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PAPER

Advancing Non-Cuff Hypertension Detection: 
Leveraging 1D Convolutional Neural Network 
and Time Domain Physiological Signals

ABSTRACT
Timely identification of hypertension (HT) is crucial for effectively managing and reducing 
the potential health consequences, including cardiovascular events such as heart attacks and 
strokes, as well as the development of kidney disease. Traditional cuff-based devices often dis-
courage regular monitoring because they cause discomfort. Furthermore, the lack of symptoms 
in HT complicates the early detection of this condition. To address these challenges, our study 
employs a non-cuff methodology that utilizes unprocessed electrocardiogram (ECG) and pho-
toplethysmogram (PPG) signals. We utilize a customized approach to enhance the features of 
a one-dimensional convolutional neural network (CNN) specifically tailored to optimize time- 
series data. In contrast to previous research, our methodology avoids the need for complex 
signal extraction or transformation techniques. The main goal is to identify the optimal input 
signals and fine-tune the critical hyperparameters of CNNs. The clinical data underwent anal-
ysis, which revealed that the use of an integrated ECG and PPG approach resulted in the 
highest level of accuracy for detection. Notably, the F1 score achieved an impressive value 
of 98.88%. When evaluated separately, ECG outperformed PPG. Our study contributes to the 
advancement of the field by introducing a new approach that combines comfort and high 
accuracy in the early detection of HT. This method is practical and ensures a patient-friendly 
experience.

KEYWORDS
hypertension (HT) detection, electrocardiogram (ECG), photoplethysmogram (PPG), convolu-
tional neural network (CNN), non-cuff methods

1	 INTRODUCTION

High blood pressure, or hypertension (HT), is a significant global health issue. It is 
associated with conditions such as strokes [1] and diabetes [2] and is acknowledged 
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as a significant risk factor for sudden cardiac death [3]. Between 1990 and 2019, 
there was a significant increase in the prevalence of HT among individuals aged 
30–79 years. This increase resulted in the numbers rising from 331 million women 
and 317 million men in 1990 to 626 million women and 652 million men in 2019. 
Managing this health condition is demanding and expensive, and one of its main 
challenges is early diagnosis [4]. HT is often referred to as the “silent killer” because 
it typically does not show symptoms until it reaches an advanced stage, making it 
particularly challenging to detect [5]. Currently, the standard method for diagnos-
ing and monitoring HT involves using a sphygmomanometer [6], which classifies 
patients into four stages of HT: normal, prehypertension (PHT), stage 1 HT, and stage 
2 HT [7]. These stages are determined by systolic and diastolic blood pressure.

The challenge is that cuff-based monitoring systems only offer a single snapshot 
of blood pressure, requiring multiple readings and averaging to obtain a depend-
able value. Furthermore, they may cause discomfort as a result of arterial com-
pression [8]. Additionally, self-measurements using cuff-based devices can lead 
to inaccurate diagnoses if proper methodologies are not followed [9]. To meet the 
need for a more refined and minimally invasive method of monitoring HT, sev-
eral technologies have been developed, including the use of photoplethysmogram 
(PPG) and electrocardiogram (ECG) waveforms [10]. Various techniques have been 
employed, such as calculating the pulse arrival time (PAT) obtained from both ECG 
and PPG waveforms. Another technique uses parameters solely from PPG [11]. 
These ECG and PPG characteristics are then utilized as inputs for regression or 
classification machine learning techniques [12] or deep learning techniques [13] 
to monitor or detect HT. Another approach uses a continuous wavelet transform 
ballistocardiogram (BCG) in conjunction with deep learning [14]. Furthermore, 
socio-demographic and clinical variables, such as age, gender, and body mass index 
(BMI), have been utilized in the development of machine learning-based systems 
for detecting HT [15].

Nevertheless, the journey is marked by several challenges that require careful 
consideration when developing blood pressure estimation systems or strategies for 
assessing HT risk. Firstly, extensive research has focused on developing systems for 
detecting HT that utilize ECG and PPG signals. These systems use feature extraction 
techniques to identify ECG and PPG signal parameters. The extraction of these sig-
nals involves numerous parameters and leads to a wide range of potential combi-
nations. Each unique combination requires individual testing to determine the best 
performance, resulting in long experimental durations.

Furthermore, the extraction process may necessitate high-quality waveforms, 
a high sampling rate, and precise sampling accuracy to acquire pertinent signal 
parameters. Additionally, further research is needed to thoroughly compare detec-
tion systems that solely utilize ECG signals, PPG signals, or a combination of both. 
The scarcity of research on this aspect is evident. A comparative analysis like this 
has the potential to provide valuable insights, shedding light on the best choice of 
signals for achieving improved performance levels. Finally, socio-demographic and 
clinical variables, such as age, gender, and body mass index, have been utilized in 
the development of machine learning-based systems for high blood pressure risk 
stratification. However, this methodology is less practical when considering an auto-
mated detection approach.

Following the introduction, this paper presents a systematic exploration of our 
research efforts. Initially, we highlight our “innovations and breakthroughs,” empha-
sizing the new perspectives and contributions we bring to the academic landscape. 
To position our work within a broader scholarly framework, the “related works” 
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section explores existing literature. We then outline our investigative approach in 
the ‘methods’ section, providing readers with a clear view of our research design 
and procedures. Our “results” section presents the empirical evidence and outcomes 
of our investigation. In the “discussion,” we interpret and contextualize these results, 
drawing connections to existing knowledge while highlighting potential ramifica-
tions. The “limitations” segment offers a candid reflection on possible constraints 
and shortcomings. In conclusion, we encapsulate the essence, implications, and 
prospects of our study.

2	 INNOVATIONS	AND	BREAKTHROUGHS

This paper introduces an approach for identifying HT using direct input from 
ECG and PPG signals without the need for feature extraction. One notable benefit of 
this approach is the prevention of potential data loss during the extraction phase. 
By avoiding the process of feature extraction, the original data retains its richness 
and integrity. Moreover, eliminating extraction steps improves the computational 
process, thus increasing efficiency. The streamlined methodology used in this study 
enhances computational speeds. It enables the development of real-time applica-
tions, making it a highly suitable option for implementing advanced tools such as 
wearable devices and remote patient monitoring systems.

This study conducts a thorough analysis to explore the different roles of ECG and 
PPG. The analysis covers three distinct areas: the individual capabilities of ECG and 
PPG and their combined effectiveness when integrated. The ECG plays a crucial role 
in identifying indicators of HT due to its ability to provide information about the 
heart’s electrical activity. Following this, the focus shifts to PPG, emphasizing its abil-
ity to detect changes in blood volume and provide important hemodynamic insights. 
Furthermore, integrating ECG and PPG signals can enhance diagnostic accuracy by 
comprehensively assessing the body’s physiological indicators.

Furthermore, the research delves into an extensive investigation of various CNN 
(convolutional neural network) architectures [16–18]. The main objective is to inves-
tigate different configurations of CNNs, including parameters such as stride, kernel  
size, and filter selection. This study aims to determine whether specific designs 
demonstrate improved accuracy in identifying HT. The current comprehensive 
assessment of CNN architectures is grounded in the hypothesis that custom-designed 
neural networks could enhance the capacity to accurately represent the complex 
patterns within HT data.

Finally, the study conducts a series of experiments across three trials to com-
prehensively detect HT. In Trial A, the study compares individuals with normal 
and prehypertensive blood pressure, revealing early indicators of HT. Normal vs. 
HT (Trial B): This segment differentiates between normal and hypertensive blood 
pressure readings. Normal blood pressure vs. PHT. HT (Trial C): This trial offers 
a comprehensive analysis of blood pressure progression across normotensive,  
prehypertensive, and hypertensive cohorts, providing a thorough understanding of  
the condition.

Essentially, this paper is based on several fundamental contributions. First, it 
introduces the direct integration of ECG and PPG signals into the HT detection para-
digm, effectively negating the need for feature extraction. Second, the article provides 
a detailed exploration of the specific roles of ECG and PPG signals in the detection 
mechanism. Third, various CNN architectures are thoroughly analyzed to enhance 
detection accuracy. Finally, the research presents a systematic series of experiments. 

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 5 (2024) International Journal of Online and Biomedical Engineering (iJOE) 81

Advancing Non-Cuff Hypertension Detection: Leveraging 1D Convolutional Neural Network and Time Domain Physiological Signals

Each of these experiments consists of separate trials that cover a wide range of blood 
pressure classifications.

3	 RELATED	WORKS

In the context of past research endeavors, various models were conceived that 
harnessed the power of machine learning [19, 20] and deep learning [21] techniques 
to refine the process of HT detection. These models demonstrated a remarkable capac-
ity to utilize clinical data and physiological waveforms as foundational inputs. To 
streamline this procedure, the models underwent training utilizing a diverse range 
of variables, encompassing, though not exclusively, age, body mass index, gender, 
and heart rate. Furthermore, they accommodated, using PPG and ECG waveforms, 
precisely the characteristics extracted through a comprehensive suite of analytical 
techniques. As previously explained in research, these techniques include time anal-
ysis, frequency analysis, time-frequency analysis, and chaotic analysis. A notable 
aspect of these studies was the thorough investigation of morphological features 
extracted from ECG and PPG signals. This approach provided a comprehensive 
overview of the diverse strategies deployed for detecting hypertension.

In the realm of investigating the correlation between ECG and blood pressure, 
a study emphasized that alterations in ECG patterns associated with HT gradually 
appear and manifest, even in healthy young individuals with normal to slightly ele-
vated blood pressure levels. These changes were significantly linked to various phys-
iological shifts, including increased ventricular rate, enlarged atrial surface area, 
extended ventricular activation time, heightened ventricular hypertrophy indices, 
and noticeable alterations in ventricular repolarization detected through a standard 
twelve-lead electrocardiogram. This indicates a gradual development of cardiovas-
cular adjustments in individuals who do not have diagnosed HT but have blood 
pressure levels within the upper range of normal [22].

The investigation revealed a significant relationship between arterial pressure 
(specifically systolic and mean) and pulse wave velocity derived from PPG during 
the post-exercise recovery phase following a cycling test. This sheds light on the 
connection between PPG-derived metrics and blood pressure dynamics. The signifi-
cant correlation observed strongly indicates that changes in arterial blood pressure 
are intricately linked to alterations in pulse wave velocity. Furthermore, the study 
found consistent correlations across various vascular sites, regardless of the specific 
location for measuring pulse wave velocity. This confirms a consistent relationship 
between arterial blood pressure and pulse wave velocity across diverse vascular 
locations. These findings emphasize a strong connection between arterial blood 
pressure and pulse wave velocity [23].

In 2022, a research study introduced a machine-learning-based system for identi-
fying HT [19]. The method utilized a combination of PPG features and clinical data as 
input variables. Five machine learning algorithms were utilized, specifically support 
vector machines (SVM), logistic regression (LR), linear discriminant analysis (LDA), 
k-nearest neighbors (KNN), and decision trees. The study utilized a set of nineteen 
PPG characteristics obtained through the application of the wavelet scattering trans-
form method. The clinical data included age, gender, body mass index (BMI), heart 
rate, height, and weight. The peak of success using this approach was indicated by 
a 76.00% F1 score. The optimal result emerged when only PPG features were used. 
The integration of PPG and clinical data led to a decrease in the F1 score to 72.34%. 
Furthermore, a more significant decline to 69.57% was observed when only clinical 
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data was utilized. The study results indicate that incorporating clinical data, such 
as age and BMI, did not improve the overall performance of the system. From the 
standpoint of machine learning methodologies, the investigation encountered no 
obstacles. The parameters of the machine learning models were skillfully adjusted 
to achieve the most favorable detection outcome.

In 2021, a study reported on research into a HT detection system that utilized 
PPG features and machine learning techniques [24]. PPG features were obtained by 
extracting features from PPG signals. However, these PPG signals had to undergo a 
two-step derivative process to generate the first and second derivatives. Furthermore, 
after obtaining these derivatives, additional steps were necessary to identify multi-
ple reference points in both the original and derivative signals for extracting param-
eter values. Determining fiducial points was susceptible to errors that could result 
in inaccuracies. Moreover, this method utilized complex algorithmic processing, 
including Ceemdan and Wavelet algorithms, to generate highly accurate PPG signals. 
Complex algorithms often require increased computing resources. Compared to sim-
pler algorithms, these algorithms may require more processing power, memory, and 
time to execute.

In 2020, [15] introduced a method for developing a HT classification system. 
This method utilized clinical data that included gender, race, BMI, age, smoking 
habits, kidney disease, and diabetes. The study utilized an artificial neural network 
with back-propagation as the classification technique. The dataset used for analy-
sis comprised a substantial 24,434 records from the National Health and Nutrition 
Examination Survey spanning 2007 to 2016. The study findings showed a sensitivity 
rate of 40%, a specificity rate of 87%, a precision rate of 57.8%, and an AUC (area 
under the curve) value of 0.77. It is worth noting that, despite the extensive dataset, 
the performance achieved through this approach did not reach the desired level of 
excellence.

Researchers have explored various methodologies within the broader context of 
detecting and classifying HT. These techniques include machine learning, or deep 
learning, integrating ECG and PPG features, as well as intricate signal processing algo-
rithms. Furthermore, clinical data, including gender, race, BMI, age, smoking habits, 
kidney disease, and diabetes, has been employed. These studies have undoubtedly 
provided valuable insights into the complexities and possibilities of detecting and 
classifying HT. However, there is a persistent need for further research and inno-
vation to overcome these challenges and establish more robust and dependable HT 
detection systems.

4	 METHODS

The general methodology for this study on HT detection, which involves the use 
of ECG and PPG signals along with CNN learning, is outlined in Figure 1. We began 
by preparing the ECG and PPG signals, as well as the correlated atrial blood pressure 
(ABP). Following this, we identified the peaks of the QRS complex in the ECG signals 
and the pulse peaks in the PPG signals. To prepare the input for the CNN, we gath-
ered 50 ECG samples from both sides of each identified QRS peak and 50 PPG sam-
ples from both sides of each identified pulse peak. We then proceeded to the training, 
validation, and testing stages of the CNN. We experimented with different kernel 
sizes, strides, and filters during this phase to optimize the network’s performance. 
Ultimately, we developed an optimized CNN model specifically designed for detect-
ing HT. The methodology’s details are further described in the subsequent sections.
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Fig. 1. Workflow for hypertension detection using CNN with the inputs of ECG and PPG

4.1	 Data	collection	and	categorization

This study gathered data from the multiparameter intelligent monitoring in 
intensive care (MIMIC) database [25, 26], which included measurements of PPG, 
ECG, and arterial blood pressure (ABP). The primary objective was to distinguish 
between different blood pressure levels, specifically normotension (NT), PHT, and 
HT, by utilizing data from PPG and ECG signals. The blood pressure categories were 
determined based on the ambulatory blood pressure (ABP) data and followed the 
guidelines outlined in the JNC 7 report [27]. The experimental design of this study 
involved binary classification techniques, resulting in two distinct class labels. The 
study consisted of three trials: Trial A, Trial B, and Trial C. In Trial A, the classification 
focused on NT vs. PHT; Trial B compared NT vs. HT; and Trial C examined NT-PHT 
vs. HT classifications.

To ensure the reliability and accuracy of the data, we conducted a comprehen-
sive examination of the database, specifically addressing potential errors in data 
matching and alignment in specific recordings [28]. During this screening process, 
we excluded records with biphasic pulses, missing peaks, or instances without a 
signal (sensor-off). We identified 121 records with high-quality signals and selected 
120 seconds of data from each record for further analysis, as described in reference 
[28]. Our dataset consisted of 17,534 records, categorized as 6,129 for normotension, 
4,966 for PHT, and 6,397 for hypertension. The ECG and PPG examples for three dis-
tinct classes are shown in Figures 2 and 3, respectively.

Fig. 2. ECG representations of three distinct classes: normotension, prehypertension, and hypertension
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Fig. 3. PPG representations of three distinct classes: normotension, prehypertension, and hypertension

4.2	 Identifying	QRS-complex	peaks	in	ECG

To detect QRS-complex peaks, the ECG signal was initially processed with a band-
pass filter to highlight frequencies in the range of 5 to 20 Hz. This step effectively 
reduced interference caused by noise. Afterward, the filtered ECG signal was pro-
cessed using the moving wave integration (MWI) technique, which utilized a Ricker 
(Mexican hat) wavelet. The squared integrated signal has been saved for further 
analysis. The outcomes of the MWI were carefully examined to determine if each 
local maximum corresponded to a QRS complex.

For a local maximum to be recognized as a QRS complex, it should not be mis-
taken for a T-wave. Furthermore, it needed to meet specific criteria: the peak had 
to exceed the predetermined QRS-complex detection threshold and appear after a 
refractory period of 0.2 seconds. Any local maximum that did not meet these criteria 
was classified as a noise peak. If a segment of the signal did not reveal a QRS com-
plex, a backward search algorithm with a reduced threshold was used to improve 
the likelihood of identifying any missed QRS complexes. The approach for identify-
ing QRS-complex peaks in an ECG is outlined in pseudocode in Algorithm 1.

Algorithm 1: Pseudocode for Identifying QRS-Complex Peaks in ECG
FUNCTION detectQRSComplex(ECG_Signal):

 // Apply a 5-20 Hz bandpass filter to the ECG signal
 filtered_signal = bandpassFilter(ECG_Signal,5Hz,20Hz)
 // Use MWI to process the signal.
 mwi_result = MWI(filtered_signal, wavelet=“Ricker”)
 // Square and store the integrated signal
  squared_signal = square(mwi_result)
  STORE squared_signal
  // Examine each local maximum
  FOR each local_maximum in squared_signal:
     // Check if the local maximum is a QRS-complex
     IF local_maximum NOT resembles T-wave AND
      local_maximum > QRS_threshold AND
      time_since_previous_peak > 0.2 seconds:
      MARK local_maximum as QRS-complex
     ELSE:
      MARK local_maximum as noise_peak
     // Backsearch for missed QRS-complexes
     IF no QRS-complex is detected in a specific span:
      backsearchAlgorithm(squared_signal, reduced_threshold)
END FUNCTION
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All local peaks in the PPG signal were identified for PPG peak detection. A sample 
was identified as a PPG peak if it represented the highest value within a 30-sample 
range on both its left and right sides. When several consecutive samples had the 
same maximum value, the central sample was selected as the local peak.

Fig. 4. Segments of ECG and PPG encompassing 50 data points on both the left and right sides 
of their respective peak values

After detecting the QRS-complex peaks and PPG peaks, 50 raw ECG samples before 
and after each QRS-complex peak and 50 raw PPG samples before and after each PPG 
peak were selected for further analysis. This selection is visually represented in Figure 4.

Fig. 5. Architecture of the CNN model

4.3	 Design	and	structure	of	the	CNN

Our CNN architecture, as shown in Figure 5, consisted of multiple layers. The 
architecture was initialized with a Conv1D layer, forming its foundation. This layer 
conducts a 1D convolution on the input data, using a specified number of filters (or 
kernels) to generate the output channels. The kernel size specifies the number of 
neighboring elements that a filter will evaluate concurrently. On the other hand, 
strides specify the progression that the filters take during convolution, subsequently 
affecting the output size. Post-convolution, the ReLu (rectified linear unit) activation 
function was used to introduce non-linearity to the output. The input shape defines 
the structure of the input data, indicating the time steps and features.

Next, the model integrated a MaxPooling1D layer to perform 1D max-pooling. 
By selecting the maximum value within each window of a predefined pool size, the 
spatial dimensions of the data were reduced. This step optimized computational effi-
ciency and provided translational invariance to the input. Following this, the model 
introduced a second Conv1D layer, mirroring the first layer but with double the 
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number of filters. This layer enabled the model to extract more subtle features from 
the output of the previous layer.

After the second Conv1D layer, the model included a second MaxPooling1D layer, 
further reducing spatial dimensions in a manner similar to the previous layer. The 
sequence then shifted to the flatten layer, which transformed the 3D output of the 
preceding layer into a 1D vector, setting the stage for the subsequent fully connected 
(dense) layers. The dense layer, which accommodates 128 neurons, exemplifies a 
fully connected segment. Following the matrix multiplication, the ReLU activation 
function was applied. The dropout layer was also introduced as a regularization 
method that intermittently deactivates a portion of the input units during training. 
This mechanism mitigated overfitting and enhanced the model’s adaptability.

The final dense layer, equipped with n output neurons, served as the primary 
fully connected layer, responsible for the ultimate classification. The softmax activa-
tion function translates the raw model output into probability scores, ensuring that 
their combined sum equals 1. The “mean squared error” (MSE) loss function was 
selected for model compilation, as it is the standard for regression tasks. The ‘Adam’ 
optimizer, known for its efficiency, was selected to refine the model’s parameters 
during the training phase. Concurrently, additional evaluation metrics were mea-
sured, including a custom metric for determining the F1 score.

4.4	 Data	segregation	for	CNN	training	and	evaluation

In CNN modeling, the way we segregated our dataset was crucial to ensuring 
model accuracy and generalization. For our CNN model, we carefully allocated our 
data resources. Specifically, 70% of the complete dataset was allocated for training. 
Within this segment, our model primarily learned the patterns and nuances of the data. 
However, training alone did not ensure an optimal model. It was crucial to validate 
the model’s learning to ensure that it went beyond simply memorizing the data, which 
could result in overfitting. We further subdivided our training data to address this issue, 
setting aside 30% for validation. This validation subset served as a checkpoint, ensur-
ing that our model’s predictions were consistent and reliable throughout the training 
phase. Lastly, to assess the effectiveness and ability of our CNN model to generalize to 
new, previously unseen data, we set aside 30% of the entire dataset for testing. This 
testing phase provided insights into the real-world applicability and performance of 
our model. The strategic distribution of data not only facilitated a robust training envi-
ronment but also ensured a comprehensive evaluation mechanism for our CNN model.

5	 RESULTS

Our research thoroughly examined three specific input modalities to understand 
their role and effectiveness in hypertension when utilizing CNN. Firstly, we explored 
a combined approach by integrating ECG and PPG signals. This combination aims to 
leverage the complementary information from ECG and PPG, potentially enhancing 
the model’s ability to recognize patterns related to HT. Secondly, we evaluated the 
ECG as a standalone input. Given the critical nature of ECG signals in capturing the 
heart’s electrical activity, we were eager to understand their unique effectiveness in 
detecting HT, particularly when processed through a CNN. Finally, our study focused 
solely on the PPG signal. PPG, a non-invasive method for monitoring blood volume 
changes, added another dimension to our research. We aimed to determine the 
effectiveness of this single method for detecting HT using CNN. Across these varied 
modalities, we implemented various configurations and model architectures.

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 5 (2024) International Journal of Online and Biomedical Engineering (iJOE) 87

Advancing Non-Cuff Hypertension Detection: Leveraging 1D Convolutional Neural Network and Time Domain Physiological Signals

5.1	 CNN	configurations	for	hypertension	detection	with	ECG	and	PPG	signals

When ECG and PPG were used in combination, the F1 score consistently remained 
within a narrow range across various configurations (Table 1). This suggests that 
combining these inputs provides a more stable representation. In Trial B, the F1 
scores fluctuated between 96.50% and 98.99%, indicating a synergistic effect where 
the combination of these inputs captured essential features for HT differentiation. 
The most effective configurations for this combined data often involved a stride of 2, 
particularly when using kernel sizes of 3 and 7. Filters of sizes 32 and 64 frequently 
yielded the highest scores. The highest F1 score, 98.99%, was achieved in Trial B 
using a filter of 64, a stride of 2, and a kernel size of 7.

Table 1. Performance of the proposed CNN-based hypertension detection using ECG and PPG inputs, 
presented in terms of F1 score

Trial Filter Stride = 2, 
Kernel = 3

Stride = 2, 
Kernel = 5

Stride = 2, 
Kernel = 7

Stride = 3, 
Kernel = 3

Stride = 3, 
Kernel = 5

Stride = 3, 
Kernel = 7

Trial A 8 91.70 91.96 90.48 90.15 90.54 90.60

Trial A 16 92.02 91.28 91.31 90.77 91.40 91.37

Trial A 32 92.35 92.20 91.76 90.68 90.98 91.90

Trial A 64 91.93 91.67 91.07 91.58 92.32 92.02

Trial B 8 98.41 98.20 98.20 96.50 97.48 98.23

Trial B 16 98.41 98.86 98.65 97.11 98.23 98.60

Trial B 32 98.89 98.65 98.68 98.15 98.31 98.44

Trial B 64 98.46 98.81 98.99 97.88 98.25 98.68

Trial C 8 94.82 94.44 94.34 92.74 93.01 94.44

Trial C 16 94.91 94.55 94.49 93.14 94.65 94.72

Trial C 32 95.27 94.66 95.10 94.15 94.28 94.66

Trial C 64 95.26 95.10 94.80 94.53 94.84 95.16

Table 2. Performance of the proposed CNN-based hypertension detection using ECG inputs, 
presented in terms of F1 score

Trial Filter Stride = 2, 
Kernel = 3

Stride = 2, 
Kernel = 5

Stride = 2, 
Kernel = 7

Stride = 3, 
Kernel = 3

Stride = 3, 
Kernel = 5

Stride = 3, 
Kernel = 7

Trial A 8 91.96 91.52 90.65 89.70 89.91 90.63

Trial A 16 91.82 91.07 91.04 89.76 91.79 90.30

Trial A 32 92.32 90.92 91.46 90.60 91.52 91.34

Trial A 64 91.22 91.67 90.95 90.18 90.95 91.58

Trial B 8 98.41 98.28 97.91 96.35 97.09 98.01

Trial B 16 97.56 98.20 98.31 97.35 97.64 97.80

Trial B 32 97.51 98.44 97.48 97.62 98.17 98.31

Trial B 64 97.51 98.17 98.25 97.88 98.09 98.54

Trial C 8 94.57 93.88 94.04 92.93 93.73 93.79

Trial C 16 94.82 93.96 94.02 93.35 93.33 94.02

Trial C 32 94.21 93.94 94.61 93.52 94.26 94.97

Trial C 64 94.44 93.98 93.73 93.69 94.30 94.26
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5.2	 CNN	configurations	for	hypertension	detection	with	ECG	signals

Upon examining the F1 scores for ECG as a standalone input, specific config-
urations stood out (refer to Table 2). The configurations with a stride of 2 and a 
kernel of 7 in Trial B and a stride of 2 and a kernel of 3 in Trial C were nota-
bly effective. It hinted at the unique temporal and frequency features of the ECG. 
However, there was a significant variation in the F1 scores in Trial A, ranging from 
89.70% to 92.32%. The study highlighted the sensitivity of ECG data to configura-
tion changes and the potential benefits of using diverse kernel sizes. The highest F1 
score, 98.99%, was achieved in Trial B using a filter of 64, a stride of 2, and a kernel 
size of 7.

5.3	 CNN	configurations	for	hypertension	detection	with	PPG	signals

When used alone, PPG data generally resulted in a lower F1 score, especially in 
Trial A, with scores as low as 77.53% (refer to Table 3). However, despite its limita-
tions, PPG has shown significant potential in specific configurations. In Trial B, a 
stride of 2, a kernel of 3, and a filter of 64 yielded an F1 score of 95.63%. This result 
was competitive with some of ECG’s top performances, demonstrating PPG’s latent 
diagnostic potential when optimized. The most optimal performance for PPG-only 
input was achieved in Trial B, with an F1 score of 95.63% using a filter size of 64, a 
stride of 2, and a kernel size of 3.

Table 3. Performance of the proposed CNN-based hypertension detection using PPG inputs, 
presented in terms of F1 score

Trial Filter Stride = 2, 
Kernel = 3

Stride = 2, 
Kernel = 5

Stride = 2, 
Kernel = 7

Stride = 3, 
Kernel = 3

Stride = 3, 
Kernel = 5

Stride = 3, 
Kernel = 7

Trial A 8 84.20 83.90 84.52 77.53 81.16 79.91

Trial A 16 83.96 86.10 86.40 79.20 82.65 82.32

Trial A 32 86.01 86.90 86.10 82.26 84.26 86.37

Trial A 64 87.35 87.26 86.49 82.59 84.67 86.85

Trial B 8 92.98 93.51 93.35 85.83 88.06 89.00

Trial B 16 93.91 94.23 93.43 87.26 90.47 92.13

Trial B 32 95.26 95.50 95.02 90.12 93.78 93.72

Trial B 64 95.63 95.02 95.39 91.08 93.96 94.33

Trial C 8 90.38 91.14 90.76 85.08 86.57 88.34

Trial C 16 91.35 90.74 90.78 86.79 89.06 90.05

Trial C 32 90.57 91.16 91.73 87.82 89.63 91.50

Trial C 64 91.52 90.93 91.62 87.61 90.95 91.83

5.4	 CNN	configurations	for	hypertension	detection	with	different	
input	signals

As shown in Tables 1, 2, and 3, the study highlighted the effectiveness of the 
combined ECG and PPG input in the overall observations, demonstrating a high 
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F1 score and stability across configurations. While demonstrating sensitivity to con-
figurations, the ECG showed high potential when properly adjusted. On the other 
hand, PPG, often considered a less significant factor, demonstrated its strengths in 
specific configurations, indicating its usefulness in specialized contexts. In summary, 
although the combined data produced the most reliable results, both ECG and PPG 
had their advantages and needed adjustments to maximize their F1 scores in detect-
ing hypertension.

In terms of CNN configuration, the experimental results are presented as follows: 
The choice of stride, which determines the kernel’s step size, revealed interesting 
insights. A smaller stride of 2, which generally captures finer details, resulted in 
higher F1 scores across the three input modalities: combined ECG and PPG, ECG 
alone, and PPG alone. This performance dominance was particularly evident with 
kernel sizes of 3 and 7. In contrast, a stride of 3, while competitive in some scenarios, 
such as with a filter size of 64, resulted in a drop in performance, particularly in 
PPG-only data for Trial A. It is suggested that a longer stride might sometimes over-
look critical signal intricacies.

Kernel sizes provide an additional layer of analysis. The kernel’s effectiveness in 
analyzing the input data varied depending on the size of the area being examined. 
The smallest size of 3 often achieved the highest scores, especially when combined 
with a stride of 2. This was most evident in ECG-only data, where it consistently out-
performed other kernel sizes in Trials A and C. However, the medium-sized kernel 
of 5 delivered mixed results, excelling in certain configurations but being overshad-
owed in others. Interestingly, the largest kernel of 7 displayed erratic performance, 
excelling in specific configurations such as a stride of 2 and a filter of 32, but falter-
ing in others.

The filter configurations enhanced the depth of the analysis. While the smallest 
filter size of 8 generally lagged, indicating potential limitations in capturing intricate 
PPG signals, intermediate sizes such as 16 and 32 often balanced computational effi-
ciency with feature extraction. However, the standout performer consistently had 
the largest filter size of 64, especially prominent in the combined ECG and PPG data 
for Trial B.

The model demonstrated promising performance, as shown in Table 4, which 
displays the confusion matrix. It effectively differentiated individuals with HT 
(TP = 1939) from those without HT (TN = 1779). Nevertheless, there were instances 
of misclassifications, notably 19 false positives where individuals without HT were 
erroneously classified as having the condition and 21 false negatives where indi-
viduals with HT were inaccurately identified as not having the condition. Despite 
the model’s commendable accuracy in identifying hypertensive and normotensive 
cases, reducing these misclassifications, particularly the false negatives, is cru-
cial for enhancing the model’s reliability in detecting non-cuff HT using ECG and 
PPG signals.

Table 4. Confusion matrix illustrating the detection performance using ECG and PPG signals

Predicted

Normotension Hypertension

TRUE Normotension 1779 (TN) 19 (FN)

Hypertension 21 (FP) 1939 (TP)

Notes: TP: true positive, TN: true negative, FP: false positive, FN: false negative.
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5.5	 Comparison	of	training	loss	across	different	CNN	configurations

Figure 6 illustrates the training loss over 100 epochs for a CNN system developed 
for HT detection using ECG and PPG inputs. The system was assessed using different 
stride configurations, specifically a stride of 2 and a stride of 3, while maintaining 
the same kernel (kernel = 3) and filter (filter = 32) settings. During the training pro-
cess, both configurations experienced a decrease in training losses. Starting with 
initial loss values of 0.2063 and 0.2150 for S = 2 and S = 3, respectively, both models 
showed improvement as epochs progressed.

Upon a more detailed inspection, the configuration with a stride of 2 consistently 
outperformed its counterpart. By the 100th epoch, the model with S = 2 achieved a 
training loss of 0.0211, while the model with S = 3 reached a loss of 0.0290. Throughout 
the training, there were slight fluctuations in the trajectory of the training loss for 
both configurations. However, the overall trend showed a consistent decrease in loss 
values, indicating successful optimization.

Fig. 6. Training loss trajectories over 100 epochs for CNN models developed for hypertension detection 
using ECG and PPG inputs, comparing different stride configurations (S = 2 and S = 3) while maintaining 

a consistent kernel (K = 3) and filter (F = 32)

While both configurations effectively reduced the training loss over time, the 
setup with S = 2, K = 3, and F = 32 demonstrated slightly better performance in 
minimizing the loss for this specific task. The findings emphasize the importance of 
choosing the right stride configuration to optimize CNN performance in detecting 
HT using ECG and PPG inputs.

Figure 7 displays the training loss of the CNN system for HT using ECG and PPG 
data. This figure shows the loss values over 100 training steps for various kernel 
setups. We examined CNNs with the same stride and filter but with different ker-
nel sizes. The stride and filter were both set to 3 and 8. The training loss decreased 
over time for all configurations, indicating that the model improved during training. 
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The setup with a kernel size of 7 had the lowest training loss for most of the training 
steps. By the end of 100 steps, this configuration demonstrated the most favorable 
loss value of 0.0094, making it the optimal choice among the three configurations 
being considered. On the other hand, the configuration with a kernel size of 3 
resulted in the highest training loss at step 100. Thus, when attempting to achieve 
the lowest training loss, the configuration with a kernel size of 7 was found to be the 
most effective for this particular task.

Fig. 7. Training loss trajectories over 100 epochs for CNN models developed for hypertension detection 
using ECG and PPG inputs, comparing different kernel configurations (K = 2, K = 5, and K = 7)  

while maintaining a consistent stride (S = 3) and filter (F = 8)

In the experimental results illustrated in Figure 8, CNN was trained using vari-
ous filter sizes. The inputs to this CNN were ECG and PPG data. The training process 
was consistent across configurations in terms of stride (S = 2) and kernel (K = 7) 
size, varying only in the filter (F) size. For the configurations with filter sizes F = 8, 
F = 16, F = 32, and F = 64, the loss values at the beginning of the epochs were 0.2327, 
0.2216, 0.2122, and 0.2053, respectively. By the 100th epoch, the losses had signifi-
cantly decreased to 0.0068, 0.0027, 0.0039, and 0.0027, indicating effective learning 
across all configurations.

Upon analyzing the trend, it is evident that there was a decrease in the initial 
loss at the beginning of training as the filter size was increased. The configuration 
with a filter size of F = 64 showed the most rapid decrease in loss, reaching a value 
as low as 0.1316 by the second epoch, compared to F = 8, which decreased to 0.1964. 
It is suggested that larger filters facilitate faster convergence during the initial stages 
of training.

However, by the 100th epoch, the discrepancies in loss values among the con-
figurations had became minimal, indicating that all configurations could achieve 
similar performance with adequate training time. The statement emphasizes the 
importance of considering computational efficiency and the potential risks of over-
fitting when choosing filter sizes, especially if minimal performance differences are 
noticed after extended training.
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Fig. 8. Training loss trajectories over 100 epochs for CNN models developed for hypertension detection 
using ECG and PPG inputs, comparing different filter configurations (F = 8, F = 16, F = 32, and F = 64) 

while maintaining a consistent stride (S = 2) and kernel (K = 7)

5.6	 Comparison	of	the	proposed	hypertension	detection	method	
with	existing	studies

To improve the detection of hypertension, we have introduced a new method and 
conducted a comprehensive comparison with established techniques. Table 5 pro-
vides a comprehensive comparison, encompassing input types, classifiers (machine 
learning and deep learning), and performance metrics. This framework helps us 
evaluate our method against other established approaches.

The field of hypertension detection research has seen a wide range of method-
ologies and features, each making a unique contribution to the accuracy of out-
comes. The CNN used in the recent study demonstrated its exceptional capabilities 
when integrated with the combined ECG and PPG data. This integration resulted in 
impressive F1 scores of 92.35%, 98.99%, and 95.27% across three trials. These results 
emphasized CNN’s ability to decipher intricate patterns, establishing its significance 
in detecting hypertension.

In a parallel development, Nuryani et al. introduced the swarm support vector 
machine (SSVM), which combines swarm optimization with the traditional SVM 
framework. When this method was applied to the pulse amplitude tonometry (PAT) 
and four-point pulse wave analysis (4 PPG) features, it achieved remarkable scores, 
notably 93.38% and 96.49% in specific trials. The combination of optimization strat-
egies with traditional algorithms highlights their potential to enhance prediction 
results significantly.

Liang et al.’s range of classifiers, including LR and KNN, provided a varied per-
spective. Notably, the KNN classifier, when employed with certain features, achieved 
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an F1 score of 94.84%, reaffirming its effectiveness in detecting hypertension. 
Furthermore, the impact of deep learning extended beyond just CNNs. The integra-
tion of GoogleNet by Liang et al., particularly when combined with CWT scalograms, 
resulted in impressive scores in multiple trials. These results underscore the ability 
of deep learning models to extract patterns from visually detailed data.

When ECG and PPG data were analyzed using CNN, it produced unprecedented 
results and set a new standard for hypertension detection in terms of features. 
The findings above have highlighted the importance of comprehensively present-
ing data to achieve accurate detection. Concurrently, the consistent use of PAT and 
4-point pulse pressure gradient (4 PPG) features across various studies, especially 
with the SVM, emphasized the significance of careful feature selection. The use of 
CWT (continuous wavelet transform) scalograms, in conjunction with models such 
as GoogleNet, has strengthened the argument for employing visual pattern recogni-
tion in studies related to hypertension. The approach by Martinez-Ríos et al., which 
integrated clinical metrics such as age and BMI with traditional classifiers such as 
SVM and KNN, presented a comprehensive perspective. Notably, an F1 score of 
76.00% was achieved using SVM with 19 weighted set tiling (WST) features, demon-
strating SVM’s adaptability to diverse feature sets.

Table 5. Comparison of the proposed hypertension detection method with other studies

Trial Features Classifiers F1 Score (%)

Trial-A PAT and 10 PPG features Logistic Regression by [28]. 63.92

Trial-B PAT and 10 PPG features Logistic Regression by [28]. 79.11

Trial-C PAT and 10 PPG features Logistic Regression by [28]. 62.26

Trial-A PAT and 10 PPG features AdaBoost Tree by [28]. 74.67

Trial-B PAT and 10 PPG features AdaBoost Tree by [28]. 90.15

Trial-C PAT and 10 PPG features AdaBoost Tree by [28]. 79.71

Trial-A PAT and 10 PPG features Bagged Tree by [28]. 83.88

Trial-B PAT and 10 PPG features Bagged Tree by [28]. 94.13

Trial-C PAT and 10 PPG features Bagged Tree by [28]. 88.22

Trial-A PAT and 10 PPG features KNN by [28]. 84.34

Trial-B PAT and 10 PPG features KNN by [28]. 94.84

Trial-C PAT and 10 PPG features KNN by [28]. 88.49

Trial-A CWT Scalogram The GoogleNet [29] 80.52

Trial-B CWT Scalogram The GoogleNet [29] 92.55

Trial-C CWT Scalogram The GoogleNet [29] 82.95

Trial-A PAT and 4 PPG features MLP [10] 90.71

Trial-B PAT and 4 PPG features MLP [10] 93.47

Trial-C PAT and 4 PPG features MLP [10] 87.54

Trial-A PAT and 4 PPG features SVM [10] 90.71

Trial-B PAT and 4 PPG features SVM [10] 94.58

Trial-C PAT and 4 PPG features SVM [10] 92.68

(Continued)
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Trial Features Classifiers F1 Score (%)

Trial-A PAT and 4 PPG features SSVM [10] 93.38

Trial-B PAT and 4 PPG features SSVM [10] 96.49

Trial-C PAT and 4 PPG features SSVM [10] 93.76

Trial-A 19 WST Features SVM [16] 76.00

Trial-A Age, BMI, and Heart Rate SVM [16] 69.57

Trial-A Age, BMI, Heart Rate, plus 19 WST Features KNN [19] 69.77

Trial-A Age, BMI, Heart Rate, plus 19 WST Features SVM [19] 72.34

Trial-A ECG and PPG CNN (This study) 92.35

Trial-B ECG and PPG CNN (This study) 98.99

Trial-C ECG and PPG CNN (This study) 95.27

Trial-A ECG CNN (This study) 92.32

Trial-B ECG CNN (This study) 98.54

Trial-C ECG CNN (This study) 94.97

Trial-A PPG CNN (This study) 87.35

Trial-B PPG CNN (This study) 95.63

Trial-C PPG CNN (This study) 91.83

In a comparative analysis of previous studies, it was observed that techniques 
such as CNN and SSVM produced significant results, but their effectiveness was highly 
dependent on the specific features they were associated with. The recent study by 
CNN achieved a zenith with an F1 score of 98.99% using ECG and PPG, demonstrat-
ing the synergy of advanced methodologies and optimized features. This interaction 
set the stage for future advancements in research on detecting hypertension.

6	 DISCUSSION

Bio-signal inputs, such as ECG and PPG, have been extensively studied for HT 
detection [30]. Our experimental results, presented in three tables, provide insight 
into the comparative performances of these two modalities, both individually and 
in combination. Drawing on the theoretical background of ECG and PPG, this discus-
sion aims to provide a deeper understanding of our findings and their implications 
in the broader context of HT research.

An ECG captures the heart’s electrical activity over time, providing insights 
into the heart’s rhythm and potential anomalies [31]. Conversely, PPG, an optically 
derived plethysmogram, is utilized to detect changes in blood volume within the 
microvascular tissue bed [32]. It operates by directing light into the skin and measur-
ing the amount of light that is either transmitted or reflected to a sensor.

When considering the combined ECG and PPG input, our results unequivocally 
showed superior performance in detecting HT. The combination of these two inputs 
can be explained by understanding their inherent properties. While an ECG pro-
vides direct electrical information about heart activities and potential arrhythmias, 
a PPG offers complementary insights into blood flow and oxygenation. Fusing these 

Table 5. Comparison of the proposed hypertension detection method with other studies (Continued)
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two data sources ensures a comprehensive view of cardiovascular health, thereby 
enhancing the model’s predictive capabilities.

The individual analysis of an ECG demonstrated its effectiveness, particularly 
when properly calibrated. Given that the ECG directly measures the heart’s electrical 
impulses, its sensitivity in detecting slight abnormalities often linked to HT becomes 
apparent. However, the results also suggested that the modality is sensitive to differ-
ent configurations, highlighting the importance of optimal tuning.

On the other hand, PPG has historically been considered a secondary or supple-
mentary modality in many cardiovascular studies. However, our findings illustrated 
that in specific configurations, PPG can indeed hold its ground. The nature of PPG, 
which captures blood volume changes and can indirectly infer heart rate and rhythm, 
offers a different perspective compared to ECG. PPG’s utility can be maintained in 
specific scenarios, particularly when blood flow information becomes crucial.

Our study reaffirms the established understanding of the direct relevance of ECG 
in detecting cardiovascular health issues. At the same time, it elevates the status 
of PPG, emphasizing its unique contributions, particularly in specialized scenarios. 
The combination of ECG and PPG inputs in our model emphasizes the age-old adage 
in medical diagnostics: a comprehensive view derived from multiple data sources 
often yields the most accurate and actionable insights. Future studies could further 
explore the fusion techniques of these inputs to ensure that the information they 
provide is optimally utilized for even better HT detection outcomes.

Upon reviewing the experimental results, a more thorough examination of the 
CNN configurations provides valuable insights. CNN effectively utilizes the spatial 
hierarchies of input data by gradually condensing information through convolu-
tional layers, pooling, and fully connected layers. This process preserves the spatial 
relationships and identifies complex patterns [33].

The tables presented emphasize the nuanced interplay between stride and kernel  
size in CNN configurations. The kernel size can be viewed as a window through 
which the network processes the input. A larger kernel enables the network to 
assimilate more contextual information at once, often resulting in the detection of 
larger patterns or features. Conversely, a smaller kernel size generally focuses on 
finer details [32]. In our experiment, we observed that varying kernel sizes resulted 
in different performance metrics. This demonstrates the impact of kernel dimen-
sions on feature extraction, especially in biomedical signals such as ECG and PPG, 
which encompass both high-frequency and low-frequency information.

The tables presented in this study demonstrate that achieving an optimal F1 score 
depends on finding the right balance between stride and kernel size. This observa-
tion is consistent with previous scholarly works, which have shown that choosing 
the right combinations of stride and kernel for optimal performance depends on the 
characteristics [34]. Smaller filter sizes could be stacked to approximate the receptive 
field of a larger filter while using fewer parameters and enabling deeper architec-
tures [35]. Our research supports this principle, particularly when examining the per-
formance of configurations with smaller kernels arranged in deeper architectures.

Another crucial element was the depth, as indicated by the filter count. The depth 
of the CNN, determined by the number of filters, directly correlates with the model’s 
capacity. By incorporating additional filters, the network is able to identify a greater 
number of features. However, this also increases computational demands and may 
lead to overfitting if not appropriately regularized. The trade-off between depth 
and overfitting was apparent, particularly when comparing configurations across 
different trials. Furthermore, building on a previous study [36] that introduced the 
concept of deep residual learning with ResNets, it was emphasized that deeper net-
works can achieve better performance. However, the use of residual connections 
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can make the training of very deep networks easier by addressing issues such as 
vanishing gradients.

In summary, while CNN’s theoretical underpinnings provided a strong founda-
tion, the results emphasized the importance of empirical tuning and exploration 
of configurations, particularly in biomedical signal processing. In future research, 
it may be beneficial to investigate architectures that can automatically adapt their 
configurations, such as neural architecture search (NAS), to optimally process input 
signals for the detection of hypertension.

In conclusion, while the present study and others emphasize the potential of 
methodologies such as CNN or SSVM, it is crucial to acknowledge the symbiotic 
relationship between these advanced algorithms and the features they utilize. Our 
recent study reached a pinnacle with an F1 score of 98.99% using CNN with ECG and 
PPG, showcasing the magic that occurs when cutting-edge techniques are paired 
with well-optimized features. It outlines a promising direction for our approach and 
provides a roadmap for future efforts in HT detection research.

7	 LIMITATION

While paving the way for advanced non-cuff HT detection, our study has several 
limitations that need to be acknowledged. The dataset of ECG and PPG signals may 
not fully capture the physiological diversity across different populations. Factors 
such as age, ethnicity, and underlying comorbidities can introduce complexities in 
the signals, potentially influencing the results. Furthermore, the customized config-
urations of the CNN that we have developed, specifically optimized for our dataset, 
may not guarantee consistent performance when applied to other datasets or diverse 
patient demographics. The success of our model is closely linked to the quality of the 
ECG and PPG signals. Other medical conditions that could affect ECG and PPG signals 
were not thoroughly assessed, which could potentially act as confounding factors.

8	 CONCLUSION

In our endeavor to propose innovative techniques for detecting HT, we thor-
oughly explored the potential of time-domain signals from ECG and PPG when pro-
cessed through a one-dimensional CNN. Central to our findings was the observation 
that the combined use of both ECG and PPG signals significantly outperformed using 
each signal individually. The enhanced efficiency of ECG over PPG was particu-
larly noteworthy. We achieved exemplary performance by directly applying these 
signals to CNNs and avoiding traditional extraction processes. Furthermore, our 
careful consideration of stride, kernel size, and filter optimization highlights their 
importance in effectively configuring a high-performing CNN for HT detection. Our 
experiments resulted in an impressive F1 score of 98.99% when we combined ECG 
and PPG signals using the optimized CNN configuration, representing a significant 
advancement in cuffless HT diagnostics. These results suggest that utilizing deep 
learning tools with ECG and PPG inputs can significantly enhance medical diag-
nostics. Nevertheless, while our findings show promise, they were obtained under 
controlled conditions and may face challenges when applied to real-world scenar-
ios. The implications of this research are far-reaching, suggesting a broader impact 
beyond the scope of HT and indicating a promising future for diagnostic methods 
that do not necessitate the use of cuffs. In this era of technological advancement, we 
plan to expand our methodologies to cover various medical domains, improve our 
models, and engage in real-time monitoring.
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9	 FUTURE	STUDY

Drawing upon our recent research on HT detection using combined ECG and PPG 
with CNNs, we have identified several promising avenues for future exploration. 
Firstly, our findings have highlightened the effectiveness of CNNs in biomedical sig-
nal processing. However, there is potential to enhance CNN configurations through 
hyperparameter tuning, architectural adjustments, and exploration of various acti-
vation functions to achieve superior outcomes. Additionally, building on the success 
of ECG and PPG integration, the incorporation of other biomedical signals, such as 
electroencephalogram (EEG), could further enhance the data, offering a comprehen-
sive perspective that could improve detection accuracy.
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