
PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

Using Node-HTTP-Proxy for Remote Experiment
Data Transmission Traversing Firewall

http://dx.doi.org/10.3991/ijoe.v11i2.4443

Ning Wang1, Xuemin Chen2*, Gangbing Song1 and Hamid Parsaei3
1University of Houston, Houston, USA;

2Texas Southern University, Houston, USA;
3Texas A&M University at Qatar, Doha, Qatar

Abstract—In this paper, a novel real time experimental data
transmission solution based on a new web server software
architecture that allows the traversing of network firewalls
is proposed. With this new software architecture, the public
network port 80 can be shared between Node.js and the
Apache web server software system. With this new solution,
the Apache web server application still listens to the public
network port 80, but any client requests for the Node.js web
server application through the port will be forwarded to a
special network port which Node.js web server application
is listening to. Accordingly, a new solution in which both
Apache and Node.js web server applications work together
via HTTP proxy developed by the Node-HTTP-Proxy soft-
ware package is implemented on the server-side. With this
new real time experiment control and data transmission
solution, the end user can control remote experiments and
view experimental data on the web browser without firewall
issues and without the need of third party plug-ins. It also
provides a new approach for the remote experiment control
and real time data transmission based on pure HTTP proto-
col. The solution will significantly benefit the development
of remote laboratory technology.

Index Terms—Remote Laboratory, Traversing Firewall,
Node-HTTP-Proxy, HTTP-Proxy, Node.js, Apache

I. INTRODUCTION
The application of remote laboratory technology for

enhancing engineering education has attracted much atten-
tion in the last decades due to its flexible accessibility and
resource sharing [1][2]. The increased use of remote la-
boratories for online education has made network security
issues ever more critical. In order to defend against nu-
merous new types of potential attacks, the complexity of
network firewalls has been significantly increased. As a
result, the use of multi-leveled firewalls (e.g., one for local
area network access, one for each of servers, etc.) to pro-
tect a computer network has become a common practice.
In addition to the firewalls, the servers for remote experi-
ments are configured to promptly block and report suspi-
cious activities. Consequently, the network firewall will
inevitably limit the real time remote experimental data
transmission, for example limit data transfer rate because
of the filter data [3]. However, real time experimental data
transmission is an essential function in remote laborato-
ries. Thus, in the design and implementation of the real
time remote experimental data transmission, two critical
challenges must be met: 1) how to cross the limitations of
network security management; and 2) how to achieve
high-performance real time experimental data transmis-

sion without a need for any extra plug-ins. To the best of
the authors’ knowledge, being able to provide a stable and
high-performance data transmission for remote experi-
ments through port 80 without firewall issues or extra
plug-ins remains a critical issue.

Most early stage remote laboratories relied on the Cli-
ent-Server architecture for achieving high-performance
real time experimental data transmission [4][5]. Examples
include the remote panel provided by the National Instru-
ment’s LabVIEW (Laboratory Virtual Instrument Engi-
neering Workbench) [6], a digital-signal-processor-based
remote control laboratory at University of Maribor [7], the
Distance Internet-Based Embedded System Experimental
Laboratory (DIESEL) at the University of Ulster [11] and
others. Later on, Client-Server architecture based on Web
services and .NET remote services were developed and
deployed for remote laboratories [8]. However, almost all
of these systems use special network ports, usually
TCP/UDP ports for socket protocol, to traverse the net-
work firewall.

With the continuing improvements to computer perfor-
mance, the technology supporting the Browser-Server
architecture is becoming increasingly more stable and
suitable for cross-platform system design. Meanwhile, a
large number of new technologies have been developed to
support more complex web browser-based internet appli-
cations. Consequently, more and more remote laboratory
software systems have selected to use the Browser-Server
architecture technology. Examples include iLab [9],
WebLab-Deusto [10], the Networked Control System
Laboratory (NCSLab) [12], the improved NCSLab 3-D
[13], the eComLab at UTSA [14] among others. In partic-
ular, the eComLab, which was designed and developed in
the University of Texas at San Antonio, used SSH tunnel-
ing via HTTPS port 443 to address data transmission
security while not being blocked by firewall. However,
the SSH tunneling has the drawback of decreasing the
performance of the system. Therefore, in these systems,
the real time experiment data transmission across network
firewall issue still has not been solved satisfactorily.
Meanwhile, other software plug-ins, such as java applet
plug-ins, flash plug-ins, etc, also were used to resolve the
drawbacks issue to achieve the high-performance real-
time experiment data transmission in these systems.

To solve the challenge of achieving high-performance
real time remote experimental data transmission through a
Browser-Server architecture, the authors proposed and
developed a unified remote laboratory framework
[15][16]. The primary goal of this unified framework was

60 http://www.i-joe.org

PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

to allow online experiments to be accessed by any Internet
browsers without the need for any extra plug-ins. For
achieving high-performance real time data transmission, a
new web socket protocol implemented through the Sock-
et.IO was also created [17]. Although the Socket.IO solu-
tion performs well, the real time data transmission still
required a special network port (TCP port 1029).

Consequently, to address this critical issue, a novel ap-
proach is required to implement the high-performance real
time experimental data transmission across the network
firewall only via the public network port 80. A stable and
efficient solution to this problem will be an essential im-
provement for the remote laboratory development and
help with future developments.

The rest of the paper is organized as follows: Previous
works and methods research for Browser-Server architec-
ture remote laboratory software are summarized in Section
II. In Section III, the detail working process of the new
experimental data transmission solution is presented. In
Section IV, the new solution implementation process is
presented. Concluding remarks are drawn in Section V.

II. PREVIOUS WORKS AND METHODS SEARCH
Previous work [14] focused on the fundamental design

and development of a unified remote laboratory frame-
work was designed. The subsequent iteration of the design
resolved challenges of developing cross-browser and
cross-device web user interface as an improvement to the
unified framework [15]. This unified framework was used
to implement remote control engineering experiments. As
an example, the new Smart Vibration Platform (SVP)
remote experiment is now used to teach students in me-
chanical engineering courses at the University of Houston.
The SVP offered students hands-on experience on struc-
tural vibration control by using a Magneto-Rheological
(MR) and Shape Memory Alloy (SMA) braces to control
the vibration of a one story model [17].

Nowadays, with the fast development and improvement
of the network technology, Node.js has become one of the
more prevalent server-side technologies that are revolu-
tionizing the web. It is also a free-to-use software system
for server-side application development. Node.js contains
a built-in HTTP server library, thus allowing more control
of the web server by making it possible to run a web serv-
er without the use of external software systems, such
as Apache or Microsoft IIS [18]. Node.js enables web
developers to create an entire web application in JavaS-
cript which are both server-side and browser-side. In the
Node.js server-side software system, Socket.IO is
a JavaScript library used to support real time web applica-
tions development [19][20].

With the previous improved unified remote laboratory
framework, a Comet solution based on Node.js and its
Socket.IO package was implemented in the server-side
and experiment control workstation. For improving the
experimental data transmission, a new application trans-
mission protocol based on the Socket.IO was designed and
implemented. However, with the Comet solution, the real
time experiment data was transferred via network port
1029, which is the special network port, to traverse the
network firewall. The reasons are as follows. The web
server was built on the Apache HTTP web server software
engine. By default, the server occupied the public network
port 80. Consequently, the Node.js web server software

Clients

Apache Node.js
Application

Node.js
Application

Database LabVIEW

Server

Network
Port 80

Node-Http-ProxySpec
Network

Port
Spec

Network
Port

Spec
Network

Port

Figure 1. The architecture of the novel real time experi-
ment control commands and data transmission

system has to use the other network port (such as port
1029.) for real time experimental data transmission. Cur-
rently, in the network system, the network firewalls are
designed for network security in all colleges and universi-
ties. Thus, in most academic institutions, only several
network ports, including public network port 80, are
opened and most other network ports are either blocked or
limited. The user only can remotely conduct the experi-
ment using the web browser without installing any plug-
ins while on-campus. Accordingly, when the user hopes to
conduct the remote experiment off-campus, they also need
to use the VPN. Consequently, the issue of traversing the
network firewall remains, which was the essential issue
not to be resolved in previous works. In order to resolve
this essential transmission issue, a new approach must be
found to transfer the real time experimental data only via
the public network port 80.

This paper presents the detailed working process re-
garding a novel real time experiment control command
and data transmission approach proposed for the remote
laboratory development. This experimental data transmis-
sion approach via HTTP proxy gets both Apache web
server application and Node.js with its Socket.IO library
working together. Figure 1 illustrates the architecture of
the novel real time experiment control command and
experimental data transmission solution. The new solution
contains the following three parts: HTTP proxy, Node.js
and socket.IO. In addition to the HTTP proxy implemen-
tation was the Node-HTTP-Proxy, which is a free soft-
ware package developed by the Node.js development
team.

III. PROPOSED SOLUTION
The main purpose of this new solution is to transfer the

experimental control command and experimental data
between client and server across network firewall. The
ability to transfer across the network firewall will be a
great improvement for the remote laboratory unified
framework. In order to address the network firewall issue,
an HTTP proxy was set up using a Node-HTTP-Proxy in
the server-side. The Node-HTTP-Proxy proxy was used to
monitor the connections on the public network port 80 in
the server-side. The HTTP proxy switches the requests
from the client browsers to the proper software applica-
tions which run in the server-side. Each application lis-
tened for its own special network port based on the host-

iJOE ‒ Volume 11, Issue 2, 2015 61

PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

var HTTP = require('HTTP'),
HTTPProxy = require('HTTP-proxy');

HTTPProxy.createServer({
 hostnameOnly: true,
 router: {
 //web-development.cc
 'www.my-domain.com': '127.0.0.1:80',
 'www.my-other-domain.com': '127.0.0.1:5001'
 }
}).listen(80);

Example 1: Node-HTTP-Proxy code line

name in each request. In the new web server, an HTTP
proxy application built up by Node-HTTP-Proxy software
package was configured and used to finish the requests for
transferring tasks. This proxy application monitored pub-
lic network port 80 and looked up the appropriate web
server application for a request from the client. The proxy
also switches the experimental data directly from the web
server applications to the client web browsers. Currently
in the server-side, there are one Apache web server appli-
cation and one Node.js web server application which all
worked for the remote SVP experiment. The Apache web
server application was used to generate the user interface
framework, and the Node.js web server application was
used to handle the experimental data and equipment con-
trol commands.

Figure 2 illustrates the new data transmission solution
working process. As seen in Figure 2, Node.js web server
software should be set up in server-side. Furthermore,
there is also a need to compile and install the Node-
HTTP-Proxy software package and reconfigure the web
server. Meanwhile, the web server must include the
Apache and Node.js web engines in order to provide ex-
perimental control commands and experimental data real-
time transmission environment.

A. The Node-HTTP-Proxy for the network port sharing
In the previous iteration of the unified remote laborato-

ry framework the Apache and Node.js web server applica-
tions could not be set to listen to the same public network
port 80 at the same time. Additionally, the Node.js web
server application could not be run without first activating
the Apache web server application.

A solution to the above problem is to set up one HTTP
proxy using the Node-HTTP-Proxy software package.
This new approach can get both Apache and Node.js
working together without problems while also at the same
time share the same public network port 80.

Node-HTTP-Proxy is a full-featured HTTP proxy
which uses Node.js web server software system. The
proxy is also the free and open source software package.
Node-HTTP-Proxy was designed as a middleware concept
and middleware is a simple way to add new features to the
application stack. Nevertheless, the problem here is that
the extremely popular middleware style of web applica-
tion development is often incompatible with high perfor-
mance real-time data transmission capability. For exam-
ple, if a body decoder middleware was used, every request
will need to be buffered in full before the body can be
properly decoded. This approach will increase memory
usage and reduce system performance. This process can
be compared to simply relaying unaltered requests and
responses to other destinations. All the tasks of the mid-
dleware must be waited for and read into memory, possi-
bly altered, then sent again, thus adding to both the time
and resource cost of each request.

However, when the Node-HTTP-Proxy was designed
and developed, its purpose was for high performance real-
time data transmission capability. The concept of
a stream in Node.js lends itself well to working with
HTTP requests. One of Node.js strengths is its ability to
stream data. Meanwhile, a great deal of performance can
be achieved simply by piping the request and response
streams to other destinations and then back again. More
importantly, if any subsequent task in the Node-HTTP-
Proxy task chain tries to listen for 'data' or 'end' events, or

Node-Http-Proxy

Proxy

Apache Web
Server Node.js Server

Experiment
Video and other

web content
Experiment Control
Command and Data

Figure 2. The new data transmission working process

Node-Http-Proxy

Client

Client

Client

HTTP/Socket.IO HTTP/Socket.IO

HTTP/Socket.IO

WebServer
Application

(Apache)

WebServer
Application

(Node.js)

WebServer
Application

(Nginx)

Node-Http-Proxy Deployment
Principle

Figure 3. Node-HTTP-Proxy Deployment Principle

otherwise treat the current HTTP connection as a stream,
it just doesn’t work. As a buffered request exits a stream,
the request simply becomes a data object.

Figure 3 illustrates the deployment principle of the

Node-HTTP-Proxy. From its deployment principle, it can
be seen that the Node-HTTP-Proxy is working as the
agent to transfer the request and data between the clients
with web server applications via the public network port
80.

The Node-HTTP-Proxy also has a high capacity for the
proxy Web Sockets protocol. Therefore, apps can be run
independently on different special network ports while
simultaneously serving everything to the user over public
network port 80, such as the socket.io for the data trans-
mission solution. Example 1 is a segment of a simple code
segment for using Node.js with Node-HTTP-Proxy on the
public network port 80.

62 http://www.i-joe.org

PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

var comunicate_ io = require('socket.io');
var HTTPProxy = require('HTTP-proxy');

Example 2: Node.js example Code in Server

The example code creates the basic HTTP proxy server
application and listens for the public network port 80. The
code will switch any requests from the clients to two serv-
er applications which separately listens for network port
80 and network port 5001.

B. Server-side software system (Node.js)
A stable server-side software engine must be chosen

which can support real-time communication web applica-
tion development in order to allow real time experimental
control command and data transmission. Node.js, with its
support for real time communications, becomes a prime
candidate for use. The most notable distinction of Apache
web server software engine is that Node.js is an especially
fast and efficient server software system that scales well
with application size and scope. The Start Servers and
Min-Spare Servers settings of the Apache web server
helps keep a specified number of idle Apache servers
running in order to bypass the time required to start serv-
ers for new connections. In contrast, Node.js instructs the
operating system (through e-poll, k-queue, /dev/poll, or
select) that it should be notified when a new connection is
made, and then it goes to sleep. If any new clients connect,
then Node.js executes the callback. Each connection is
only a small heap allocation. Figure 4 illustrates the
Node.js software system architecture.

Node.js is server-side software designed to
write scalable Internet applications and notably setup web
servers. Node.js is also a packaged compilation of Goog-
le's V8 JavaScript engine, which include the libuv plat-
form abstraction layer and a core library which is primari-
ly written in JavaScript. Meanwhile, Node.js uses an event
driven operation mode, asynchronous I/O port to mini-
mize overhead and maximize scalability. The original goal
of Node.js was to create web sites with push capabili-
ties as seen in web applications like Gmail. Nevertheless
unlike most other JavaScript programs Node.js is not
executed in a web browser. Instead Node.js is executed as
a server-side JavaScript application. In the server-side,
Node.js not only implements multiple common Ja-
vaScript specifications, but also it provides a Read–Eval–
Print-Loop (REPL)[21] environment for interactive test-
ing.

Node.js also is a JavaScript environment running in
Google’s V8 JavaScript engine. As depicted in Figure 4,
Node.js only exposes non blocking asynchronous interfac-
es to the programmer. Node.js has very few abstractions.
Its power lies in the fact that it stays away from certain
undesirable interfaces, such as synchronous I/O. There is
no worry about an event completing and taking over while
the user is in the middle of another task. Each Node.js is a
single thread. To increase the work load, multiple Node.js
instances may be started, and the kernel can be relied upon
for load balancing. Memory isolation is enforced at the
process boundary.

Node.js uses the module architecture to simplify the
creation of complex applications. Modules are akin to
libraries in the C language, or units in the Pascal language.
Each module contains a set of functions related to the
'subject' of the module. For example, the Node HTTP
proxy module contains functions specific to HTTP Proxy.
Node.js provides some core modules out of the box to
help you access files on the file system, create HTTP
Proxy and Socket.IO, and perform other useful functions.

Node Standard Library

Node Binding

V8 Thread
Pool

Event
Loop DNS

Crypto
(Open
SSL)

JavaScript

C / C++

Figure 4. Node.js Architecture

As can be seen in the simple code segment of Example
2, the ‘require()’ function can be used as a simple way to
include modules in the program. Node.js is a promising
technology and an excellent choice for high load applica-
tions. Node.js has been proven by corporations, like Mi-
crosoft, eBay, and Yahoo [22].

C. Real time web application with Socket.IO
The WebSocket protocol was used to support real time

communication for web application development. The
WebSocket protocol is most often used to describe as the
“Real-time Web.” [23]Basically, the purposes of Web-
Socket are to break the limitations of the request/response
protocol of HTTP. Instead, with event-handling imple-
mented at each end, it creates a socket connection directly
between the browsers with the back-end. This makes it
possible for events to be triggered in the back-end of the
user’s browser without the browser having to poll to see
whether anything has happened at the back-end. When a
message is sent via the WebSocket protocol connection to
the browser, this triggers a pre-defined event and the con-
tents which are associated with the event immediately
shown in the browser. As WebSocket protocol is bi-
directional, the events occurred in the browsers also can
generate messages which are sent through the WebSock-
et protocol connection to the back-end. The WebSocket
protocol also effectively provides an alternative to use
Ajax over HTTP protocol.

As mentioned previously, the real time communication
application needs to be based on the WebSocket protocol.
In the interest of adapting the server-side architecture,
Socket.IO, which is the module of Node.js, was also used.
The WebSocket protocol was also used to connect the
client web pages with the web server.

Socket.IO is also supported by other software packages
other than WebSocket. If there are additional requirements
from the user, Socket.IO can fall back on other methods,
such as Adobe Flash sockets, JSONP polling, and AJAX
long polling, etc, while continuing to provide the same
interface. Although Socket.IO can be used as simply
a wrapper for the Web Socket protocol, it provides many
more features including broadcasting to multiple sockets,

iJOE ‒ Volume 11, Issue 2, 2015 63

PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

storing data associated with each client, and asynchronous
I/O. Figure 5 illustrates the Socket.IO working process.

Socket.IO enhanced the WebSocket protocol by provid-
ing built-in multiplexing, horizontal scalability, automatic
JSON encoding/decoding, and more. Socket.IO also uses
Long Polling. Long Polling addresses the weakness of
traditional polling methods by asking the server for new
information a certain intervals and keeping the connection
open even if the server has nothing new to process. This
technique dramatically decreases latency and network
traffic, which means that it efficiently disguises itself as a
server-push technique.

Socket.IO is a JavaScript library. Through blurring the
differences between the different transmission mecha-
nisms, it is possible that the Socket.IO supports the real-
time web applications in every browser and mobile device.
Socket.IO mainly includes two parts: a client-side library
that runs in the browser, and a server-side library
for Node.js. Both components have a nearly identical API.
Like Node.js, it also uses event-driven operational princi-
ple. Example 3 and Example 4 show sample codes of
these two parts.

IV. SOLUTION IMPLEMENTATION

A. Technical Characteristics of the novel data
transmission solution for unified remote laboratory
framework

The architecture of the novel real time experiment con-
trol commands and data transmission solution, which is
described in the previous section, has been used for the
new Smart Vibration Platform (SVP) remote experiment.
The SVP remote experiment was developed based on the
unified remote laboratory framework. As the novel unified
framework is based on Web 2.0 Technology, which in-
clude HyperText Markup Language (HTML), Cascading
Style Sheets (CSS), and jQuery/jQuery-Mobile JavaScript
libraries, the whole framework was built directly on top of
MySQL database. The PHP, which stands for Hypertext
Preprocessor and MySQL database driven data-streaming
solution, eliminated the need for the client side LabVIEW

Data
Source

Socket.IO

The data
provider

Socket.IO
handles

communication
with the
browser

Client

Data
Stream

Node.js Http
Server

Figure 5. Socket.IO Working Process

TABLE I.
TECHNOLOGY/PROTOCOL/SOFTWARE LIST FOR THE NEW SOLUTION

Name Technolo-

gy/Protocol/Software remark

1 HTTP Proxy Node-HTTP-Proxy Part of Node.js

2 Data Protocol Socket.IO Part of Node.js

3 Database MySQL 5.5

4 Server - Web
Service

Apache(2.2),
Node.js(V0.10.20),JSON LtoN

(LabView to
Node.js) 5 Equipment

Control LabView(2012)

(Laboratory Virtual Instrumentation Engineering Work-
bench) plug-in. Three technologies were mainly used for
the system implementation, including the LabVIEW-to-
Node.js technology for experimental data and experiment
equipment control commands transmission, the novel
video transmission approach based on HLS protocol for
real-time system monitoring, and Mashup technology for
user interface implementation. Table I lists the detail tech-
nology, protocol and software package which were used in
the new data transmission solution.

B. Node-HTTP-Proxy configuration
In the interest of allowing real time experiment control

command and data transmission via public network port
80, a new architecture was required in the web server to
get the Apache 2.0 web server application working well
together with Node.js V0.10.20. Configuration of the new
architecture to match the Node-HTTP-Proxy requirement
was also needed.

In order to achieve this aim, the following tasks must be
accomplished. Firstly, The Express and Node-HTTP-
Proxy software package need to be installed in the server-
side. Accordingly, the virtual hosts which need to be set
up normally on Apache web server software system. Sec-
ondly, all virtual hosts should be placed in a common
directory (for example: "/localhost"). Then the Apache
web server application would listen for the public network
port 80. The next step is to configure the port in file
"httpd.conf" (such as changed "Listen 80" to "Listen other
special port"). Finally, all virtual hosts must be fixed. As
defined in "extra/HTTPd-vhosts.conf", all virtual hosts
were set to an IP based name Virtual Host (such as
HTTP://127.0.0.1) instead of using a port (such as
HTTP://vr-lab.engineeringtech.tsu.edu:80). On the
Node.js server-side software system, the applica-
tion/server (Node.js virtual host) that listened for the spe-

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.emit('news', { hello: 'world' });
 socket.on('my other event', function (data) {
 console.log(data);
 });
});

Example 3: Socket.IO example Code in Server

<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('HTTP://localhost');
 socket.on('news', function (data) {
 console.log(data);
 socket.emit('my other event', { my: 'data' });
 });
</script>

Example 4: Socket.IO example Code in Client

64 http://www.i-joe.org

PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

cial network port (such as port 5001) which is different
with Apache port (arbitrary choice of port number) was
created. Then in the "/localhost" directory, a file called
"nodeHTTPProxy.js" was created. The following code
segment, Example 5, shows sample code of the Node-
HTTP-Proxy in our server. For using node-HTTP-proxy, a
proxy server case which is listening for the public network
port 80 also was created in nodeHTTPProxy.js.

After solving all of the issues mentioned above, node-

HTTPProxy.js just need to be run. Each of the Node.js
applications has a map file that contains the port that the
application is listening to as well as a map that indicates
the expected path which the application is being served on.

C. LabView to Node.js via Socket.IO
In order to implement real time communication be-

tween the client application and the server application, a
new Socket.IO based application transmission protocol
was designed and developed. This new application com-
munication protocol includes two parts, a client part that
runs in browsers and a server part that runs in the web
server. The two parts were developed with JavaScript
language and also enhanced the real-time communication
by the new Socket.IO based application transmission
protocol.

In this new application transmission protocol, a custom
defined special communication instruction set was used.
With the new instruction set, communication security can
be guaranteed during the process of con

ducting the remote experiment. In the new protocol,
brief instructions were used to control the experiment to
improve data transmission performance.

For the protocol implementation, two JavaScript pro-
gram files were required: one for client application (runs
in web browsers) and the other for server application (runs
in web server). Then a new Node.js task was created to

run the protocol in the server-side, and this server-side
application must hold running status indefinitely. Because
only the server-side protocol application holds the active
status, it can ensure the normal real time communication.
In client-side, there is a configuration file which defines
and describes the communication instruction functions to
support the client application normal operation in web
browsers.

With the resolution of the issues mentioned above, the
server-side protocol was run using ‘forever start’ com-
mand of Node.js in server-side. The server-side protocol
entered into the active status, and the real time communi-
cation will be present during normal operation. We im-
plemented the experiment data record function using our
new data transmission protocol. The downloaded experi-
ment data for the real displacement and the displacement
reference in remote SMA experiment was plotted in the
same figure by using MATLAB. Figure 6 and Figure 7
depict the results of the displacement change of SMA in
two tests from plug-in free remote laboratory.

D. Sample Paradigm of the new solution
Table II shows the comparison of the sample para-

digms, which show the terminal user interface, which was
developed under the novel unified frameworks within
different terminal devices.

Figure 6. Arbitrary displacement control (with amplitude of 0.932in)

in remote SMA experiment

Figure 7. Arbitrary displacement control (with amplitude of 0.646in)

in remote SMA experiment

// Module dependancies
var HTTPProxy = re-
quire('/usr/local/lib/node_modules/HTTP-proxy/lib/node-
HTTP-proxy')
, express = re-
quire('/usr/local/lib/node_modules/express/lib/express');
// HTTP proxy-server
HTTPProxy.createServer(function (req, res, proxy) {
 // Array of node host names
 var nodeVhosts = [
 'vhost1'
 , 'vhost2'
]
 , host = req.header('host')

, port = nodeVhosts.indexOf(host) > -1
 ? 80
 : 5001;
 // Now proxy the request
 proxy.proxyRequest(req, res, {
 host: host
 , port: port
 });
})
.listen(80);

Example 5: NodeHTTPProxy.js example code

iJOE ‒ Volume 11, Issue 2, 2015 65

PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

TABLE II.
SAMPLE PARADIGM OF THE NEW SOLUTION COMPARISON IN DIFFERENT

DEVICES

Sample Paradigm on
Desktop

Sample Paradigm
on iPhone

Sample Paradigm
on iPad

! ! !

This user interface can be run in any terminal devices

without the installation of any plug-ins or software. As an
example, the SMA remote experiment was used to depict
the experiment operation method from the user interface.
When the switch on the left corner of the web page is
turned on, the user can move the slide bar to control the
Desired Displacement value. The sensor output, which
indicates the desired displacement volt value, is shown in
the middle of the web page. The real-time video is dis-
played on the top of the web page. With our novel data
transmission solution, the real-time experiment data can
be transferred to different terminal interfaces across the
network firewall. Meanwhile, end users can also use any
terminal devices to send the commands from client web
page to the remotely located workstation as the novel data
transmission solution now allows communications across
the network firewall.

The remote laboratory system based on the novel uni-
fied framework is able to take full advantage of the hard-
ware’s potential. With the new real time command and
data transmission solution, the improved remote experi-
ment provides better control performance for a wider
range of terminal equipment.

V. CONCLUSIONS
The paper presented a novel real time experiment

command and data transmission solution with the new
web server architecture. To solve the traversing network
firewall issue, we implemented the HTTP proxy using the
Node-HTTP-Proxy software package in the server-side.
To improve the data transmission performance, a new
experiment application transmission protocol based on
Socket.IO was designed and implemented. The SMA
remote experiment was augmented with the new solution
as a demonstration of the benefits it provides. End users
can now conduct the SMA remote experiment and view
the experiment data in real time through web browsers
anywhere that has internet connection without any third
party plug-in. Consequently, the novel real time experi-
ment data transmission solution gives the unified frame-
work much needed improvement.

REFERENCES
[1] L. Gomes and S. Bosgoyan, "Current trends in remote laborato-

ries", IEEE. Trans. on Industrial Electronics, Vol 56, NO 12, pp.
4744-4756, December 2009, ISSN: 0278-0046.

[2] J. Rodriguez-Andina, L. Gomes and S. Bogosyan, "Current
trends in industrial electronics education", IEEE. Trans. on Indus-
trial Electronics, Vol 57, NO 10, pp. 3242-3244, October 2010,
ISSN: 0278-0046.

[3] C. Salzmann and D. Gillet “Challenges in Remote Laboratory
Sustainability” In Proceedings of International Conference on En-
gineering Education, 2007

[4] S. Li; J. Huai; and B. Bhargava "Building High Performance
Communication Services for Digital Libraries", Computer Science
Technical Reports Paper 1212, 1995.

[5] D. Gillet, C. Salzmann, R. Longchamp and D. B. Telepresence
“An Opportunity to Develop Real-World Experimentation in Edu-
cation”, European Control Conference, Brussels, Belgium, Ses-
sion WE-M-L 1, July 1-4, 1997.

[6] N. Duro, R. Dormido, H. Vargas, S., Dormido-Canto, et al. “An
Integrated Virtual and Remote Control Lab: The Three-Tank Sys-
tem as a Case Study” Computing in Science & Engineering,
10(4), 50-59, 2008. http://dx.doi.org/10.1109/MCSE.2008.89

[7] D. Hercog, B. Gergic, S. Uran and K. Jezernik, "A DSP-Based
Remote Control Laboratory", IEEE. Trans. on Industrial Electron-
ics, Vol54(6), pp. 3057-3068, December 2007, ISSN: 0278-0046.

[8] M.J. Callaghan, J. Harkin, E. McColgan, T.M. McGinnity, L.P.
Maguire “Client–server architecture for collaborative remote ex-
perimentation” Journal of Networks and Computer applications,
ISSN: 1084-8045, Volume 30,Issue 4, pages 1295-1308, No-
vember 2007

[9] V. J. Harward, J. A. DelAlamo, S. R. Lerman, P. H. Bailey, J.
Carpenter, K. DeLong, C. Felknor, J. Hardison, B. Harrison, I.
Jabbur, P. D. Long, T. Mao, L.Naamani, J. Northridge,M.
Schulz,D. Talavera, C.Varadharajan, S. Wang, K. Yehia, R. Zbib,
and D. Zych, “The iLab shared architecture: A web services infra-
structure to build communities of internet accessible laboratories,”
Proc. IEEE, vol. 96, no. 6, pp. 931–950, Jun. 2008.
http://dx.doi.org/10.1109/JPROC.2008.921607

[10] P. Orduna, J. Irurzun, L. Rodriguez-Gil, J. Garcia-Zubia, F. Gaz-
zola, and D. Lopez-de-Ipina, “Adding new features to new and ex-
isting remote experiments through their integration in WebLab-
Deusto,” Int. J. Online Eng., vol. 7, no. S2, pp. 33–39, 2011.

[11] M. J. Callaghan, J. Harkin, TM. McGinnity and LP. Maguire
“Client-Server Architecture for Remote Experimentation for Em-
bedded Systems” iJOE International Journal of Online Engineer-
ing, ISSN: 1861-2121, 2(4) 2006

[12] W. S. Hu , G. P. Liu & H. Zhou “NCSLab: A web-based global-
scale control laboratory with rich interactive features”. IEEE
Transactions on Industrial Electronics, ISSN: 0278-0046, 57(10),
3253-3265. 2010

[13] Y. L. Qiao, G. P. Liu, G. Zheng & W. S. Hu “Web-Based 3-D
Control Laboratory for Remote Real-Time Experimentation”.
IEEE Transactions on Industrial Electronics, Vol 60(10), pp.
4673-4682, Oct 2013, ISSN: 0278-0046.

[14] A. Melkonyan, A. Gampe, M. Pontual and G. Huang, "Facilitating
Remote Laboratory Deployments Using a Relay Gateway Server
Architecture", IEEE. Trans. on Industrial Electronics, Vol 61(1),
pp. 477-485, Jan 2014, ISSN: 0278-0046.

[15] C. Olmi, B. Cao, X. Chen and G. Song "A Unified Framework for
Remote Laboratory Experiments", In Proceedings of ASEE Annu-
al Conference & Exposition, Vancouver, BC, Canada. June 26 -
29, 2011.

[16] C. Omli, X. Chen and G. Song "A Framework for Developing
Scalable Remote Experiment Laboratory", In Proceedings of
World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education 2011 (E-Learn 2011), pp. 2045-
2050, Honolulu, Hawaii. October 18-21, 2011.

[17] X. Chen, D. Osakue, N. Wang, H. Parsaei and G. Song “Devel-
opment of a Remote Experiment under a Unified Remote Labora-
tory Framework” in Proceedings of the World Congress on Engi-
neering Education 2013. H.R. Parsaei and K.S. Warraich, eds.

[18] T. Hughes-Croucher, M. Wilson “Up and Running with
Node.js (First ed.)”, O'Reilly Media, p. 204, ISBN 978-1-4493-
9858-3, April, 2012

[19] D. Herron “Node Web Development, Second Edition”, Packt
Publishing, ISBN 184951514X, Jul 19, 2013.

[20] R. Rai "Socket. IO Real-time Web Application Development”,
O'Reilly Media , ISBN 178-2-1607-87, February, 2013.

[21] E. Allen, R. Cartwright, B. Stoler “DrJava: A lightweight peda-
gogic environment for Java”, 33rd SIGCSE Technical Symposium
on Computer Science Education, February (2002)

66 http://www.i-joe.org

PAPER
USING NODE-HTTP-PROXY FOR REMOTE EXPERIMENT DATA TRANSMISSION TRAVERSING FIREWALL

[22] P. Tatade “Why Node, the fundamental difference between Node
and other languages”, Online,
http://www.cuelogic.com/blog/why-node-the-fundamental-
difference-between-node-and-other-languages, published Febru-
ary, 5, 2014

[23] Q. Liu and X. Sun "Research of Web Real-Time Communication
Based on Web Socket", Int'l J. of Communications, Network and
System Sciences, Vol. 5 No. 12, 2012, pp. 797-801.
http://dx.doi.org/10.4236/ijcns.2012.512083

AUTHORS
Ning Wang is with Department of Electrical and Com-

puter Engineering, University of Houston, Houston TX,
USA (nwang@uh.edu).

Xuemin Chen. is with Department of Engineering
Technology, Texas Southern University, Houston TX
77004, USA (e-mail: chenxm@tsu.edu).

Gangbing Song is with Department of of Mechanical
Engineering, University of Houston, Houston TX, USA
(e-mail: gsong@uh.edu).

Hamid Parsaei is with Department of Mechanical En-
gineering, Texas A&M University at Qatar, Doha, Qatar
(e-mail: hamid.parsaei@qatar.tamu.edu).
This work is based upon work supported by the Qatar National Research
Fund under Grant No. NPRP 4-892-2-335. Submitted 01 February 2015.
Published as resubmitted by the authors 10 March 2015.

iJOE ‒ Volume 11, Issue 2, 2015 67

