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PAPER

Comprehensive Cardiac Ischemia Classification Using 
Hybrid CNN-Based Models

ABSTRACT
This study addresses the critical issue of classifying cardiac ischemia, a disease with signifi-
cant global health implications that contributes to the global mortality rate. In our study, we 
tackle the classification of ischemia using six diverse electrocardiogram (ECG) datasets and a 
convolutional neural network (CNN) as the primary methodology. We combined six separate 
datasets to gain a more comprehensive understanding of cardiac electrical activity, utilizing 
12 leads to obtain a broader perspective. A discrete wavelet transform (DWT) preprocessing 
was used to eliminate irrelevant information from the signals, aiming to improve classifica-
tion results. Focusing on accuracy and minimizing false negatives (FN) in ischemia detec-
tion, we enhance our study by incorporating various machine learning models into our base 
model. These models include multilayer perceptron (MLP), support vector machines (SVM), 
random forest (RF), long short-term memory (LSTM), and bidirectional LSTM (BiLSTM), allow-
ing us to leverage the strengths of each algorithm. The CNN-BiLSTM model achieved the high-
est accuracy of 99.23% and demonstrated good sensitivity of 98.53%, effectively reducing 
false negative cases in the overall tests. The CNN-BiLSTM model demonstrated the ability to 
effectively identify abnormalities, misclassifying only 25 out of 1,673 ischemic cases in the 
test set as normal. This is due to the BiLSTM’s efficiency in capturing long-range dependencies 
and sequential patterns, making it suitable for tasks involving time-series data such as ECG 
signals. In addition, CNNs are well-suited for hierarchical feature learning and complex pat-
tern recognition in ECG data.

KEYWORDS
ischemia classification, electrocardiogram (ECG), convolutional neural network (CNN), hybrid 
CNN models

1	 INTRODUCTION

Heart ischemia, a condition characterized by an inadequate supply of blood and 
oxygen to the heart muscle, has significant global implications. According to the 
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2019 statistics from the World Health Organization (WHO), ischemic heart disease 
and stroke were the primary causes of death globally. They accounted for a signifi-
cant portion of the global disease burden, leading to millions of deaths and posing 
substantial economic challenges due to healthcare costs and reduced productivity [1]. 
The impact of ischemia extends far beyond mortality, as survivors often suffer from 
debilitating disabilities. Ischemic heart diseases encompass a group of serious car-
diovascular conditions. These diseases primarily include angina and myocardial 
infarction, which is known as a heart attack. They pose a significant global health 
concern, contributing to high rates of illness and death. Timely diagnosis and inter-
vention are crucial for managing heart ischemic diseases and reducing their impact 
on individuals’ lives.

Heart ischemia can often be detected through changes in an electrocardiogram 
(ECG). An ECG is a non-invasive test that records the electrical activity of the heart. 
When a region of the heart does not receive enough blood and oxygen due to isch-
emia, it can result in specific ECG changes. These changes typically include ST-segment 
depression or elevation and T-wave abnormalities [2]. ST-segment depression can 
indicate subendocardial ischemia, while ST-segment elevation is more indicative of 
transmural or severe ischemia [3]. T-wave changes may also occur in response to 
ischemia, reflecting alterations in repolarization patterns. ECG is a crucial tool for 
diagnosing and monitoring ischemic heart conditions. It helps healthcare profes-
sionals assess the extent and location of ischemia and make informed treatment 
decisions. Specific leads are typically examined to assess for signs of ischemia. The 
most commonly used leads for this purpose include standard limb leads (I, II, and III) 
and precordial leads (V1 to V6). ST-segment depression or elevation in these leads 
can be indicative of myocardial ischemia [4]. Changes in any lead over time can 
provide crucial information. Continuous monitoring is particularly crucial in critical 
care settings.

Researchers and healthcare professionals utilize artificial intelligence (AI) to clas-
sify ECG signals, aiming for improved precision and efficiency. This is particularly 
valuable in the context of ischemia, where timely and accurate diagnosis is crucial. 
It can enhance the speed and accuracy of diagnosis, making it especially beneficial 
in critical situations such as heart attacks or strokes. Deep learning techniques have 
revolutionized the field of ECG signal classification. Deep learning models, particu-
larly convolutional neural networks (CNNs), are adept at automatically extracting 
intricate features from raw ECG data. This capability enables these models to iden-
tify intricate patterns and anomalies that are indicative of various cardiac condi-
tions, including ischemia, thereby improving diagnostic accuracy.

In recent times, there has been a growing trend in the widespread use of deep 
neural networks for classifying ECG signals, with a notable focus on CNNs. These 
networks have shown impressive levels of accuracy in their results. In this study, 
the authors [5] propose a deep learning approach for classifying arrhythmias in 
ECG signals according to AAMI standards [6]. The method employs a CNN model 
that contains feature extraction and classification. A distinctive ECG heartbeat 
segmentation method is employed, commencing at R-peaks and concluding after 
1.2 times the median RR interval. To tackle imbalanced datasets, the model incor-
porates a focal loss function to prioritize minority heartbeat classes. The eval-
uation, conducted on the INCART and MIT-BIH datasets, achieved an accuracy 
of 98.41%.

The authors of the study [7] introduce a deep learning approach for inter- 
patient ECG classification. It employs a specialized symbolization technique for 
ECG signals, effectively capturing the morphology and rhythm of heartbeats while 
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mitigating inter-patient variations through baseline correction. A multi-perspective 
convolutional neural network (MPCNN) uses this representation to automatically 
extract features and classify the signals. The method’s performance was evaluated 
for classifying ventricular ectopic beats (VEB) and supraventricular ectopic beats 
(SVEB) using the MIT-BIH arrhythmia dataset, achieving an accuracy of 96.4%. 
Additionally, it achieved F1 scores of 76.6% for SVEB and 89.7% for ventricular 
ectopic beats.

In another study [8], the authors focused on classifying arrhythmias in ECG sig-
nals. They developed a multistage deep learning classification model to automate 
the arrhythmia classification process. The model used second-order difference plot 
(SODP) features and ECG waveforms. It employed a deep belief network (DBN) 
classifier with a greedy layer-wise training approach using restricted Boltzmann 
machines. To eliminate baseline wander, the ECG signals were preprocessed using 
median filters, and the waveforms were segmented using a specific windowing 
technique. Based on ANSI/AAMI standards, they have achieved an impressive accu-
racy rate of 96.10%.

The study [9] presents a CNN-based approach for automatically detecting myo-
cardial infarctions (MI) using ECG signals. The approach utilizes a CNN model to 
classify normal and MI ECG beats with and without noise. They achieved 95.22% 
accuracy for ECG beats without noise and 93.53% accuracy with noise.

This paper [10] presents an ECG beat classification system that uses CNN for 
clinical cardiac disease diagnosis. The model achieves a classification accuracy of 
92.7% across five classes based on the AAMI standard, using 44 recordings from the 
MIT-BIH database.

The study [11] proposes a 12-layer deep one-dimensional CNN for arrhyth-
mia classification using the MIT-BIH Arrhythmia database. By utilizing a wavelet 
self-adaptive threshold denoising method, the study achieved 97.41% accuracy and 
97.05% sensitivity.

The study [12] addresses the classification of atrial fibrillation using the MIT-BIH 
atrial fibrillation database. The authors proposed an 11-layer neural network con-
sisting of a combination of CNN and a modified Elman neural network (MENN). 
The model achieved an accuracy of 97.4%, a sensitivity of 97.9%, and a specific-
ity of 97.1%.

[13] proposes a cascaded CNN and expert features combined with a random for-
est (RF) for classifying 12-lead ECG arrhythmias into nine categories with multiple 
labels. Validated against the China ECG Intelligence Challenge (CEIC), the method 
achieved a score of 86.5%.

While many recent studies in the field of cardiovascular disease have primar-
ily focused on arrhythmias, our research takes a unique and essential direction 
towards ischemia. Ischemia is the primary cause of death worldwide. Our study 
aims to tackle a pressing global health issue by employing innovative approaches to 
diagnosis, prevention, and treatment. This will contribute to saving lives and reduc-
ing the number of ischemia-related deaths.

In our study, we present a comprehensive approach to classify ischemia using 
seven diverse datasets, employing a CNN model as the central component of our 
methodology. Emphasizing the significance of accuracy and reducing the false neg-
ative (FN) rate in detecting ischemia, we expanded our analysis by incorporating 
multilayer perceptron (MLP), support vector machines (SVM), RF, long short-term 
memory (LSTM), and bidirectional LSTM (BiLSTM) models into our CNN framework. 
This combination of hybrid models was designed to leverage the strengths of each 
algorithm, improving both classification accuracy and minimizing false negatives.
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This paper is organized into four sections, offering a cohesive flow of informa-
tion. Section 2 explains the research methodology used in this approach. In the fol-
lowing Section 3, we will present the outcomes and engage in relevant discussions. 
The conclusive findings of this study are presented in Section 4.

2	 METHODOLOGY

2.1	 Dataset

In our research, we utilize a dataset comprising individuals with ECG readings 
that have been annotated and diagnosed with ischemic heart disease by experts. The 
dataset is a combination of six distinct databases, including:

•	 St. Petersburg INCART 12-lead Arrhythmia Database [14]
•	 Chapman university, Shaoxing people’s hospital, and Ningbo First Hospital ECG 

Database (CSNDB) [15]
•	 PTB-XL Electrocardiography Database [16]
•	 PTB Diagnostic ECG Database (PTBDB) [17]
•	 The China Physiological Signal Challenge 2018 (CPSC2018) [18]
•	 The Georgia 12-Lead ECG Challenge Database (G12EC) [19]

Only individuals identified as having ischemic heart disease from these datasets 
were included in this compilation.

2.2	 Preprocessing

To enhance the accuracy of classification algorithms, it is often crucial to elim-
inate or minimize irrelevant or noisy information within the signals. The useful 
range is typically considered to be around 0.5 to 45 Hz. Frequencies below 0.5 Hz are 
associated with baseline wander and slow drifts, which can cause analysis problems 
[20], while frequencies above 45 Hz are often considered to contain less significant 
information for ECG analysis [21]. To achieve this, we applied discrete wavelet trans-
forms (DWT) using the Daubechies D6 (‘db6’) wavelet to decompose the ECG signals. 
Sampled at 250 Hz, the ECG signals were decomposed up to 8 levels using MATLAB. 
The 8th sub-band, which primarily contained the baseline wander (frequency range 
of 0–0.488 Hz), was excluded from the denoising process (see Figure 1). Additionally, 
as the ECG signal did not contain significant information beyond 45 Hz, the first-
level detail coefficients corresponding to frequency bands of 62.5–125 Hz were also 
excluded. The denoised ECG signal was reconstructed using sub-band coefficients 
from the 2nd to the 8th level, while the coefficients from other sub-bands were 
set to zero before performing the inverse wavelet transform, resulting in the final 
denoised ECG signal.

In this preprocessing context, the R-peaks, which are crucial points in the car-
diac cycle, were detected. Afterwards, we segmented individual beats from the ECG 
signals and computed median beats for each of the 12 leads, ensuring a consistent 
duration of 250 data points per beat (see Figure 2). Overall, this comprehensive 
approach to ECG preprocessing is beneficial for creating a standardized and cleaned 
dataset ready for precise and meaningful analysis of cardiac signals.
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Fig. 1. ECG signal before and after applying the DWT

Fig. 2. Heartbeats of each lead

2.3	 Data balance

To address the data imbalance issue, where one class has 8,431 samples and the 
other has only 1,502, representing 15% and 85% of the data, respectively, we imple-
mented a random oversampling technique. This technique is efficient in achieving 
data balance. Oversampling involves creating artificial samples for the minority 
class to equal the size of the majority class. This approach offers several advantages, 
most notably improved model training and generalization. By increasing the dataset 
for the minority class, we established a more balanced training environment for our 
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deep learning models. This prevented the classifier from becoming overly biased 
towards the majority class [22], enabling it to better learn the characteristics of both 
classes, and leading to a more equitable classification system for our dataset. The 
new balance is achieved with 8,431 samples in each class.

2.4	 Classification methods

A)	 Convolutional neural network
A CNN has proven to be efficient in ECG analysis for feature extraction and clas-

sification tasks. Figure 3 depicts the proposed CNN standard model. We begin our 
architecture with two convolutional layers to apply filters to the ECG signal, extract-
ing features and enabling the model to learn and capture local patterns within the 
signal. Then, we add a max-pooling layer to downsample the features while retain-
ing the most significant information. This is particularly useful for reducing the size 
of the feature map [23]. After that, we add another two convolutional layers, each 
followed by a max-pooling layer. Finally, we add a fully connected layer.

Fig. 3. Architecture of the proposed standard CNN

B)	 Support vector machine
The SVM is a supervised machine learning algorithm that plays a valuable role in 

improving classification tasks, particularly when used in combination with a CNN 
model as previously described. SVM is designed to find the most effective hyper-
plane that efficiently separates data points belonging to different classes in a high- 
dimensional space [24]. After CNN extracts complex features from ECG signals, SVM 
can further enhance classification accuracy by refining the decision boundary.

C)	 Random forest
The RF is a frequently used ensemble learning method that can improve classi-

fication tasks when combined with a CNN-based model. The RF algorithm operates 
by creating multiple decision trees (in this case, 100 estimators) during training and 
then combining their predictions to make a final classification [25]. When integrated 
into ECG classification, RF can serve as a complementary classifier following feature 
extraction by the convolutional neural network.
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D)	 Multilayer perceptron
The multilayer perceptron (MLP) classifier is a type of neural network architec-

ture renowned for its effectiveness in performing classification tasks. When used 
with a CNN model, it plays a crucial role in improving classification performance. 
Unlike ensemble methods such as RF, MLP is a neural network, and its integration 
with CNN offers certain advantages.

E)	 LSTM and BiLSTM
Long short-term memory and BiLSTM are recurrent neural network (RNN) archi-

tectures that are extensively utilized in natural language processing, speech recog-
nition, and sequential data analysis. When used as supplementary classifiers after 
a CNN model, they have distinct roles in improving classification performance. The 
LSTM model is designed to capture temporal dependencies in sequential data [26], 
making it effective at modeling the context and long-term dependencies within the 
extracted features from the CNN. LSTM can learn from previous data and provide 
valuable context for making classification decisions. On the other hand, BiLSTM 
extends the capabilities of LSTM by processing sequences bidirectionally, taking into 
account both past and future contexts.

3	 RESULTS AND DISCUSSION

The proposed models were trained under identical conditions to ensure a fair 
comparative study. The data was randomly partitioned into 80% training data and 
20% testing data, with an additional 10% validation data subset from the training 
data using the train-test validation split technique. Each model was trained for 
50 epochs.

The models’ performance was evaluated using three evaluation metrics: accu-
racy, sensitivity, and precision. In addition to the confusion matrix (see Figure 4), 
which is an essential tool for evaluating the performance of classification models, 
where TP represents true positive, TN represents true negative, FP represents false 
positive, and FN represents false negative.

Fig. 4. Confusion matrix

Table 1 presents the performance of different hybrid CNN models. The stan-
dard CNN model demonstrated an impressive accuracy of 98.96% and a sensitivity 
of 98.00%. Moving to the hybrid models, the CNN-RF model had a slight advantage 
compared to the standard model, enhancing the sensitivity to 98.23%, which means 
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fewer FN cases. The CNN-SVM model achieved a higher accuracy rate of 99.05% 
while maintaining the same sensitivity score. Furthermore, the model also outper-
formed the CNN-RF model in terms of precision. The CNN-MLP model improved 
the accuracy to 99.02% and achieved a sensitivity of 98.11%. In comparison, the 
CNN-SVM model experienced a decrease in both accuracy and sensitivity, losing 
some TP cases and resulting in FN cases. Meanwhile, the CNN-LSTM model achieved 
an accuracy of 99.08% and a sensitivity score of 98.29%. Finally, the CNN-BiLSTM 
model demonstrated the highest accuracy of 99.23% and a commendable sensitivity 
of 98.53%, resulting in a reduction of FN cases to 25 out of 3373 in the total test set, as 
depicted in the model’s confusion matrix in Figure 5. This performance was superior 
to that of the other models considered, and as a result, this model will be referred to 
as the proposed model throughout the rest of the paper.

Table 1. Classification results the proposed hybrid models

Proposed Models Sensitivity Precision Overall Accuracy

CNN 98.00% 99.94% 98.96%

CNN-SVM 98.24% 99.88% 99.05%

CNN-RF 98.23% 99.70% 98.96%

CNN-MLP 98.12% 99.94% 99.02%

CNN-LSTM 98.29% 99.88% 99.08%

CNN-BiLSTM 98.53% 99.94% 99.23%

Fig. 5. Confusion matrix for the CNN-BiLSTM model

Our focus was consistently on evaluating the accuracy and true positive rate 
of the compared models. Sensitivity (true positive rate) measures the accuracy of 
the positive predictions made by a model, indicating how well it distinguishes true 
anomalies from normal data. In anomaly classification, high sensitivity indicates that 
a low number of true anomalies are incorrectly classified as normal. This is crucial 
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in situations such as fraud detection or medical diagnosis, where incorrect negative 
results can have serious consequences. In our study, we identified 1673 cases of isch-
emia in our test set, and the CNN-BiLSTM model only classified 25 of them as normal. 
This demonstrates the model’s ability to effectively identify anomalies.

However, the selection of the training-validation split can impact the reported 
accuracy and sensitivity levels. To evaluate the performance of our model with this 
approach, we also conducted experiments using a 60%–40% training-validation split 
on the CNN-BiLSTM model. The results depicted in the confusion matrix of the model 
in Figure 6 indicate that the model’s performance remained consistent across differ-
ent splits, with only slight variations in accuracy and sensitivity, which are 98.92% 
and 98.19%, respectively. This suggests that the reported accuracy and sensitivity 
are not significantly influenced by the specific choice of the training-validation split.

Fig. 6. Confusion matrix of the CNN-BiLSTM model with a 60%–40% training-validation split

Table 2 presents a compelling comparison between our approach and state-of-
the-art methodologies. Notably, our most frequently used model achieved the high-
est classification accuracy when working with two classes across six diverse datasets 
using 12 leads. All of these studies [7], [8], [9], [10], [11], [12], [13] have achieved good 
results by working with just one dataset, except for [5], which used two datasets and 
achieved an accuracy rate of 98.41%. [9] focused on classifying MI as an ischemic 
disease, based solely on lead II. They achieved an accuracy rate of 95.22% without 
noise. The challenge in [13] was also significant, involving the classification of nine 
classes using a 12-lead ECG and achieving a final score of 86.5%.

Unlike many state-of-the-art studies that rely on one or two datasets, our approach 
involves merging six distinct datasets. This approach enabled us to capture a wider 
range of information. Unlike the typical single-lead datasets, using 12 leads pre-
sented a challenge in terms of incorporating various patterns. However, it offers a 
more comprehensive perspective on cardiac electrical activity, facilitating a better 
understanding of ischemic events. Additionally, removing unwanted artifacts and 
balancing the data ultimately enhanced the classification. This perspective not only 
enriched our analysis but also enhanced the reliability of our results.
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Table 2. The comparison between our proposed model and state-of-the-art methodologies

Study Database Application Number 
of Classes DL Technique Results

[5] MIT-BIH INCART Arrhythmias 
classification

5 CNN + focal loss Acc = 98.41%, Prec = 98.37% F1-score = 98.38%

[7] MIT-BIH Arrhythmias 
classification

5 MPCNN Acc = 96.4%, F1 score SVEB = 76.6%, F1 score VEB = 89.7%

[8] MIT-BIH Arrhythmias 
classification

5 DBN Acc = 96.10%

[9] PTBDB MI classification 2 CNN With noise: Acc = 93.53%, Sen = 93.71%, Spec = 92.83%
Without noise: Acc = 95.22%, Sen = 95.49%, Spec = 94.19%

[10] MIT-BIH Arrhythmias 
classification

5 CNN Acc = 92.7%

[11] MIT-BIH Arrhythmias 
classification

5 CNN Acc = 97.41%, Sen = 97.05%, Spec = 99.35%

[12] MIT-BIH Atrial fibrillation 
classification

2 CNN + MENN Acc = 97.4%, Sen = 97.9%, Spec = 97.1%

[13] CEIC Arrhythmias 
classification

9 Cascaded CNN Acc = 86.5%, Sen = 85.3%, Spec = 82%

Proposed  
model

INCART
CSNDB
PTBDB
PTB-XL

CPSC2018
G12EC

Ischemia 
classification

2 CNN-BiLSTM Acc = 99.23%, Sen = 98.53%, Prec = 99.94%

4	 CONCLUSION

In this study, we present a comparison of six hybrid CNN-based models, eval-
uating their individual and collective contributions to ischemia classification. We 
improved the classification performance by eliminating and reducing irrelevant 
and noisy information in the data using DWT decomposition based on db6. Then, 
we utilized random oversampling to rectify a substantial data imbalance, resulting 
in a more balanced dataset and preventing classifier bias toward the majority class. 
By enhancing the CNN with various machine learning techniques, we achieved 
significant improvements in classification accuracy while reducing the number 
of false negative cases. Trained on six different datasets processed using DWT, the 
CNN-BiLSTM model achieved the highest accuracy of 99.23% and a good sensitivity of 
98.53%. The proposed model was one of the best compared to related studies, thanks 
to the efficiency of BiLSTM in capturing long-range dependencies and sequential 
patterns within time-series data, such as ECG signals. This is complemented by CNN’s 
ability to perform hierarchical feature learning and complex pattern recognition on 
ECG data. This approach demonstrates the benefits of using CNN hybrid models to 
improve diagnostic outcomes and reduce errors in clinical practice.
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