, the overall response time will be significantly improved. The butterfly effect
theory provides a better understanding of this phenomenon in the real world.

Fig. 6. Turnaround time and response time variation with cores graph

The violin and line plots (see Figure 6) display the turnaround time and aver-
age response time for each CPU core at the pod level. In this test case, an increased
CPU is added at the pod level by editing the Kubernetes deployment YAML files, and
the changes are applied to the Kubernetes cluster. The violin plot shows the full
distribution of turnaround time for the CPU core. By analyzing the violin plots, it is
evident that there is no significant change in the inter-service communication turn-
around time when the CPU is added at the pod level. The line plot illustrates the degra-
dation in overall application response time when more CPU is added at the pod level.
This means that handling the business logic requires more CPU, so it varies based on
the functions of the logic. Conclusively, inter-service communication is not affected
by vertically scaling the pod’s CPU cores. However, to increase the overall application
performance, it is advisable to allocate the relevant CPU cores to the microservices.

https://online-journals.org/index.php/i-joe

	 54	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

Fig. 7. Turnaround time and response time variation with memory graph

Figure 7 illustrates the relationship between the Microservice’s turnaround
time and the overall application response time as they vary with the pod memory.
By examining the graph, it is evident that the high-frequency distribution of the
violin plot remains unchanged when additional memory is added to the pod. This
indicates that the pod memory does not affect the turnaround time. By examining
the line plot, we can conclude that increasing the memory allocated to the pods
improves the overall application response time. By allocating memory to the pod
application, it will be able to process logic more efficiently with a higher memory
allocation. As a result, the overall application response time has improved.

Fig. 8. Turnaround time variation with pod count graph

https://online-journals.org/index.php/i-joe

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 55

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

Figure 8, Raincloud Plot, illustrates the distribution of turnaround time when
scaling the microservices pods. The previous vertical scaling does not impact the
inter-service communication time of the microservice. However, it has impacted the
overall response time. These test scenarios evaluate the horizontal scaling mecha-
nism and check the distribution of the overall turnaround time in the inter-service
communication between two microservices. According to the collected data, there
is no significant deviation observed when adding the new pods to the cluster. This
implies that there is no impact on inter-service communication when horizontal
scaling is employed.

6	 CONCLUSION AND FUTURE WORK

In contrast to monolithic applications, in a microservice architecture, all the
services are deployed in a distributed environment and function as independent
services. However, in order to meet business requirements, those microservices need
to communicate with each other. Service calls experience additional latency when
communicating over the network. Past research has shown that additional latency
can degrade the overall application performance and increase the response time.
Additionally, most of the current protocols experience delays in establishing and
closing connections, as well as in sending and receiving responses. Furthermore, the
transmission of large payloads exacerbates latency issues. Most microservice-based
applications are currently being deployed in cloud-native environments.

This research primarily focuses on optimizing inter-service communication
among microservices deployed in a cloud-native environment. By addressing the
challenges of the cloud-native environment with Kubernetes, we have successfully
implemented a solution that reduces latency during service-to-service communica-
tion compared to existing methods. The research utilizes the Redis Stream data struc-
ture and builds a message-passing system based on request-response interactions
similar to the HTTP protocol. When the microservice initializes, it establishes a TCP-
based socket connection to record the time it takes to open and close the connection.
When transmitting payloads, they are serialized and sent as protocol buffers to
minimize network resource usage. The responsibility of delivering messages accu-
rately lies with the Redis server, which depends on subscriptions and the designated
stream key. One limitation of the proposed model is that the deployment of the Redis
server is a requirement for its implementation. The implemented solution can easily
achieve scalability, availability, portability, and other cloud-native quality attributes.
Extensive testing has conclusively proven that the implemented solution reduces
latency in service-to-service communication and enhances the overall application
response time in a cloud-native environment.

7	 REFERENCES

	 [1]	 L. D. S. B. Weerasinghe and I. Perera, “An exploratory evaluation of replacing ESB
with microservices in service-oriented architecture,” in 2021 International Research
Conference on Smart Computing and Systems Engineering (SCSE), 2021, pp. 137–144.
https://doi.org/10.1109/SCSE53661.2021.9568289

	 [2]	 S. Weerasinghe and I. Perera, “Taxonomical classification and systematic review on
microservices,” International Journal of Engineering Trends and Technology, vol. 70, no. 3,
pp. 222–233, 2022. https://doi.org/10.14445/22315381/IJETT-V70I3P225

https://online-journals.org/index.php/i-joe
https://doi.org/10.1109/SCSE53661.2021.9568289
https://doi.org/10.14445/22315381/IJETT-V70I3P225

	 56	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 1 (2024)

Weerasinghe and Perera

	 [3]	 L. D. S. B. Weerasinghe and I. Perera, “Evaluating the inter-service communication on
microservice architecture,” in 2022 7th International Conference on Information Technology
Research (ICITR), 2022, pp. 1–6. https://doi.org/10.1109/ICITR57877.2022.9992918

	 [4]	 A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “From mono-
lithic to microservices: An experience report from the banking domain,” IEEE Software,
vol. 35, no. 3, pp. 50–55, 2018. https://doi.org/10.1109/MS.2018.2141026

	 [5]	 O. Al-Debagy and P. Martinek, “A comparative review of microservices and monolithic
architectures,” in 2018 IEEE 18th International Symposium on Computational Intelligence
and Informatics (CINTI), Budapest, Hungary: IEEE, 2018, pp. 000149–000154. https://doi.
org/10.1109/CINTI.2018.8928192

	 [6]	 M. Seedat, Q. Abbas, N. Ahmad, and A. Amelio, “Systematic mapping of monolithic
applications to microservices architecture,” arXiv, 2023. https://doi.org/10.48550/arXiv.
2309.03796

	 [7]	 N. S. Elgheriani and N. A. S. Ahmed, “Microservices vs. Monolithic architectures [The
differential structure between two architectures],” MINAR International Journal of
Applied Sciences and Technology, vol. 4, no. 3, pp. 500–514, 2022. http://dx.doi.org/
10.47832/2717-8234.12.47

	 [8]	 N. Kratzke and P.-C. Quint, “Understanding cloud-native applications after 10 years
of cloud computing – A systematic mapping study,” Journal of Systems and Software,
vol. 126, pp. 1–16, 2017. https://doi.org/10.1016/j.jss.2017.01.001

	 [9]	 Y. Mao, Y. Fu, S. Gu, S. Vhaduri, L. Cheng, and Q. Liu, “Resource management schemes
for cloud-native platforms with computing containers of Docker and Kubernetes,” arXiv,
2020. [Online]. Available: http://arxiv.org/abs/2010.10350; https://doi.org/10.36227/
techrxiv.13146548.v1. [Accessed: May 1, 2023].

	[10]	 B. Hindman et al., “Mesos: A platform for fine-grained resource sharing in the data
center,” in Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2011.

	[11]	 N. Marathe, A. Gandhi, and J. M. Shah, “Docker Swarm and Kubernetes in cloud com-
puting environment,” in 2019 3rd International Conference on Trends in Electronics and
Informatics (ICOEI), 2019, pp. 179–184. https://doi.org/10.1109/ICOEI.2019.8862654

	[12]	 L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Kubernetes as an availabil-
ity manager for microservice applications,” arXiv, 2019. https://doi.org/10.48550/
arXiv.1901.04946

	[13]	 A. R. Sri Nandhini, A. Joseph, and S. Ajay, “Impact of implementing cloud native appli-
cations in replacement to on-Premise applications,” International Journal of Engineering
Research and Technology, vol. V9, no. 6, 2020. https://doi.org/10.17577/IJERTV9IS061021

	[14]	 M. Saraswat and R. C. Tripathi, “Cloud computing: Comparison and analysis of cloud ser-
vice providers-AWs, Microsoft and Google,” in 2020 9th International Conference System
Modeling and Advancement in Research Trends (SMART), Moradabad, India: IEEE, 2020,
pp. 281–285. https://doi.org/10.1109/SMART50582.2020.9337100

	[15]	 S. Raje, “Performance comparison of message queue methods,” UNLV Theses,
Dissertations, Professional Papers, and Capstones, vol. 3746, 2019. https://doi.org/10.34917/
16076287

	[16]	 R. Mara Jösch, “Managing microservices with a service mesh,” Thesis, KTH, Royal
Institute of Technology, 2020.

	[17]	 “Service mesh: Architecture, concepts, and top 4 frameworks,” Aqua. [Online]. Available:
https://www.aquasec.com/cloud-native-academy/container-security/service-mesh/.

	[18]	 M. Zand, “Review of pod-to-pod communications in Kubernetes,” Superuser. [Online].
Available: https://superuser.openinfra.dev/articles/review-of-pod-to-pod-communica-
tions-in-kubernetes/. [Accessed: May 12, 2023].

https://online-journals.org/index.php/i-joe
https://doi.org/10.1109/ICITR57877.2022.9992918
https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.48550/arXiv.2309.03796
https://doi.org/10.48550/arXiv.2309.03796
http://dx.doi.org/10.47832/2717-8234.12.47
http://dx.doi.org/10.47832/2717-8234.12.47
https://doi.org/10.1016/j.jss.2017.01.001
http://arxiv.org/abs/2010.10350
https://doi.org/10.36227/techrxiv.13146548.v1
https://doi.org/10.36227/techrxiv.13146548.v1
https://doi.org/10.1109/ICOEI.2019.8862654
https://doi.org/10.48550/arXiv.1901.04946
https://doi.org/10.48550/arXiv.1901.04946
https://doi.org/10.17577/IJERTV9IS061021
https://doi.org/10.1109/SMART50582.2020.9337100
https://doi.org/10.34917/16076287
https://doi.org/10.34917/16076287
https://www.aquasec.com/cloud-native-academy/container-security/service-mesh/
https://superuser.openinfra.dev/articles/review-of-pod-to-pod-communications-in-kubernetes/
https://superuser.openinfra.dev/articles/review-of-pod-to-pod-communications-in-kubernetes/

iJOE | Vol. 20 No. 1 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 57

Optimized Strategy in Cloud-Native Environment for Inter-Service Communication in Microservices

	[19]	 G. Turin, A. Borgarelli, S. Donetti, E. B. Johnsen, S. L. Tapia Tarifa, and F. Damiani,
“A formal model of the Kubernetes container framework,” in Leveraging Applications
of Formal Methods, Verification and Validation: Verification Principles, T. Margaria and
B. Steffen, Eds., in Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2020, vol. 12476, pp. 558–577. https://doi.org/10.1007/978-3-030-61362-4_32

	[20]	 P. Jain, “Kubernetes installation options | The hard way | Managed k8s,” Cloud
Training Program. Available: https://k21academy.com/docker-kubernetes/kubernetes-
installation-options/

	[21]	 “Google Kubernetes Engine (GKE)|Google Cloud,” Available: https://cloud.google.com/
kubernetes-engine

	[22]	 “RESP protocol spec,” Redis. Available: https://redis.io/docs/reference/protocol-spec/
	[23]	 N. Levin, “How to build apps using Redis Streams,” Available: https://www.academia.

edu/40811333/How_to_Build_Apps_using_Redis_Streams
	[24]	 T. Schirgi, Architectural Quality Attributes for the Microservices of CaRE, p. 46, 2021.
	[25]	 I. Papapanagiotou, “Microservices at scale – Principles, tradeoffs & lessons learned,”

IEEE ComSoc Summer School.

8	 AUTHORS

Sidath Weerasinghe is a Postgraduate Student at the Department of Computer
Science and Engineering, the University of Moratuwa. He received B.Sc. (Hons) in
Computer Science with first class from the Kotelawala Defence University and M.Sc.
in Computer Science (Specialization in Cloud Computing) from the University of
Moratuwa. His research interests include software architecture, cloud computing
and distributed computing (E-mail: weerasingheldsb.20@uom.lk).

Indika Perera is a Professor at the Department of Computer Science and
Engineering, the University of Moratuwa. He received the B.Sc. Engineering (Hons.)
and M.Sc. degrees from the University of Moratuwa, Sri Lanka, the Master of Business
Studies from the University of Colombo, Sri Lanka, and the Ph.D. degree from the
University of St Andrews, U.K. His research interests include AI architecture, soft-
ware engineering, user experience and application development for bio-health
research (E-mail: indika@cse.mrt.ac.lk).

https://online-journals.org/index.php/i-joe
https://doi.org/10.1007/978-3-030-61362-4_32
https://k21academy.com/docker-kubernetes/kubernetes-installation-options/
https://k21academy.com/docker-kubernetes/kubernetes-installation-options/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://redis.io/docs/reference/protocol-spec/
https://www.academia.edu/40811333/How_to_Build_Apps_using_Redis_Streams
https://www.academia.edu/40811333/How_to_Build_Apps_using_Redis_Streams
mailto:weerasingheldsb.20@uom.lk
mailto:indika@cse.mrt.ac.lk

