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ABSTRACT

Wireless Capsule Endoscopy (WCE) is a medical diagnostic technique recognized for its min-
imally invasive and painless nature for the patients. It uses remote imaging techniques to
explore various segments of the gastrointestinal (GI) tract, particularly the hard-to-reach small
intestine, making it an effective alternative to traditional endoscopic techniques. However,
physicians face a significant challenge when it comes to analyzing a large number of endo-
scopic images due to the effort and time required. It is therefore imperative to implement
aided-diagnostic systems capable of automatically detecting suspicious areas for subsequent
medical assessment. In this paper, we present a novel approach to identify gastrointesti-
nal tract abnormalities from WCE images, with a particular focus on ulcerated areas. Our
approach involves the use of the Median Robust Extended Local Binary Pattern (MRELBP)
descriptor, which effectively overcomes the challenges faced when WCE image acquisition,
such as variations in illumination and contrast, rotation, and noise. Using machine learning
algorithms, we conducted experiments on the extensive Kvasir-Capsule dataset, and subse-
quently compared our results with recent relevant studies. Noteworthy is the fact that our
approach achieved an accuracy of 97.04% with the SVM (RBF) classifier and 96.77% with the
RF classifier.

KEYWORDS
WCE, computer-aided-diagnostic, machine learning, deep learning, Completed LBP, Median
Robust Extended LBP

1  INTRODUCTION

Medical imaging is an essential tool that allows physicians to accurately diag-
nose patients without resorting to invasive processes, by providing a preliminary
view of the condition of the human body. In order to precisely detect various abnor-
malities, physicians currently undertake the difficult task of manually examining
an extensive collection of medical images for each assessment. This process
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requires more effort and time, contributing to the exhaustion and monotony
of the screening process. Contemporary scientific research has focused on
the development of computer systems with the ability to autonomously ana-
lyze and interpret big medical images data [1, 2, 3]. These systems must cover
all medical images acquisition modalities, such as X-rays, mammography, ultra-
sound, tomography, magnetic resonance imaging, cardiography and endoscopy.
Gastrointestinal diseases are among the most common and difficult to diagnose
illnesses [4]. Recently, gastrointestinal endoscopy has advanced significantly, with
the emergence of various endoscopic types, including colonoscopy [5], gastros-
copy [6], narrow-band imaging endoscopy [7], zoom-endoscopy [8], and the more
recent wireless capsule endoscopy (WCE) [9]. In fact, the wireless capsule has com-
pletely revolutionized the endoscopy field by effectively supplanting the conven-
tional endoscopic tubes. This pill-shaped image capture apparatus enables for a
perfectly non-invasive visualization of the gastrointestinal tract. During the WCE
endoscopy process, a patient consumes the pill- shaped device containing a cam-
era that travels through the gastrointestinal tract, capturing and transmitting
images to an external receiver. These high-resolution (RGB) images are recorded
as a video comprising over 60,000 images per examination and patient [10]. The
in-depth analysis of all these images should be done by expert physicians. In addi-
tion, identifying, localizing, and treating affected areas becomes extremely diffi-
cult, especially since only 5% of these images typically depict abnormalities [11].
Hence the need for computer-aided techniques for efficient and autonomous
processing of WCE images to determine the size and location of various lesions
in the gastrointestinal tract, including tumors [12], ulcers [13], polyps [14] and
bleeding [15].

Several studies have been conducted to investigate gastrointestinal tract using
endoscopic images. The majority of them have been focused on the analysis of
WCE images’ textural features. We can distinguish two main approaches: machine
learning-based methods and deep learning-based methods. The first approach
involves a series of steps, namely preprocessing, features extraction and careful
selection, learning and classification. In the second approach, the previous steps
are combined into the same CNN-architecture to process feature sets for specific
problems. In this paper, we propose a novel approach for automatic ulcer dis-
ease processing in WCE images, which mainly aims to solve problems related to
shooting conditions, such as variations in illumination and contrast, rotation, and
noise. In this approach, we use the Power Law Transformation (PLT) algorithm
to enhance the contrast of RGB and YCbCr images. These enhanced images are
then used to extract specific ulcer features using the MRELBP descriptor [16]. The
Spatially Enhanced Local Binary Pattern Histogram (eL.BPH) [17] was used to build
the final feature vector. Finally, we classify feature dataset using machine learn-
ing algorithms, including Support Vector Machines (SVMs), Random Forest (RF),
Multilayers Perceptron (MLP) and K-Nearest Neighbor (KNN). By adopting this
strategy, we succeed in improving the results of state-of-the- art machine learning-
based methods as well as demonstrating the competitiveness of the proposed
approach compared to some of deep learning-based methods. The remainder of
this paper is organized as follows: In Section 2, the related work is presented.
Section 3 is reserved for a detailed description of the proposed approach. Experi-
mental results and discussion are presented in Section 4. Finally, the paper ends
with conclusion.
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2 RELATED WORK

Ulcer is an open lesion in the mucous membrane of the stomach or intestine.
Peptic ulcers can manifest themselves as pain, digestive bleeding or even perfo-
ration, and when it is chronic, peptic ulcers can degenerate into cancer [18, 19].
Thus, an early treatment of ulcers can prevent cancer. Moreover, some cancers can
take on an ulcerated form and be mistaken for ulcers. Fortunately, artificial intel-
ligence has now given rise to computer-assisted diagnosis. These systems, based
on image processing algorithms and computer vision techniques, make it possible
to visualize the entire digestive tract and detect its abnormalities. This means that
more patients can be examined than ever before. This paper focuses on the detec-
tion of ulcers as one of the common gastrointestinal (GI) pathologies. In this sec-
tion, we present a state-of-the-art review of the most recent and relevant methods
for ulcer detection in endoscopic video capsule images. For this purpose, we will
divide these methods into two families: deep learning-based methods and machine
learning-based methods.

2.1 Deep learning-based methods

Deep learning techniques have been widely applied across various research
domains. These techniques are divided into two categories: the Layers-CNN-model,
tailored to specific requirements, and the pre-trained-CNN-model. Which leverages
learning transfer using established frameworks like ResNet, VGGNet, GoogleNet,
VGG-16, and AlexNet [20, 21]. Consistently, Lakovidis et al. implemented a two-
step approach comprising a Deep Saliency Detection (DSD) algorithm for salient
points detection and a Weakly Supervised Convolutional Neural Network (WCNN)
for classification [22]. In fact, DSD makes it possible to locate data key characteris-
tics in order to better understand the underlying structures. Additionally, WCNN
uses partial information to infer desired patterns within selected salient regions.
Tomonori et al. [23] proposed an automatic detection of ulcerations in WCE images
based on a deep convolutional neural network. The architecture involved is named
Single Shot Multi-Box Detector (SSD) and was introduced a few years before by Wei
Liu et al. [24]. The defining feature of this architectural framework is its ability to
generate a diverse set of bounding boxes at various scales, enabling simultaneous
object detection and localization. The results were promising and encouraging,
since the accuracy achieved 90%. In their paper [25], Sen Wang et al. wanted to
find out how well deep learning would work for ulcer detection. To this end, they
proceeded in two phases. First, they started by understanding the task of ulcer detec-
tion, and the basics behind classic deep learning networks. Second, they proposed
a new architecture named HAnet and based on the ResNet-34, a CNN known for its
depth and its ability to alleviate the challenges associated with training extremely
deep networks. Haya Alaskar et al. [26] proposed an analysis of two distinct CNN
architectures, namely AlexNet [27] and Google-Net [28]. They aim to study their abil-
ity to distinguish between ulcer and non-ulcer WCE images. They also provide a
comparison with some relevant machine learning-based approaches. Indeed, this
contribution marks the beginning of scientific discourse concerning the utilization
of deep learning in the analysis of medical images, particularly in the assessment
of WCE-based gastrointestinal pathology. Vani et al. [29] introduced a four-layered
deep learning Convolutional Neural Network (CNN) for the detection of ulcers in
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WCE images. Furthermore, the proposed model highlights a hierarchical feature
extraction process inherent to deep neural networks. Concurrently, Rehman [30]
proposed a two-step process for identifying ulcers. First, a Region of Interest (ROI)
is implemented to detect suspicious areas based on a thresholding. Then, these ROIs
feed a 6-layers convolutional neural network model. Both contributions underscore
the exploration of deep learning-based methodology for improved ulcer detection
efficiency in WCE images. Ellahyani et al. [31] used fine-tuned convolutional neu-
ral networks to extract relevant features from WCE images. The Random Forest
classifier was then employed to identify ulcerous images based on the extracted
features. This approach validates the efficacy of feature extraction by amalgamat-
ing the decision-making capabilities of both machine learning and deep learning
techniques. In [32], a pre-processing step was made to increase the quality of the
input images for classification. This pre-processing consists of achieving contrast
and illumination invariance, aiming to normalize and optimize the quality of the
input image for subsequent analysis. The fused image dataset then represents
the input of a deep learning model named Mobil-Netv2. Certainly, Mobilnetv2 is
an efficient CNN architecture, particularly suitable for resource-constrained applica-
tions, like ulcer classification in WCE images.

2.2 Machine learning-based methods

A number of studies focusing on the automatic detection of ulcers have been
conducted using machine learning techniques. For example, Baopu et al. [33] intro-
duced a new scheme based on the curvelet transform and the LBP for a robust
feature description. This scheme was combined with machine learning meth-
ods such as Multilayer Perceptron (MLP) and Support Vector Machines (SVM).
In [34], the Bidimensional Ensemble Empirical Mode Decomposition (BEEMD) was
employed to extract different intrinsic mode functions. In addition, a lacunarity
method was involved to capture the fractal property of WCE images. Finally, a sim-
ple discriminant analysis-based classification served as a classifier. This approach
holds significant implications for the analysis of medical images and the classifica-
tion of gastrointestinal pathologies. Lecheng et al. [35] investigated the use of the
bag-of-words model after its success in several computer vision algorithms. Two
texture descriptors were involved to describe WCE images, namely LBP and SIFT.
The SVM algorithms were used as classifiers. Jinn-Yi et al. [36] proposed the use of
color features to categorize WCE images into normal, bleeding or ulcerous ones,
mainly, descriptors of color coherence vectors and gray level co-occurrence matri-
ces. In addition, spatial and statistical features like contrast, energy, correlation and
homogeneity, were then computed. Finally, several classifiers were involved such
as SVM, decision tree, neural networks and others. The results of this study guided
the choice of methods according to the specificities of the medical data and classi-
fication needs. Charfi et al. [37] proposed a methodology that involves segmenting
WCE images using saliency and color maps, extracting features using Color LBP
(CLBP) and Pyramid Orientation Histograms (PHOG), and classifying features data
using SVM, MLP, and HMM. Furthermore, Souaidi et al. [38] proposed to capture
supplementary texture information with the (MS-CLBP) descriptor and both YChCr
and RGB color spaces. The SVM algorithms were employed as classifiers. Therefore,
this comparative study provided valuable insights into the choosing suitable
descriptors and classifiers, contributing to the effective analysis of WCE images.
Ponnusamy et al. [39] proposed a fusion of texture and color features by the use
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of center symmetric local binary pattern (CS-LBP), scale invariant feature trans-
form (SIFT) and the auto color correlogram (ACC). Similarly, to the bag-of-words,
this combination leads to a visual bag of features that can be employed to identify
the status of the gastrointestinal tract. Also, for the classification, they used SVM.
This study provided crucial insights that can be taken into account when using the
CS-LBP, SIFT, and ACC appearance descriptors in medical imaging. A small number
of authors have proposed a hybrid approach making use of both deep learning
and machine learning techniques. For example, Naz et al. [40] proposed a method
in which they used filtering techniques to enhance the contrast of WCE images.
Then, they performed feature extraction using a hybrid method consisting of LBP,
SFTA, VGG16 and InceptionV3. Finally, SVMs, KNN, MLP, B-Trees and RF are used
as classifiers.

3  MOTIVATION AND METHODOLOGY

In this section, the proposed approach for identifying ulcer abnormalities in WCE
images is presented.

3.1 Proposed scheme

As shown in Figure 1, our proposed system consists of four stages: pre-
processing, features extraction, statistical features selection and classification. In the
pre-processing stage, the contrast of input WCE images is enhanced using the PLT
algorithm [41], then decomposed into a specific’s components (C1, C2 and C3) of
each color space (RGB or YCbCr). The second stage involves the MRELBP descriptor
to more discriminate ulcer-prone areas within each color component. In the third
stage, eL.BPH is used to build the final features vectors as histograms. Finally, the
SVMs, RE, MLP and KNN classifiers occur at the last stage.

Features Selection Classification
Database prmm————————— . Peatures=Seti  maciidelesinvaes ;
= i ¥ e i
i ‘ igp| Training-Set RF :
! alll - I 80% KNN E
(— — | mLP !
__________________ ol SVM_linear !
PILT H 11, | Testing-Set SVM_poly-1 | |
: i -MRELBP i b = i
algorithm 4 : P 20% SVM_poly-2 i
. i R S —— SVM_poly-3 | |
1 ] 1
; i SVM_RBF |
< A 1 E * i
: ] 1
__________________ 1 1
Enhanced-Set | Features Extraction Ulcer/Normal E

Fig. 1. The aided-diagnostic system proposed scheme

3.2 Pre-processing

Generally, WCE images are low quality (contrast and color), they do not allow
accurate detection of abnormal areas. In order to improve the quality of WCE images,
we applied two steps. In the first, we improve contrast by using (PLT) algorithm
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usually defined as: .= Cx PP, where, o is the value transformed pixel; P is the value
of the original pixel; and C and B are constants that need to be well chosen to get the
best transformation. In our case, we take the same values from [32],i.e., C=1.5 and
B =0.9. In the second, we try to determine precisely which components of the RGB
(R, G or B) and YCbCr (Y, Cb or Cr) color spaces are most suitable for our system.

3.3 Features extraction and selection

During many image-based pattern recognition studies, LBP-like methods have
been verified as effective feature extractors. In our case, we use two variants: 1) CLBP
which detects the magnitude of the light spots on the edge. And 2) MRELBP is widely
renowned for its robustness to noise and its scale invariance.

Brief review of LBP. L.ocal Binary Patterns (LBP) is one of the popular texture
operators initially proposed by Ojala [42] and extended to several pattern recogni-
tion applications. LBP is computed for the current pixel by comparing its grayscale
value with the values of its immediate neighbors. This process can be expressed

as follows:
- 1if x>0
LBP, (x)= ;S(Xp — x,)2P. Where,S(x) = {Oif <0 1

Where x, and x, denote the current and neighboring pixels, P is the total number
of neighboring pixels, R is the radius of the neighborhood and S(.) is the sign function.

To address some LBP shortages, many LBP variants are proposed, mainly the
Rotation Invariant Uniform LBP (LBP"2), which improves robustness against image
rotations and reduces histogram range values [43].

Brief review of Completed LBP (CLBP). CLBP [44] is an extension of LBP that
describes the local area of image by the Local Difference Sign-Magnitude Transform
(LDSMT). Which consists of two components: the sign component (CLBP_S) and
the magnitude component (CLBP_M). Given a current pixel x, with P neighbor-
ing pixels x,, the LDSMT between x_and x, is denoted d,. To compute CLBP_S and
CLBP_M, d, is decomposed into the sign component s, and magnitude component
m, as (Eq.2).

d,=x,-x,=s,xm,. Wheres, =sign(d,) and m,=|x, - x| 2)

Then, s, 1s used to compute CLBP_S as (Eq.3).

= 1ifx>0
CLBP-S, (x)= Zt(xp - X_)2°. Where, t(x) = {Oi/fx -0 (3)
p=0

whereas, m ) is used to build CLBP_M as (Eq.4).

pP-1 .
lifx=c
CLBP-M, ,(x )= ;t(mp,c)zp. Where,t(x,c) = {Oif e (4)

And c is an adaptive threshold

Moreover, current pixel X, is used to define a new operator, called CLBP-Center
(CLBP_C) as (Eq.5).
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1ifx=c,

0if x<c, ©)

CLBP-C, (x ) =t(x_,c ). Where,t(x,c ) = {
Where, ¢, is the average gray level of the whole image

Finally, CLBP_S, CLBP_M and CLBP_C are combined together to construct the
CLBP histogram features.

Brief review of Median robust extended LBP (MRELBP). MRELBP is an
enhanced extension of LBP initially introduced by Liu et al. [16] to address some of
the LBP limitations, such as multiresolution problem, noise sensitivity and rotation
variation. As a new texture descriptor, MRELBP describes each current pixel using
the three variants of RELBP descriptor [45], namely, central intensity pixel descrip-
tion (RELBP_CI), neighborhood intensity pixel description (RELBP_NI) and radial dif-
ference pixel description RELBP_RD. Given a current pixel x,, RELBP_CI, RELBP_NI,
and RELBP_RD are defined as follows:

e Central intensity representation (Eq.6).
RELBP _CI(x)=S(¢(X_,) - 4, (6)

In this formula, S(.) is the sign function, ¢ () is the filter of size w x w, X, 1s the
local patch centered on pixel x, and y,, is the average of ¢(X_ ) over the whole image.
e Neighborhood intensity representation (Eq.7).

p-1

RELBP _NI, (x,) = ;3(¢(Xr,p,wm J =, )zn 7

p-1

Where, Hepw = %Zqﬁ(an)Wm)

n=0

In this formula, X, = denotes a patch of size w,*w, centered onx, .
e Radial difference representation (Eq.8).

p-1
RELBP_ RDr’ril’p’Wr’Wr—l (XC) - ZS(¢ (Xr’p’wr,n ) - ¢ (Xril’p’wr—l,n ))271 (8)
n=0
Where, X~ and X , ~ denote patches centered on x, . andx,, . neigh-

boring pixels, respectively.

Features histograms extraction. In the original eLBPH, the texture image is
first divided into d regions R , ..., R, , reduced LBP* histograms of these regions are
separately computed and then concatenated into a single histogram that represents
the eLBPH feature vector. In addition, the same eL.BPH principle is applied to gener-
ate the MRELBP histogram feature, while considering the fusion of the three feature
sets related to the central density (CI), the neighborhood density (NI) and the radial
difference (RD) expressed in (Eq.6), (Eq.7) and (Eq.8).

In summary, the global grayscale variation rule may be reliably understood by the
MRELBP-CT augmented through the medium filter. As for MRELBP-NI, the center pixel
and its neighbors are both replaced by medium-filtered grayscale values within a
few patches, which can achieve zero-mean of the local neighborhood and eventually
has superior anti-noise and anti-illumination-change. The MRELBP-RD will collect
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the edge-like information lost by the previous two intensity-based sub-descriptors.
Therefore, the concatenated histograms in Figure 2 are considered sufficient for image
classification because they are informative, noise-resistant, and scale-invariant.

Sampling scheme RELBP_CI
— RELBP_NI_, —
‘ ; RELBP_RD, .
/ '@‘ RELBP_CI
{2 N2 — RELBP NI, —

1) Oﬁ' 5 :
% k< RELBP RD,_, .. '

.“" el
RELBP Cl “ Concatenated Histogram
—>=RELBP'NL ;.. >

RELBP RD,, .

RELBP_CI
R ‘o) ‘— RELBP NI, —> u S

RELBP RD, , ., .

.
.
:

H a Joint Histograms
o) * ) ® Local Binary Features

7 v - 7 2o 7
x‘ {'rn ] }/rﬂ {xr\ Sndn=0 {"i..&n }rr 0 {‘Ir‘ R }n ]

Fig. 2. MRELBP features histograms extraction scheme extracted from [16]

Classification. In this section, we present a brief overview of the classification
phase algorithms. Mainly, SVMs, MLP, KNN, and RF.

SVMs classifier: SVM is a powerful supervised learning method initially pro-
posed by Vapnik [46]. It consists of a set of training instances to determine optimal
hyperplanes that have the maximum margin. Many SVM [47] varieties are proposed
to solve the non-linear and multi-class classification problems. For a non-linear
problem, we use polynomial or RBF kernels, while the multi-class problem is decom-
posed into several binary problems using one-against-all or one against-one strategy.

e Polynomial kernel is expressed as:
K, y) = (x, ynd Where,d=1, 2,3, ... 9)

e RBF Kkernel is expressed as:

X =Yy . .
K(x, y)=exp [—%] Where, o is thevariance (10)
(o)

RF classifier: RF [48] is a supervised machine learning algorithm that consists of
multiple decision trees learning. To establish its final outcome, RF combines predic-
tions of its decision trees through bagging or bootstrap aggregating algorithms. The
main steps of RF are:

Step-1: Select random data samples from the training set.

Step-2: Generate a decision tree for selected data samples (Subsets).

Step-3: Select the number of the decision trees you want to create.

Step-4: Repeat Step 1 and 2.

Step-5: For new data samples, find the predictions of each decision tree and
assign the new data samples to the category that wins the majority votes.

In our case, we use a forest of 50 trees, 170 nodes for each tree.
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MLP classifier: MLP [49] is one of the most widely used neural networks in
machine learning. It consists of input, output and hidden layers. Moreover, MLP
adjusts the weights of its neurons using supervised procedures, primarily, back-
propagation that learns the network through three phases: forward propagation,
backward propagation and weight adaptation. The optimal MLP model is gener-
ally determined by the number of hidden layers and the number of neurons in
each hidden layer. In our case, we use two hidden layers of 48 and 32 neurons,
respectively.

KNN classifier: One of the simplest supervised learning algorithms is the KNN
classifier [50]. It consists of classifying each new sample of the training set using the
k nearest neighbors, which are determined using several similarity measures, par-
ticularly Euclidean norms; in this case, k = 2, with Manhattan distance.

4  EXPERIMENTAL

This section presents the experimental results of the proposed approach and its
comparison with the state-of-the-art along with a discussion.

4.1 Dataset

In this study, the various evaluation tests are performed on the Kvasir-Capsule
dataset [51], readily available from the Open Science Framework (OSF). This
dataset consists of 118 videos captured using the Olympus EC-S10 endo-capsule.
An overview of this dataset is summarized in Table 1, which includes a total of
4,820,857 primary data records. Among these records, there are 44,228 labeled
images with bounding box masks, 44 corresponding labeled videos, and 74 unla-
beled videos.

Since our aim is to distinguish between normal images and ulcerous ones, we
focus on the 44,228 labeled images stored in the PNG format. Table 2 illustrates the
distribution of these labeled images across 13 different classes, each representing
a specific category of findings, along with the corresponding number of images in
each class. See Figure 3. As we can see, the number of images per class is imbal-
anced, which is a common challenge in medical datasets. This class imbalance can
impact the performance of data-driven algorithms, particularly when certain find-
ings occur more frequently than others. In our case, to address the imbalance issue,
we exclusively selected 1000 images from the normal dataset to have a represen-
tative sample of normal cases. By doing so, we avoided the problem of an imbal-
anced dataset and focused on a specific pathology of interest. Additionally, we also
included whole ulcer images from the ulcer folder, which consists of 854 images, to
have a representative sample of ulcer cases.

Table 1. Overview of the Kvasir-Capsule dataset

Types Labeled Unlabeled
Images 44,228 4,776,479
Videos 44 74

94 International Journal of Online and Biomedical Engineering (iJOF) iJOE | Vol. 20 No. 6 (2024)


https://online-journals.org/index.php/i-joe

A Robust Approach for Ulcer Classification/Detection in WCE Images

Table 2. Number of labeled images per each class

Class Label Class Name Number of Images
a Angiectasia 866
b Blood 446
C Erosion 438
d Erythematous 238
e Foreign Bodies 776
f Hematin 12
g Ileo-Cecal valve 1,417
h Lymphoid Hyperplasia 592
i Normal Mucosa 34,606
j Polyp 64
k Pylorus 1,520
1 Reduced Mucosal View 2,399
m Ulcer 854

(a) Angicctasia (b) Blood (c) Erosion (d) Erythematous (e) Foreign Bodies

£

(f) Hematin (g) lleo-Cecal valve  (h) Lymphoid Hyperplasia (i) Normal Mucosa

LTS

(i) Polyp (k) Pylorus (1) Reduced Mucosal View (m) Ulcer

Fig. 3. One image per class of Kvasir-Capsule dataset
4.2 Evaluation protocol

In order to conduct a comprehensive evaluation of our approach, we proposed
the following evaluation protocol:
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e Decompose the original WCE images dataset into six image datasets following
each of the six color components (R/G/B/Y/Ch/Cr).
e For each color component:
o Build the selected features-set by applying descriptors on the image dataset.
e TFor each classifier:
o Configure settings, use the cross-validation method with 5-fold and take 80%
of dataset as training set and remaining 20% as testing set.
Generate the confusion matrix and record the accuracy value.
Compare results with other works.

To evaluate classifier performance, a confusion matrix must be generated. This
helps determine metrics as F-measure, recall, precision, and accuracy. In our case,
the dataset is almost balanced, which favored the adoption of accuracy as an evalu-
ation criterion.

4.3 Results and Discussion

Based on the previous evaluation protocol, we carried out three experiments by
using the reduced Kvasir-Capsule dataset.

Experiment-1: In this experiment, we applied the previously provided classifi-
ers to classify different sets of selected MRELBP™? features in relation to each color
component. The results obtained through the confusion matrices (See Figure 4)
are accessible in Table 3 below. From these results, we can conclude that the RBF
variant of the SVM classifier performed exceptionally well, achieving an impres-
sive accuracy of 97.04% on the B color channel. Furthermore, the RF classifier also
demonstrated strong performance, achieving an accuracy of 96.77% on the color R
channel. Also, it can note that the (RF) classifier has demonstrated its performance
by achieving an accuracy of 96.77% on the color R channel. Additionally, other clas-
sifiers exhibited outstanding performances according to specific color channels. For
instance, on the R channel, the KNN, SVM (Poly-3, d = 3), and SVM (RBF) achieved
high accuracies of 95.14%, 95.15%, and 95.69%, respectively. Similarly, on the
G channel, KNN, SVM (Linear), and SVM (Poly-2, d = 2) reached accuracies of 95.14%,
93.26%, and 95.15%, respectively. On the B channel, KNN, SVM (Poly-1, d = 1), and
SVM (Poly-3) achieved accuracies of 96.49%, 93.26%, and 94.34%, respectively.
Furthermore, these classifiers also demonstrated strong performance in the YChCr
color space. Specifically, on the Y channel, the KNN achieved an accuracy of 96.22%,
while SVM (RBF) and RF achieved accuracies of 95.96% and 95.69, respectively. On
the Cb channel, both KNN, and SVM (Poly-2) reached an accuracy of 93.53%. Finally,
on the Cr channel., SVM (RBF) and RF achieved accuracies of 92.99% and 92.18%,
respectively. In order to properly assess the performance of the proposed approach,
we suggest two experiments. In the first, we redeployed the dataset from Saoudi’s [38]
work. In the second, we tested the same dataset using the most popular pre-
trained CNNs.

Normal | Ulcer Normal | Ulcer Normal | Ulcer Normal | Ulcer

Normal 958 42 Normal 956 44 Normal 952 48 Normal 961 39

Ulcer 18 836 Ulcer 21 833 Ulcer 26 828 Ulcer 16 838
(a) RF-R (b) KNN-B (c) RBF-Y (d) RBF-B

Fig. 4. Confusion matrices of the four best results
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Table 3. Results of different classifiers on MRELBP, /™

Color R G B Y Ch Cr
RF 96.77(a) 94.34 93.53 95.69 90.84 92.18
KNN 95.14 95.14 96.49(b) 96.22 93.53 85.17
MLP 88.21 89.19 87.84 89.49 90.30 88.68
Linear 91.37 93.26 90.03 92.72 85.98 88.68
Poly-1 91.37 90.57 93.26 91.91 90.30 88.68
SVMs Poly-2 95.15 95.15 94.61 93.53 93.53 89.49
Poly-3 90.57 92.45 94.34 90.57 81.94 82.48
RBF 95.69 95.69 97.04(d) |  95.96(c) 92.45 92.99

Notes: The (a), (b), (c) and (d) are refer to the confusion matrix from Figure 4. The bold numbers are
refer to the maximum values.

Experiment-2: In this experiment, we applied the conditions of experiment-1
to classify different sets of selected MsCLBP features according to each color com-
ponent. The results of MsCLBP_M and MsCLBP_S are accessible in Tables 4 and 5,
respectively. From these results, Tables 4 and 5, it is clear that the accuracies of KNN,
MLP, SVM(Linear), SVM(Poly-1), and SVM(Poly-3) are relatively low when com-
pared to RF and SVM(Poly-2). For example, RF achieved an accuracy of 92.70% with
MsCLBP_S on the color Cr channel. Similarly, SVM(Poly-2) achieved an accuracy of
95.15% with MsCLBP_M for the color R and G channels. Comparing the results from
Tables 3,4, and 5, it is evident that MRELBP’s performance significantly outperforms
MsCLBP’s for nearly all components and color classifiers. To further underscore the
effectiveness of our approach, we will compare it with recent deep learning-based
methods. This is the primary focus of experiment-3.

Table 4. Results of different classifiers on MsCLBP_MLS”"‘2

Color R G B Y Ch Cr
RF 86.76 86.76 85.68 87.03 86.22 85.68
KNN 85.17 81.67 82.74 84.63 86.79 86.79
MLP 81.08 76.22 79.46 76.49 82.43 82.70
Linear 76.55 69.27 73.85 72.78 80.86 66.85
Poly-1 80.81 72.70 79.19 74.60 81.35 76.22
SVMs Poly-2 95.15 95.15 94.61 93.53 93.53 89.49
Poly-3 81.94 72.24 79.51 74.66 79.25 80.59
RBF 79.25 76.28 72.51 80.05 77.63 73.32

Note: The bold number is refer to the maximum value.

Table 5. Results of different classifiers on MSCLBP_S, ™

Color R G B Y Cb Cr
RF 84.87 84.60 85.95 86.76 90.27 92.70
KNN 79.78 79.51 81.40 80.32 86.52 86.52
MLP 81.62 74.32 83.24 78.92 79.73 84.87
(Continued)
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Table 5. Results of different classifiers on MsCLBP_SLS”'“2 (Continued)

Color R G B Y Ch Cr
Linear 69.81 67.39 73.85 68.73 68.19 74.66
Poly-1 77.03 73.24 74.32 72.70 76.76 82.70
SVMs Poly-2 82.48 70.08 77.09 73.32 82.75 80.59
Poly-3 78.71 76.55 77.63 77.63 83.02 78.71
RBF 85.98 82.21 84.64 82.48 88.95 85.98

Note: The bold number is refer to the maximum value.

Experiment-3: In this experiment, our main objective is to compare our pro-
posed approach with the most relevant and recent, deep learning-based methods
found in the literature. To achieve this, we applied four benchmark pre-trained
CNN models, namely Alexnet [26], MobileNetv2 [32], Resnet18, and Resnet50 [52], to
the original RGB image dataset as described in Experiment-1. The results obtained
are shown in Table 6. It is important to note that for our proposed approach, we
reported the top three accuracy scores along with their corresponding classifiers
and color channels. From these results, it is evident that our proposed approach con-
sistently outperforms the Resnet 50 architecture, regardless of the classifier or color
channel used. The Mobilnetv2 architecture slightly outperforms our approach, but
only when using the KNN classifier. The Resnet 18 achieves the same accuracy as the
SVM classifier with the RBF kernel on channel B. The only notable exception is the
Alexnet architecture, which slightly outperforms all classifiers used in our approach.

Table 6. Accuracy comparison between MRELBP and others deep-learning methods

Method Color Classifier Accuracy

R RF 96.77
Our approach B RBF 97.04

B KNN 96.49
Resnet18 [52] RGB 97.04
Resnet50 [52] RGB 94.07
Alexnet [26] RGB 97.57
Mobilenetv2 [32] RGB 96.71

In conclusion, a comparison of our approach with previous pre-trained CNNs
shows that our approach remains competitive with an accuracy of 97,04% against
97.57% for the Alexnet, knowing that pre-trained CNNs usually require deep learn-
ing algorithms which are more computationally expensive than machine learning
algorithms. Moreover, we must notice that in our case, results for only one-color
component are considered. However, for the deep learning-based competitors’
approaches, all color components were involved. This means more time computing
and more relevant information that we were deprived of. distance.

5 CONCLUSION

In this paper, we proposed a robust approach to classify ulcer/non-ulcer images
from WCE examination. It is based on the medial robust local binary pattern
(MRLBP), which has shown its superiority in previous works, to solve problems
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related to the acquisition conditions, namely illumination, contrast, rotation and
noise. After a pre-processing step using the Power Law Transformation (PLT) algo-
rithm to enhance the contrast of RGB and YCbCr images, the MRLBP is computed
for each resulting color component to extract texture color features. The effective-
ness of the proposed approach is largely validated by the experimental results
that have been carried out using the Kvasir-Capsule dataset. Thus, our approach
outperformed methods based on the fusion of LBP-like descriptors and machine
learning algorithms. Besides, it remains very competitive with methods based on
deep learning algorithms by achieving an accuracy of 97.04% versus 97.57% for
the Alexnet. However, there is a dependency between color components that has
been partially ignored in our case. As future work, we plan to exploit these depen-
dencies and include other datasets to improve the performance of the computer-
aided diagnostic systems playing a critical role in medical images interpretation.
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