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ABSTRACT

The characterization of tumors is crucial for guiding appropriate treatment strategies and
enhancing patient survival rates. Surface thermography shows promise in the non-invasive
detection of thermal patterns associated with the existence of breast tumors. Nevertheless,
the precise prediction of both tumor size and location using temperature characteristics pres-
ents a critical challenge. This is due to the limited availability of thermal images labeled with
the corresponding tumor size and location. This work proposes a deep learning approach
based on convolutional neural networks (CNN) in combination with thermographic images
for estimating breast tumor size and location. Successive COMSOL-based simulations are con-
ducted, including a 3D breast model with various tumor scenarios. Thus, different noise levels
were included in the development of the thermographic image dataset. Every image was
accordingly labeled with the corresponding tumor location and size to train the CNN model.
Mean absolute error (MAE) and the coefficient of determination (R?) were considered as
evaluation metrics. The results show that the proposed CNN model achieved a reasonable
prediction performance with MAE-R? values of 0.872-98.6% for tumor size, 1.161-96.8% for
x location, 1.086-97.1% for y location, and 0.954-96.7% for z location. This study indicates
that the combination of surface thermography and deep learning is a convenient tool for
predicting breast tumor parameters.

KEYWORDS
3D tumor localization, finite element method (FEM), surface thermography, deep learning,
breast cancer

1  INTRODUCTION

Breast cancer is a significant global health concern, affecting numerous women
annually. The World Health Organization (WHO) estimated 2.3 million new cases of
breast cancer and 685,000 deaths worldwide in 2020 [1]. Various factors can lead to
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breast cancer, including family history, radiation exposure, obesity, age, radiation,
and several other factors [2-4]. The presence of a breast tumor can progress from
early-stage to more advanced stages [5], [6]. Precise knowledge of tumor parameters
informs the selection of appropriate therapeutic interventions, with smaller tumors
often warranting less invasive treatments compared to their larger counterparts [7].
Furthermore, understanding the spatial location of tumors within the breast plays
a fundamental role in planning surgical procedures, optimizing radiation therapy,
and ultimately improving patient outcomes [8]. Therefore, the reliable estimation of
tumor size and location not only enhances the quality of patient care but also con-
tributes to the advancement of breast cancer management and prognosis [9].

Mammography is a commonly used screening tool to characterize breast tumors
[10]. It is an imaging modality that uses an important dose of X-rays to create detailed
images of the breast tissue. It works on the principle of differential attenuation of
X-rays by the tissue. The breast is compressed between two plates to achieve a uni-
form thickness, which reduces scatter and ensures maximum contact between the
breast and the image receptor. The X-rays are then passed through the breast, and
the resulting image is captured on a digital detector [11]. A radiologist analyzes the
captured image to detect breast tumors [12]. However, there are several limita-
tions associated with mammography. Firstly, mammography has lower sensitivity
for women with dense breast tissue, which can increase the chances of false nega-
tives. Secondly, mammography involves exposure to ionizing radiation, which can
increase the risk of radiation-induced cancer in the long term [13], [14]. Additionally,
mammography can be uncomfortable for some women due to the compression of
the breast during the imaging process [15]. Therefore, there is a need for alternative,
non-invasive screening methods for breast tumor characterization.

Breast thermography is an emerging modality for early detection of breast can-
cer due to its non-invasiveness, no radiation exposure, and low cost [16], [17]. The
principle of breast thermography is based on the fact that cancer cells generate more
heat than normal cells due to their increased metabolic activity [18], [19]. By analyz-
ing the heat difference captured by an infrared camera, image processing techniques
are used to create a thermographic image of the breast. The resulting image shows
temperature variations in the breast tissue, indicating any potential abnormalities
that could be indicative of cancer. In their study, Kakileti et al. [20] explored the
recent advancements in thermal cameras with computer-aided diagnosis systems
(CAD) to enhance the accuracy of breast cancer detection. Singh et al. [21] conducted
a comprehensive survey outlining the key steps involved in CAD for breast ther-
mography. They recommended the exploitation of advanced simulation methods for
better prediction. Kandlikar et al. [22] examined the advancements in employing
surface thermography for breast cancer detection spanning the past three decades.
The authors identified distinct areas needing refinement to enhance thermography
as a dependable diagnostic tool for breast tumor prediction. They recommended the
incorporation of inverse modeling using advanced simulation methods to formulate
artificial neural networks dedicated to early breast tumor detection.

As revealed in the prior studies, surface thermography is a secure method with
significant capacity for identifying the existence of breast tumors. Nevertheless, the
precise determination of tumor location and size using thermal properties presents
a notable challenge, primarily due to the scarcity of thermographic images contain-
ing labeled tumor sizes and locations. In this context, advanced simulation methods
emerge as a critical solution, offering the ability to generate controlled and diverse
datasets that closely mimic the thermal patterns of the breast [23], [24]. Through
the finite element method (FEM) and other advanced techniques, these simulations
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provide representative data, facilitating rigorous Al model training and testing. For
example, Majdoubi et al. [25] introduced a non-intrusive method for the estima-
tion of tumor location and size based on a feed-forward neural network (FFNN). By
using FEM, they generated 122 cases of thermal distribution of the breast by varying
tumor size and location. The researchers demonstrated the FFNN model’s capabil-
ity in predicting tumor parameters. Venkatapathy et al. [26] generated 599 thermal
images of breast models using FEM. Subsequently, they conducted training utilizing
a range of machine learning (ML) models. The authors employed scatter plots for
result analysis and employed the MAE as an evaluative metric. Their findings indi-
cated the superior predictive capabilities of the decision tree regression (DTR) model
in comparison to other ML models. The main limitations associated with these
approaches can be outlined as follows: (1) These studies did not incorporate real-
istic breast modeling into their data-generation processes. It is essential for breast
modeling to account for biological components such as skin, fat, glands, and muscle
to achieve a thermal approximation of real breast tissues [27]. (2) These approaches
were evaluated only for noise-free thermal data and not investigated in noisy con-
ditions. (3) The selected tumor cases are confined to specific scenarios, resulting in a
limited amount of training data.

In this study, we proposed a comprehensive framework for an accurate estima-
tion of tumor size and location using breast thermographic images, which contrib-
utes to addressing the above critical challenges. As previously mentioned, numerous
studies have been conducted on this subject; nevertheless, our approach differs in
multiple aspects. First, we improved the FEM-based breast modeling through a real-
istic 3D breast model. Second, we selected multiple tumor scenarios, considering
noisy thermal images, to enhance the amount of training data. Third, we exploited
the potential of CNN model for automatically extracting features from thermal
images, thus characterizing tumor parameters. Our contributions could be summa-
rized as follows:

— We proposed a CNN model for estimating the breast tumor location and size
based on thermographic images. This novel approach enhances the use of ther-
mography for non-invasive breast tumor characterization.

— We generated a diverse and well-labeled dataset that incorporates noise-free
and noisy thermal images for different sizes and locations of breast tumors. The
application of different noise intensities allows the approximation to realistic
conditions.

— We investigated the impact of various noise levels on thermographic images in
the estimation of tumor parameters. That provides relevant insights into select-
ing an acceptable range of noise for better prediction performance.

The paper is organized as follows: In Section 2, we describe our method.
Section 3 presents the results, while Section 4 discusses the findings. Finally, in
Section 5, we conclude the paper.

2  METHODOLOGY

The methodology comprises the following phases: FEM-based data generation
(including noise-free and noisy thermal images), data preparation (which includes
data labeling and splitting), and finally the formulation of the CNN model. Figure 1
illustrates the conceptual diagram of the proposed framework.
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Fig. 1. Conceptual diagram of the proposed approach

2.1 FEM-based breast tissue modeling

The mammary tissue is a complex anatomical structure that consists of multiple
layers, including the skin, adipose tissue (fat), glandular tissue, and muscular tissue.
Cancer is a malignant tumor that can occur in glandular tissue in different scenarios.
Figure 2 illustrates the representation of the mammary tissue structure utilized in
the breast cancer modeling process based on COMSOL software.

Fat Skin
Gland
Tumor

Muscle

Yol ox
(a)

Fig. 2. (a) Geometry of breast layers; and (b) Mesh generated

We applied the Pennes equation (1) to describe the thermal dynamics within the
tissues [28]. The equation accounts for heat generation due to metabolism, heat con-
duction through tissues, and convective heat transfer through blood perfusion. By
incorporating these factors, the Pennes equation provides a comprehensive frame-
work for simulating and analyzing the temperature distribution in tissues. This
modeling allows us to gain insights into the surface temperature variations associ-
ated with different tumor sizes and locations.

V(kl‘VTl)—FCb.pb'wb,l(:z;_z—;)_i_qm,l=O M

Where [ represents the breast layer, including muscle, gland, fat, skin, and tumor.
T, is the arterial blood temperature (37°C), K, is the thermal conductivity for each
tissue, w,, is the blood perfusion rate for each tissue. T, and q,,, is respectively the
temperature and the metabolic heat generation rate of the tissues. The specific heat
¢, and the density p, of the blood are set at 3770 J/(kg.K) and 1060 kg/m? respectively.
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The temperature of the room is considered to be 25°C, representing a typical low
medical room temperature. The specific thermophysical properties used in the
model are provided in Table 1 [29-31].

Table 1. Thermophysical properties of breast tissue

Thickness (mm) k (W/m.K) q,, (W/m?) 0, (mlLs™.ml™)
Skin 16 045 368.1 0.00018
Fat 5.0 021 400 0.00022
Gland 434 048 700 0.00054
Muscle 15 048 700 0.00270
Tumor - 0.62 70,000 0.01600

The first simulation was performed in a steady-state condition, revealing that
the presence of the tumor induces an observable thermal gradient on the breast’s
surface, as depicted in Figure 3.

34.6

345

z 34.4 v
@ (b L

Fig. 3. Breast surface temperature: (a) normal; and (b) with tumor

2.2 Range selection of tumor parameters

In the field of cancer staging, researchers have delineated multiple categories,
differentiating tumors based on their size and progression from early to advanced
stages. The initial category pertains to tumors with sizes less than 20 mm, followed
by a second category encompassing tumors falling within the range of 20 mm to
50 mm [32]. The subsequent categories encapsulate tumors exceeding 50 mm in size,
indicative of advanced-stage malignancies, which are out of the scope of this study.
In our investigation, we focused on early-stage tumors ranging from 2 mm to 40 mm,
with increments of 1 mm, all incorporated into the modeling. As indicated in Section
2.1, the modeling framework was adopted to export thermographic images through
numerical simulations. We selected different tumor location coordinates (X, y, and z)
ranging from (=52, =51, and 15) to (53, 51, and 57) while respecting the boundaries
delineated by the gland of breast tissue. The various permutations of tumor sizes and
locations yielded a total of 1406 different cases within our simulated models.

2.3 Data collection

The data collection process for this study started with the extraction of
1406 thermal images, each representing a unique case generated through
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COMSOL software. These images serve as the foundational dataset, offering
a diverse range of thermal patterns for our CNN model to analyze and predict
tumor size and location.

To further enrich our dataset and evaluate the robustness of the CNN model,
we introduced controlled variations in the form of noise. We applied different
noise levels to the imported thermal images. Specifically, three distinct Gaussian
noise levels, 0.01, 0.05, and 0.1, were introduced to the noise-free images, repli-
cating the realistic thermographic scenarios [33]. The mathematical expression of
the Gaussian noise applied to thermal images is formulated in equation (2) [34].
This inclusion of noisy data allows for assessing the model’s generalizability under
varying conditions. Figure 4 shows an example of the thermographic images with
and without noise.

N(X) = e 27 2)

Where,

X: represents the gray value

L the mean value of X

o: the standard deviation of x (noise level)

(b)

Fig. 4. Example of thermal images generated with included tumor for different noise levels: (a) Noise-Free; (b) 0.01 noise;
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() 0.05 noise; and (d) 0.1 noise

2.4 Architecture of the CNN model

The architecture of our proposed CNN model is designed to make accurate pre-
dictions of tumor parameters from thermal images. The CNN comprises a series of
interconnected layers, including the convolutional layer, which uses filters to iden-
tify local features and spatial relationships, as shown in Figure 5, the pooling layers
to reduce data dimensionality, and the fully connected layers to make predictions
from extracted features. The mathematical expression of standard convolution is
formulated in equation (3) [35].

Gk,l,n :ZKi,j,m,n'Ik+i—1,l+j—1,m (3)
i,j,m

Where,

G, output of standard convolution
I input image

K: convolution kernel
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Fig. 5. Convolution principle

Figure 6 represents the global architecture adopted for predicting tumor size and
its locations x, y, and z. The model’s architecture employed begins with an input layer
having dimensions of 224 x 224 x 3, corresponding to an RGB image. The initial con-
volutional layer is equipped with 32 filters of size 3 x 3, allowing the extraction of
relevant features from input data. To introduce non-linearity and capture complex
patterns in the data, the rectified linear unit (ReLU) activation function (4) [36] is
applied to this convolutional layer. Subsequently, a max-pooling layer with a 2 x 2 pool
size is employed to efficiently decrease spatial dimensions and computational com-
plexity by downsampling the feature maps. The extracted features are subsequently
flattened and pass through the fully connected layer, consisting of two hidden layers
with 64 units each. Ultimately, the output layer employs a linear activation function to
produce the final prediction of tumor parameters, including size, x, y, and z.

4)

CNN layers Regressor
Input layer  Convolutional layer
£ Max pooling layer
Fully-connected layer
Tumor

RelU activation
(Size, x, y, 2)

Pool size of 2x2

1406 images 32 filters with
(224x224x3) size of 3x3

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
| .
i Linear — P parameter
1
1
1
1
1
1
1
1
1
1
1
1
1
L

Fig. 6. CNN architecture adopted for prediction of tumor parameters

3  RESULTS

In this section, we provide a comprehensive evaluation of the proposed model
for predicting breast tumor parameters (size and location) from thermographic
images under various conditions. By fine-tuning the hyperparameters of the CNN in
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the training process, we examined the model’s response to varying Gaussian noise
levels, from noise-free conditions to heightened noise. We considered two primary
metrics for the model’s evaluation, especially the mean absolute error (MAE) and
the coefficient of determination (R?) computed by the equations (5) and (6), respec-
tively [37].

A

MAE :%Zyyi -3, 5)

N
EVRY)

R2—1_ Zi;}l(yi yi)
Zi:l(yi _y)Z

Where y, is the actual value, , is predicted value, N is number of examples, y is
the mean of y..

We split our dataset into three parts with the following ratios: 80% for the train-
ing set, 10% for the validation set, and 10% for the test set. The training set, con-
stituting the largest portion, serves as the foundation for training the CNN model,
enabling it to learn and adapt to the patterns present in the data. The validation
set plays a crucial role in fine-tuning the model during training, allowing for the
adjustment of hyperparameters and the prevention of overfitting. Finally, the test
set allows for the assessment of the model’s generalization capabilities, providing an
efficient evaluation of its predictive performance.

(6)

3.1 Tumor size prediction

For the noise-free scenario, the model achieved higher accuracy compared to
other cases (MAE = 0.872) and showed good correlation (R? = 98.6%) between pre-
dicted and actual tumor sizes, as shown in Figure 7a. When the noise level rose
to 0.01 and 0.05, the model still performed well, with only slight increases in MAE
(1.041 for 0.01 noise and 1.419 for 0.05 noise), while maintaining good predictive
capabilities (Figure 7b and c). At a noise level of 0.1, the model encountered more
dispersed scatter plots (R? = 95.1%) as shown in Figure 7d, causing a small rise in
MAE (1.804).
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Fig. 7. (Continued)

International Journal of Online and Biomedical Engineering (iJOE) 167


https://online-journals.org/index.php/i-joe

Khomsi et al.

168

[ ammos] a0 8
(8} (o]
st o ogo’ 35 28 0%
o O Q.
0840 o8
Eaof o8 E a0 2 4
E 8@5 £ Ogoﬁoo
Py lole] © r O £ o
Hosr Ogg §8 N5 Oog@DUO
5 80 5 g
Sar 00,83 s Eaf 8°058,88
= ogocg 5 scﬁ)@@ 8 g
g 15+ (éo@ o} g 15 050, 0° o
3 " geoo 5 g g0
& ot ggg o %10 00 géo@
0. 20 e A -l
5 0098 . 885
P 0068
0 ] 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
(C) Actual tumor size (mm) (d) Actual tumor size (mm)
Fig. 7. Scatter plots of actual vs. predicted tumor size values at different noise levels: (a) noise-free;
() 6=0.01;(c) 6=0.05; and (d) 6=0.1
3.2 Location coordinates (x, y, and z) prediction

We evaluated the model’s efficacy in predicting spatial coordinates (%, y, and z)
under these varying noise conditions. The following scatter plots depict the relation-
ship between the actual and predicted x, y, and z locations, as shown in Figures 8, 9,
and 10, respectively.
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In all the noise-free scenarios, the model achieved a strong correlation, as indi-
cated by the R? values (96.8% for x, 93.7% for y, and 96.7% for z) and acceptable
MAE values (1.161 for x, 1.615 for y, and 0.954 for z). In the presence of heightened
noise at 0.01, 0.05, and 0.1, the model is affected relatively by the noise perturba-
tions, especially in the case of the z location, as shown in Figure 10c and d. Besides,
it adeptly retained its predictive accuracy for estimating the location coordinates in
challenging conditions.
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Fig. 10. Scatter plots of actual vs. predicted z location values at different noise levels: (a) noise-free;
() 6=0.01; (c) 6=0.05; and (d) 6 =0.1

Table 2 and Figure 11 summarize the obtained results for the prediction per-
formance of the proposed model. Generally, we note that the CNN model pres-
ents less prediction performance in noisy images compared to noise-free images.
Nevertheless, in some cases; adding a controlled amount of Gaussian noise to images
can lead to improved accuracy. This phenomenon is observed in the prediction of
y location cases, as we add noise at 0.01, the MAE becomes smaller and R? becomes
larger compared to noise-free cases. That means that the Gaussian noise can some-
times act as a form of regularization during the training of deep neural networks.

Table 2. Comparison of the prediction performance results

Noise-Free 0.872 98.6% 1.161 96.8% 1.615 93.7% 0.954 96.7%
0.01 Noise 1.041 97.9% 1.386 96.5% 1.086 97.1% 1.172 95.7%
0.05 Noise 1.419 97% 1.58 94.7% 1.835 94.9% 2.068 90.2%
0.1 Noise 1.804 95.1% 2.163 89.8% 1.651 97.6% 2.681 78%
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Fig. 11. (Continued)
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4  DISCUSSION

This paper introduces a CNN-based approach for the estimation of breast tumor
size and location using thermographic images. Using FEM, we first generated
1406 thermographic images for different breast tumor scenarios exported from a
realistic breast model (muscle, fat, gland, skin, and tumor). Second, we applied var-
ious Gaussian noise intensities (0.01, 0.05, and 0.1), which enriched the capabilities
of the predictive model across different scenarios. We prepared the dataset by label-
ing each image with the corresponding tumor size and location. Thus, we split our
dataset into training, validation, and testing. Furthermore, through the computation
of the performance metrics MAE and R? we presented the overall assessment of the
CNN model. Specifically, we reported an MAE and R? ranging from 0.872 to 1.804
and 95.1% to 98.6%, respectively, for size, 1.161 to 2.163 and 89.8% to 96.8% for
x location, 1.086 to 1.835 and 93.7% to 97.6% for y location, 0.954 to 2.681 and 78%
to 96.7% for z location.

These results are compared with other studies in the literature. For example,
Majdoubi et al. [25] created a dataset comprising 122 instances of temperature vec-
tors for defined tumor scenarios exported from a simplified breast model. Based on
a simple FFNN (18 units, 1 hidden layer), they conducted tumor size estimation using
raw temperature data from the surface. The model’s evaluation was carried out only
on seven testing samples, which did not reflect a credible assessment of the predictive
model’s performance. Their results indicated R? and MAE values of 93.3% and 1.471,
respectively, for tumor size, 86.43% an 5.42 for x location, 98.3% and 2.14 for y location,
and 85.94% and 2 for z location. Venkatapathy et al. [26] utilized a dataset of thermal
images containing 599 tumor cases, simulated on a simplified breast model. Various
machine learning models (including SVR, LR, DTR, and KNNR regression models) were
employed to estimate tumor size and location from thermal images. They considered
the area of hot spots, the number of hot spots, and the maximum surface temperature
as the input features for the prediction of tumor parameters. Their findings revealed
that the DTR model exhibited superior performance compared to the other machine
learning models, achieving an MAE value of 0.025 for size, 0.0048 for x, and 0.037
for z, respectively. These differences within our study can be explained by several
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reasons. The authors did not consider the combination of realistic breast components
in the breast modeling. They approximated the breast only as fat or skin tissue. This
affects the reliability of the generated thermal data, which is investigated by studies
[38] and [39]. In addition, the thermographic data are generated under noise-free
conditions and do not investigate the influence of noisy scenarios.

Nonetheless, our study introduces certain limitations. Only standard breast size
is considered, underscoring the importance of investigating different breast sizes.
The estimation of tumor parameters is performed only for the size and location of
the tumor, whereas other tumor characteristics can be explored, such as metabolism
and heat generation in the tumor.

Finally, the utilization of the CNN model in this study has achieved acceptable
predictive accuracy, affirming the potential of this approach for non-invasive esti-
mation of breast tumor size and location from thermal images.

5 CONCLUSION

In this paper, we present a convenient CNN-based framework for non-invasive
estimation of breast tumor size and location from thermal images. Firstly, we per-
formed the FEM-based 3D breast modeling, incorporating key tissue components,
namely skin, fat tissue, mammary gland, and muscle, using COMSOL software.
A large number of thermographic images were generated, including a wide range
of tumor scenarios. Then, we introduced three Gaussian noise levels, 0.01, 0.05,
and 0.1, to the noise-free images. That enhanced the predictive model’s behavior
in various conditions. Next, the final dataset was prepared by labeling the thermo-
graphic images with the corresponding tumor size and location values to train the
deep-learning model. Based on the results, our approach indicates the potential of
the proposed CNN to estimate tumor location and size with an acceptable prediction
performance. Thus, the progressive inclusion of noise led to a slight elevation in the
prediction error. It is important to note that in certain specific cases, noise contrib-
utes to the regularization, enhancing the model’s ability to generate more precise
spatial estimations. In conclusion, this study’s results offer a detailed method that
combines a realistic breast model, noisy conditions, and a deep-learning model to
improve the characterization of breast tumors using a non-invasive tool. In future
work, we aim to investigate multiple breast sizes and the prediction of additional
tumor parameters.
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