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PAPER

Improvements of EEG Signal Quality: A Hybrid 
Method of Blind Source Separation and Variational 
Mode Destruction to Reduce Artifacts

ABSTRACT
The electroencephalogram (EEG) is a crucial tool for studying brain activity; yet it frequently 
encounters artifacts that distort meaningful neural signals. This paper addresses the challenge of 
artifact removal through a unique hybrid method, combining Variational Mode Decomposition 
(VMD) techniques with Blind Source Separation (BSS) algorithms. VMD, recognized for its adapt-
ability to non-linear and non-stationary EEG data, as well as its ability to alleviate mode mixing 
and the “endpoint effect,” which serves as an effective preprocessing step. The paper evaluates 
the performance of two integrated BSS algorithms, AMICA and AMUSE, across various criteria. 
Comparisons across metrics such as Euclidean distance, Spearman correlation coefficient, and 
Root Mean Square Error reveal similar performance between AMICA and AMUSE. However, a 
distinct divergence is evident in the Signal to Artifact Ratio (SAR). When employed with VMD, 
AMICA demonstrates superiority in effectively discerning and segregating brain signals from 
artifacts, which gives a mean value of 1.0924. This study introduces a potent hybrid VMD-
BSS approach for enhancing EEG signal quality. The findings emphasize the notable impact of 
AMICA, particularly in achieving optimal results in artifact removal, as indicated by its superior 
performance in SAR. The abstract concludes by underlining the significance of these results, 
emphasizing AMICA’s pivotal role in achieving the highest measurable evaluation value, mak-
ing it a compelling choice for researchers and practitioners in EEG signal processing.
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1	 INTRODUCTION

The electroencephalogram (EEG) is a representation of the combined electrical 
activity originating from the functioning human brain [1, 2]. The cerebral cortex com-
prises approximately 10^9 to 10^10 neurons, and the amalgamated electrical field of 
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this cortex can be measured using scalp-affixed electrodes and an appropriate ampli-
fication system. These electrodes are positioned in standardized locations across key 
anatomical regions, including the frontal, temporal, and parietal lobes. Notably, the 
electrical phenomena on the scalp are intermittently sampled, rendering the EEG 
signal not a direct measure of individual neuron behaviour but rather reflective of 
synchronized activity among neuron populations. The EEG signal is analysed in the 
frequency domain, with distinct frequency ranges corresponding to different mental 
states and cognitive processes [3]. The EEG signal is susceptible to artifacts, which are 
signals not originating from the brain but rather caused by external sources. These arti-
facts can arise from physiological or non-physiological factors, impacting data fidelity. 
Physiological artifacts encompass internal sources like ocular, muscle, cardiac, perspi-
ration, and respiration activities, while non-physiological artifacts stem from external 
origins, including instrumental factors, interference, and movement-related issues 
involving electrodes, cables, sound, and electromagnetic forces. During EEG data col-
lection using recording systems, these artifacts gain prominence and can potentially 
compromise data integrity [4–6]. Hence, a wide range of tools created for artifact rejec-
tion has been developed, serving the needs of researchers and medical professionals.

As a result, both academics and medical physicians have access to a variety of 
instruments made specifically to reject artifacts. The initial category of tools revolves 
around single-channel decomposition, a process accomplished through a sequence of 
three stages: decomposition, artifact elimination, and reconstruction. The decomposi-
tion phase involves several methodologies, including Variational Mode Decomposition 
(VMD), which dissects a signal into its constituents, alongside wavelet, Fourier series 
decomposition, and Empirical Mode Decomposition (EMD) [7]. This methodology also 
facilitates the extraction of artifacts from individual EEG data channels [8]. The subse-
quent category employs Blind Source Separation (BSS), a widely acclaimed approach 
for eradicating artifacts from EEG signals [9]. BSS, an unsupervised learning tech-
nique, takes the recorded signals as input and endeavours to infer the source signals, 
encompassing both original signals and artifacts [5, 6]. Diverging from the first set of 
techniques, this strategy eliminates artifacts across numerous EEG channels. In addi-
tion, there exists another classification of methods referred to as hybrid approaches, 
where two or more techniques are merged to enhance artifact removal [8]. The key 
limitation of these methods is their potential to impact fundamental neural func-
tioning. This stems from the fact that the elements subject to subtraction or elimina-
tion during the decomposition step could encompass crucial neural information. To 
address this concern, multiple research studies have been introduced. Each of these 
studies strives to enhance the artifact-rejection process by homing in on minimizing 
the loss of essential cerebral activity that might otherwise be removed [10, 11].

In the ever-evolving landscape of EEG signal processing, numerous methodolo-
gies have been proposed to enhance the extraction of meaningful neural informa-
tion while mitigating the impact of artifacts. Among these pioneering contributions, 
Klados et al. introduced the REG-ICA algorithm [10]. This algorithm employs a 
regression scheme to filter the independent components generated through BSS 
techniques. Stergiadis et al. [12] embarked on an exploration of the mathematical 
and statistical effectiveness of five widely utilized BSS algorithms. Their assessment 
employed metrics like the Spearman correlation coefficient, Shannon entropy, and 
Euclidean distance to gauge the efficacy of these methods. In the context of arti-
fact removal, Jamil et al. [11] amalgamated Discrete Wavelet Transform (DWT) with 
Independent Component Analysis (ICA). Tong et al. [13] directed their efforts toward 
mitigating artifacts and interference within EEG recordings. They employed ICA to 
disentangle brain and heart activity signals, specifically focusing on small animals. 
Their strategy hinged on the statistical independence of these signals, particularly 
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addressing challenges posed by cardiac pulse interference. A novel adaptive filtering 
technique is proposed by P. He et al. [14] for the proficient removal of electrooculo-
gram (EOG) artifacts from frontal-channel EEG signals. This approach leverages sep-
arately recorded vertical and horizontal EOG signals as references, which are filtered 
through finite impulse response filters and then subtracted from the original EEG. 
Executed via a recursive least-squares algorithm with a forgetting factor, the method 
demonstrates stability, rapid convergence, and suitability for online EOG artifact 
removal, substantiated by experimental data. Addressing the formidable task of arti-
fact removal, Kiamini et al. [15] target Ocular Artifacts, significantly stronger than 
EEG signals due to eye blinks and movements. Their innovative approach automat-
ically identifies OA regions in contaminated EEG signals, subsequently employing 
stationary wavelet transform (SWT) to eliminate them. The technique reconstructs 
artifact-free EEG signals by capitalizing on correlation coefficients between wavelet 
coefficients of OA regions in the contaminated EEG and corresponding regions in the 
electrooculogram (EOG). To tackle EEG activity analysis challenges, Turnip et al. [16] 
introduce a multi-pronged method. This involves wavelet denoising and bandpass 
filtering for preprocessing, alongside a robust principal component analysis algo-
rithm for artifact removal. Adaptively generating decor-related linear combinations 
of variables retains essential information while effectively eradicating artifacts in 
real EEG records from eight subjects. Paulraj et al. [17] strive to augment the quality of 
Electroencephalogram (EEG) signals compromised by diverse artifacts. Their method 
entails feature extraction (fractal dimension and time-domain energy) and utiliza-
tion of neural network models to differentiate between normal and noisy EEG sig-
nals, achieving an impressive peak classification accuracy of 95.5%. Mowla et al. [18] 
present a targeted hybrid methodology, commencing with the fusion of Canonical 
Correlation Analysis (CCA) and SWT for EMG artifact mitigation. Subsequently, they 
incorporate the SOBI algorithm (a BSS technique) in conjunction with SWT for effi-
cient EOG artifact eradication. In their study, Dora et al. [19] presented an algorithm 
aimed at rectifying ECG artifacts in single-channel EEG signals. Their approach 
utilized a customized version of variational mode decomposition (mVMD). They 
evaluated their method against two existing techniques using a semi-simulated data-
set, with the goal of improving automated analysis and diagnosis of compromised  
single-channel EEG signals. Another innovative strategy, proposed by Liu et al. 
[20] combined Variational Mode Decomposition (VMD) and Second-Order Blind 
Identification (SOBI) to eliminate artifacts from single-channel EEG signals. They val-
idated their approach on synthetic signals containing both genuine EEG and artifact 
components. Applying their VMD-SOBI approach to real EEG data, they compared 
its performance against existing techniques, optimized key VMD parameters, and 
concluded with a summary of findings and future research prospects in the field.

In light of this, this work suggests a novel hybrid technique to enhance the removal 
of ocular aberrations from the EEG data. Ocular artifacts pose a significant challenge 
in EEG recordings, introducing unwanted signal variations due to eye-related move-
ments such as blinks and saccades. These artifacts can substantially distort the neural 
signals of interest, necessitating their careful identification and removal for accurate 
analysis. The VMD and the BSS, two well-known techniques, serve as the foundation 
of our strategy. Here, we suggest utilizing VMD to perform an initial decomposition 
of each EEG signal into its IMFs. These functions will then be used as input for the 
BSS algorithms, further decomposing them into separate components and rejecting 
artifacts. By integrating two distinct signal decomposition methods, the goal of this 
approach is to clean the EEG without altering the underlying neural information. 
The Euclidean distance and Spearman correlation coefficient were used to assess 
our technique and compare the effectiveness of the algorithms applied.
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Following is the breakdown of the rest text in the article. The data and techniques 
used in our investigation are explained in Section 2, along with the VMD strategy 
and the BSS algorithms that were employed in our work. According to the aforemen-
tioned assessment aspects, Section 3 shows the results for the performance of the 
five hybrid algorithms, and Section 4 concludes our work by discussing our findings 
in light of the literature at large.

2	 MATERIALS AND METHODS

2.1	 Datasets

In the present study, we used an open semi-simulated EEG/EOG dataset that 
was generated to test the artifact removal techniques. This dataset may be found at 
https://github.com/ramsys28/BSSCompPaper. This dataset comprises EEG recordings 
obtained from 27 individuals in good health. These participants engaged in a session 
where their eyes were closed. The group consisted of 14 men (an average age of 
28.2 ± 7.5 years) and 13 women (an average age of 27.1 ± 5.2 years). For each individ-
ual, two recordings were taken, resulting in a total of 54 recordings. Each recording 
lasted for a duration of 30 seconds.

In accordance with the 10–20 international system, 19 EEG electrodes were posi-
tioned on the scalp, specifically FP1, FP2, F3, F4, C4, P3, P4, O1, O2, F7, F8, T3, T4, 
T5, T6, Fz, Cz, and Pz. The connected earlobe montage was utilized to record the 
signals. To ensure data quality, the samples underwent notch filtering at 50 Hz after 
an initial bandpass filtering in the range of 0.5 to 40 Hz. The sampling rate for the 
recordings was 200 Hz.

The EOG signals from the identical participants were recorded when their eyes 
were open. This was done by placing two electrodes on the outer corners of each 
eye and two electrodes above and below the left eye. This approach resulted in the 
generation of two bipolar signals: the horizontal-EOG (HEOG), which is derived from 
the difference between the left and right EOG electrode recordings, and the vertical- 
EOG (VEOG), which is calculated by subtracting the lower EOG recording from the 
upper EOG recording. To enhance the quality of these EOG signals, a band-pass filter 
ranging from 0.5 to 5 Hz was applied during the preprocessing stage.

The semi-simulated dataset used in our work is constructed using the 
following model:

	 EEGX = EEGS + d × HEOG + c × VEOG	 (1)

EEGS refers to the signals recorded during the closed-eye session, while EEGX 
represents the intentionally contaminated EEG data. The contamination coefficients 
for previously described VEOG and HEOG signals are determined by the vectors d 
and c [21].

2.2	 Variational mode decomposition

The Variational Mode Decomposition (VMD), introduced by Dragomiretskiy and 
Zosso in 2014, presents a distinctive non-recursive signal processing technique for 
signal decomposition into intrinsic mode functions (IMFs), where each IMF is con-
ceptualized as a bandwidth-limited amplitude-modulated frequency-modulated 
(AM-FM) signal. This method entails iteratively determining the optimal solution of a 
constrained variational model, which facilitates the adjustment of frequency centres 
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and bandwidths for each IMF component, resulting in a highly effective decomposi-
tion. The central principle of VMD lies in representing each mode as a narrowband 
signal characterized by a slowly evolving envelope, setting it apart from conven-
tional decomposition approaches [20]. The given signal X is segmented into a distinct 
set of these modes. By solving a constrained variational problem as per theoretical 
specifications [22]:
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In this context, δ (t) represents the Dirac distribution, and * as well as ∂ stand for 
the convolution and partial differential operators, respectively. The notations uk and 
wk correspond to the mode number k (where k = 1, 2, …, K) within the framework of 
VMD, along with its corresponding centre frequency. The solution is attained by pin-
pointing the critical point of the augmented Lagrangian , which can be expressed 
as [22, 23]:
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In the context where the penalty for sentencing is denoted as α, the application of 
the alternate direction method of multipliers (ADMM) offers a means to ascertain the 
location of the saddle point for . The introduction of Wiener filtering in the Fourier 
domain promptly leads to modifications in the optimal value of uk.

2.3	 Blind source separation

Blind source separation, a statistical and signal processing technique, is employed 
to break down a collection of signals into their distinct components. This method 
finds utility in several domains including medicine, telecommunications, and other 
sectors [24]. BSS is a set of techniques used to separate a set of mixed signals called 
the observation, into their original source signals (sources) without any prior knowl-
edge of the mixing process [25]. 

	 X(J, m) = A(S(Q, m))	 (4)

A indicates the mixed function of the sources, S represents a matrix of J signals 
sources, and X is a matrix of Q observations. 

We can distinguish a number of the mixed functions between the source and the 
observation. The simplest mixed function or model is the instantaneous linear mix-
ture. The observations at each moment are simultaneous linear combinations of the 
sources. A mixing matrix A with dimensions (P, N) serves as the mixing model in this 
case, and we can represent the mixing function as this formula:

	 X(J, m) = A × S(Q, m)	 (5)

An unmixing matrix, denoted as B, can be employed to disentangle the initial 
signals, as indicated by this equation:

	 Y(Q, m) = B × X(J, m)	 (6)
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In our study, we used two BSS methods:

a)	 The Adaptive Mixture Independent Component Analysis (AMICA)
	  The Adaptive Mixture Independent Component Analysis (AMICA) is one of the 

Independent Component Analysis (ICA) tools, which is a set of techniques based 
on the Higher-Order Statistics (HOS) of the signals [24]. The ICA technique aims to 
determine estimations of unidentifiable sources by matching them to signals char-
acterized by maximal independence. The algorithms typically comprise two main 
phases: first, the whitening step, followed by the enhancement of independence 
through the utilization of higher-order statistics [26]. The AMICA method stands as a 
versatile probabilistic framework for ICA, adept at accommodating non-stationary 
environments and arbitrary source densities. This method employs an asymptotic 
Newton algorithm for Quasi Maximum Likelihood estimation of the ICA mixture 
model, utilizing ordinary gradient and Hessian computations. Its efficacy lies in 
enhancing convergence, particularly when dealing with scenarios such as the 
multiple model case, where the feasibility of pre-whitening diminishes. At its core, 
AMICA harnesses a three-layer mixing network to model non-stationary data. The 
upper two layers encompass one or more ICA mixture models, each deciphering 
adaptively learned segments of the data into statistically independent sources. The 
second layer amalgamates these ICA models’ outputs, capturing the data’s inherent 
non-stationarity. Unique to AMICA, the third layer fine-tunes each learned model 
to effectively account for distinct subsets of the data, making it a powerful tool for 
deciphering complex and dynamically changing data distributions [27, 28].

b)	 The Algorithm for Multiple Unknown Signals Extraction (AMUSE)
	  The Algorithm for Multiple Unknown Signals Extraction (AMUSE) is a member 

of a group of algorithms based on a signal’s Second Order Statistics (SOS). More 
specifically, this group of techniques makes use of the joint diagonalization of sev-
eral time-delayed covariance matrices calculated from the observation [26]. The 
AMUSE algorithm is a blind identification method that can extract the channel 
characteristics and the source signals from observation vectors [29]. The AMUSE 
algorithm steps can be described as follows: The observed data X is transformed 
linearly in the first step using a conventional or robust pre-whitening:

	 X1 = Q × X	 (7)

Where: 	 Q R
x

�
�
1

2 	 (8)

	  In addition, Rx is the common covariance matrix of the observed data. X1 is then 
used to represent the pre-whitened data. The time-delayed covariance matrix of 
the pre-whitened data is computed in the next step as follows:

	 R
X X
1 1

� E X t X t{ ( ) ( 1)}
1 1

� 	 (9)

	  Where t indicates the time. And then, this covariance matrix is subjected to the 
SVD in the second phase. The SVD divides this matrix into three matrices: U, Σ, 
and VT, where U and V are orthogonal matrices made up of left and right singular 
vectors, respectively, and Σ is a diagonal matrix with decreasing singular values. 
In the end, W is used to estimate an unmixing (separating) matrix:

	 W = UTQ	 (10)

	  Utilizing this matrix, the pre-whitened data X1(k) is converted into the esti-
mated source signals S(k) = WX1(t), which are then employed in the analysis [25].
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2.4	 Proposed method

This research introduced an approach that merges VMD techniques and BSS 
methods to eliminate the ocular artifact from EEG signals. Initially, every signal 
underwent a process of decomposition into a matrix of Intrinsic Mode Functions 
(IMFs) using the VMD method (Figure 1). Subsequently, the fundamental sources 
were determined by employing BSS algorithms, using the previously mentioned 
matrix of IMFs as the input. 
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Fig. 1. The IMFs (imf1, imf2, imf3, imf4, imf5, imf6, imf7) and the residual of the raw EEG signal

The following phase involves implementing a process of hard thresholding to 
identify and eliminate artifacts. The specific threshold utilized in our investigation is 
determined by the following expression:

	 Ri i log N
i

� � � ( )2 	 (11)

Where	 σ i = median (Si(t))/(0.67 ⋅ E)	 (12)

In this context, Ni represents the number of samples within the ith sources Si(t). 
The constant value E, which is set to 2 in this instance [6], is also involved. The method 
of thresholding employed in our study is elucidated by the subsequent equation:
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where TR(y) indicates the ith denoised source [18].
The last phase of our method involves utilizing BSS to combine the purified 

sources, followed by employing inverse VMD to reconstruct the initial signals. 
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This sequence of steps leads to an outcome where the ocular artifact is removed, 
resulting in a clear EEG signal. The process is illustrated in Figures 2 and 3.

Threshold

Contaminated EEG

EEG Channel 1

EEG Channel i

EEG Channel 19

IMFs for Channel 1

IMFs for Channel i

IMFs for Channel 19

IMFs

VMD BSS

Inverse VMD Inverse BSS

Separated IMFs

Separated IMFs 1

Separated IMFs i

Separated IMFs 19

Cleaned EEG

Clean Channel 1

Clean Channel i

Clean Channel 19

Clean IMFs

Clean IMFs 1

Clean IMFs i

Clean IMFs 19

Fig. 2. The phases of the proposed approach (VMD-BSS). The graphic consists of five steps: 1) EEG 
decomposition using VMD; 2) The data is mixed using inverse BSS methods and the five BSS algorithms; 
the ocular artifact is eliminated using threshold. note that i indicates the channel number (from 1 to 19)

function EEGArtifactRemoval(rawEEGData):
 # Step 1: Apply Variational Mode Decomposition (VMD) to extract In-trinsic Mode Functions (IMFs)
  IMFs = VMD(rawEEGData)

 # Step 2: Apply Blind Source Separation (BSS) to separate IMFs
  separatedIMFs = BSS(IMFs)

 # Step 3: Apply hard thresholding to eliminate artifacts in separat-ed IMFs
  cleanIMFs = HardThresholding(separatedIMFs)

 # Step 4: Apply inverse BSS to reconstruct separated IMFs
  reconstructedIMFs = InverseBSS(cleanIMFs)

 # Step 5: Apply inverse VMD to obtain the clean EEG signal
  cleanEEGSignal = InverseVMD(reconstructedIMFs)

  return cleanEEGSignal

for i: 1 -> 19:
	 EEGcln[i] = EEGArtifactRemoval (EEGx[i])

Fig. 3. A simple pseudo code for the proposed VMD-BSS method for Ocular Artifact removal algorithm. 
Where i indicates the number channel

2.5	 Evaluation criteria

In the present research, we employed two features that are frequently used to 
assess the artifact-removing approaches in earlier work to gauge the effectiveness 
of our suggested method. Our metrics were derived using the difference between 
the initial, or EEGs signals recorded during an eyes-closed session and the cleaned 
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EEG signals generated using the provided methods. This process was used for each 
of the 54 data and for each of the developed combination algorithms. The algorithms 
are compared using the same criteria to select the one that performs best in the con-
text of the proposed VMD-BSS approach.

a)	 The Spearman Correlation Coefficient:
	  The Spearman correlation coefficient (C) is a nonparametric indicator of the 

strength and direction of a relationship between two variables. Instead of real 
values, it is based on the data’s rankings. The coefficient ranges from -1 to 1, 
where a perfect negative correlation is represented by a value of -1, a perfect 
positive correlation by a value of 1, and no correlation by a value of 0. When the 
data are not regularly distributed or when outliers are present, the Spearman 
correlation coefficient is frequently employed. The procedure for calculating it 
involves rating the data for each variable first, then calculating the Pearson cor-
relation coefficient between the ranks [30]. This type of correlation is given by:

	 C
d

t t
� � �

�
1 6

1

2

2( )
	 (14)

	  where t represents the overall number of value pairings and d shows the 
statistical difference between the two sets of compared data [30].

b)	 The Euclidean Distance:
	  The shortest distance between any two locations in the Cartesian coordinate 

system is known as the Euclidean distance (ED). This distance is represented by 
the length of the line that connects those two locations [12]. The ED formula used 
between two points is represented by [31]:

	 ED x x
i ii

� � �� ( )2 	 (15)

	  Where xi and ′x
i
 are the coordinates of the two points. A short Euclidean dis-

tance between the produced (artifact-free) reconstructed signal and the EEGS sig-
nals obtained while keeping your eyes closed would indicate a successful artifact 
removal procedure.

c)	 Root Mean Square Error:
	  The Root Mean Square Error (RMSE) serves as a widely employed metric for 

assessing the fidelity of a denoised signal. This metric quantifies the average dis-
crepancy between the original signal and its denoised counterpart, factoring in 
the magnitude of these disparities. A reduced RMSE value signifies an enhanced 
quality of the denoised signal, reflecting that, on average, the disparities between 
the original and denoised signals are less pronounced [30]. The RMSE is com-
puted using:

	 rmse
N

EEG EEG
cln s

� � �
1

2( ) 	 (16)

	  EEGcln represents the corrected EEG. The greater the reduction in RMSE values 
following the application of an artifact rejection algorithm, the higher the level of 
optimization achieved in its performance.

d)	 Signal to Artifact ratio:
	  The improvement in the signal-to-artifact ratio (SAR) is determined by compar-

ing the SAR values before and after artifact removal. This enhancement, denoted 

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 8 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 13

Improvements of EEG Signal Quality: A Hybrid Method of Blind Source Separation and Variational Mode Destruction to Reduce Artifacts

as “SAR”, signifies whether the signal-to-artifact ratio has increased, decreased, or 
remained unchanged, thus reflecting changes in signal quality. Mathematically, 
the gain in the signal-to-artifact ratio (Y) is expressed as follows:
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	  SARA represents the signal-to-artifact ratio once artifacts have been eliminated 
from the EEG signal, while SARB denotes the signal-to-artifact ratio prior to arti-
fact removal. These ratios are computed using the following formulas:
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3	 RESULTS AND DISCUSSION

In this research, our objective was to enhance the elimination of ocular dis-
turbances from EEG signals that had been affected. We achieved this by employ-
ing a hybrid approach combining the BSS and VMD techniques (see Figures 4–7). 
The average values for the evaluation metrics for the two BSS algorithms across the 
54 datasets are displayed in Table 1.

Table 1. Descriptive data are provided for the following metrics after using the two distinct VMD-BSS 
algorithms: Euclidean Distance (EC), Spearman Correlation Coefficient (SCC), Root Mean Square Error 

(RMSE), and Signal to Noise Ratio (SAR)

VMD – AMICA VMD – AMUSE

Spearman correlation coefficient 0.8068 0.8196

Euclidean distance 721.2634 704.3926

Root Mean Square Error 9.3149 9.0467

Signal to Artifact ratio 1.0924 0.1653

Fig. 4. Values of the Euclidean distance between the cleaned and real EEG signals for each of the two techniques
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Fig. 5. The Spearman CC values computed between the VMD-BSS produced EEG signals and the true ones

Fig. 6. The clean reconstructed signal’s root means square error (RMSE) values following the application 
of the two hybrid algorithms

Fig. 7. A calculation of the signal-to-artifact ratio using the polluted, cleaned, and real EEG records

After conducting a thorough analysis of the performance of AMICA and AMUSE 
algorithms when integrated with the Variational Mode Decomposition (VMD) 
technique and assessing them across multiple performance metrics, we can draw 
meaningful comparisons. The Kruskal-Wallis test results revealed that there were 
no significant differences in performance between the combined algorithms con-
cerning Euclidean distance (χ² = 0.571, df = 1, p = 0.450), Spearman Correlation 
Coefficient (χ² = 1.028, df = 1, p = 0.311), and Root Mean Square Error (χ² = 0.761, 
df = 1, p = 0.383). These findings suggest that, when coupled with VMD, both algo-
rithms exhibited similar performance across these particular metrics. However, a 
notable difference emerged when evaluating the Signal to Artifact Ratio, a critical 
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metric for various applications. A significant difference was evident (χ² = 42.501, 
df = 1, p < .001), indicating substantial variability in the performance of the com-
bined algorithms in this regard. The effect size (ε²) ranged from 0.00534 to 0.39720 
across these metrics, signifying varying magnitudes of impact.

To further scrutinize these distinctions, we employed the One-Way ANOVA 
test using both Welch’s and Fisher’s methods. For Euclidean distance, Spearman 
Correlation Coefficient, and Root Mean Square Error, neither Welch’s nor Fisher’s 
test identified any significant differences (p > 0.05) between the combined algo-
rithms, thus corroborating the Kruskal-Wallis findings. However, for the Signal to 
Artifact Ratio, both Welch’s and Fisher’s tests revealed a highly significant difference 
(p < .001), emphasizing that the amalgamation of these algorithms with VMD sub-
stantially impacted their performance in this specific metric.

Considering all of these results, it is safe to conclude that, within this particu-
lar context and with the Signal to Artifact Ratio as a pivotal performance criterion, 
AMICA stands out as the preferred algorithm. It outperforms AMUSE in effectively 
distinguishing and isolating signals from artifacts when used in conjunction with 
VMD. Nevertheless, it is essential to highlight that the choice of algorithm should 
always be guided by the specific requirements and objectives of your application, as 
different metrics and contexts may favour one algorithm over the other.

Furthermore, when examining individual patient data, AMUSE exhibits a slightly 
stronger positive correlation, as indicated by the higher Spearman correlation coef-
ficient (0.8196), compared to AMICA (0.8068). Additionally, the data points in AMUSE 
are more tightly clustered, as evidenced by the slightly lower Euclidean distance 
(704.3926) in comparison to AMICA (721.2634). Furthermore, AMUSE demonstrates 
a marginally lower Root Mean Square Error (RMSE) of 9.0467, suggesting improved 
predictive accuracy. However, it is noteworthy that AMICA excels in noise reduc-
tion, boasting a significantly higher Signal to Artifact Ratio (SAR) of 1.0924, in con-
trast to AMUSE (0.1653). Therefore, the choice between these methods should align 
with the specific objectives of the analysis: AMUSE prioritizes correlation and accu-
racy, whereas AMICA is better suited for tasks requiring superior noise reduction 
capabilities.

Table 2. Analysis of performance evaluation results derived from previous research  
on mitigating ocular artifacts in EEG recordings

Study Method Evaluation Criteria Results

[32] Single-channel blind source separation method 
based on variational mode decomposition

Correlation coefficient 0.76

[33] Level 2 Dynamic Segmentation wICA Root mean square error 9.59 (for subject 1)

[13] BSS Euclidean distance 3.25⋅103 with VEOG, 
4.16⋅103 with HEOG

[34] EMD-FastICA SAR 1.04761

In Table 2, we have presented a compilation of previous research endeavours 
focusing on artifact removal methodologies, all of which have been assessed based 
on criteria similar to ours. It is essential to acknowledge that undertaking direct 
comparisons between our approach and these methodologies poses significant chal-
lenges. This complexity arises from the fact that each technique has been uniquely 
applied within diverse datasets and with specific sets of parameters, making direct 
comparisons less straightforward.
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In the realm of artifact removal methodologies, the work of Zhang et al. [32] stands 
out for its specialized focus on capturing aero acoustic signals from wind turbines. 
Their innovative approach, utilizing Variational Mode Decomposition (VMD) within 
the Single-Channel Blind Source Separation (SCBSS) framework, exhibits remark-
able efficacy in isolating wind turbine aero acoustic sounds. This unique applica-
tion addresses a specific and challenging signal separation scenario, showcasing the 
adaptability of VMD in diverse contexts.

Turning to the study by Sheoran et al. [33], the integration of Canonical Correlation 
Analysis (CCA) and Noise Adjusted Principal Component Transform (NAPCT) in their 
methodology represents a noteworthy advancement in the field. Their emphasis 
on eliminating eye movement artifacts in EEG data without manual intervention is 
a distinctive contribution. This automated approach not only streamlines the arti-
fact removal process but also introduces efficiency and reliability into the analysis, 
marking a notable departure from labour-intensive techniques.

Soomro et al.’s [34] work introduces a technique that combines Empirical Mode 
Decomposition (EMD) with Independent Component Analysis (ICA) for the auto-
matic elimination of eye blink artifacts from EEG. What sets this methodology apart 
is its demonstrated effectiveness across both simulated and actual EEG datasets. The 
trustworthy artifact reduction achieved by Soomro et al. underscores the practical 
applicability of their approach, providing a robust solution for artifact mitigation in 
diverse real-world scenarios.

In comparison, our proposed methodology contributes significantly to the field 
by integrating VMD and BSS techniques, coupled with a hard thresholding approach. 
This hybrid strategy offers a unique synergy, leveraging the adaptability of VMD to 
non-linear and non-stationary EEG data and the source separation proficiency of 
BSS. The incorporation of a hard thresholding step further enhances artifact elim-
ination. Our methodology addresses the challenge of ocular disturbances in EEG 
signals, presenting a comprehensive solution that prioritizes the SAR. This emphasis 
on a critical performance metric, along with the distinctive combination of tech-
niques, distinguishes our contribution from existing methodologies, paving the way 
for improved artifact removal in EEG signal processing.

4	 CONCLUSION

In conclusion, our research project has been motivated by the overarching objec-
tive of improving the elimination of ocular disturbances from EEG data—a crucial 
step in the accurate interpretation and analysis of brain activity. To achieve this, 
we developed a novel hybrid strategy that integrates BSS algorithms with VMD. 
The incorporation of VMD into our technique offers several distinct advantages. 
VMD excels in handling non-stationary and non-linear signals, critical components 
of EEG data. It surpasses traditional decomposition techniques in capturing the 
intricate dynamics and complexity observed in brain activity. Furthermore, VMD 
addresses the “endpoint effect” and mode mixing, two significant challenges in EEG 
artifact elimination, thereby enhancing the overall effectiveness of artifact removal. 
Importantly, VMD not only enhances the flexibility and resilience of our method-
ology but also ensures the preservation of crucial brain information throughout 
the artifact removal process. This preservation is vital for accurate EEG analysis, 
enabling the diagnosis of neurological illnesses, comprehension of cognitive pro-
cesses, and advancement of neuroscience research.
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Turning to the evaluation of the techniques employed, our comprehensive 
assessment unequivocally demonstrates that AMICA, a higher-order statistics (HOS) 
algorithm, emerges as the preferred choice in the specific context of this study, using 
the SAR as the primary performance parameter. When coupled with VMD, AMICA 
consistently outperforms AMUSE, a second-order statistics (SOS) method, due to its 
superior ability to distinguish between real brain signals and artifacts. However, it 
is crucial to emphasize that the specific goals and requirements of the current study 
should guide the selection of the most suitable approach.

In conclusion, this study underscores the critical role of artifact removal in pro-
cessing EEG signals. To significantly enhance the effectiveness of artifact removal, 
particularly in the context of SAR, it proposes a potent hybrid approach that lever-
ages the inherent strengths of VMD and BSS algorithms. The addition of VMD 
improves the flexibility, resilience, and fidelity of EEG data preprocessing, ultimately 
enhancing the accuracy and reliability of EEG signal analysis as a whole. This study 
not only contributes to our understanding of brain activity and cognitive processes 
but also underscores the importance of selecting the best methodology based on the 
study’s objectives. Our hybrid technique represents a significant advancement in the 
rapidly changing field of EEG signal processing, with the potential to advance both 
clinical and neuroscience applications.

The decision to adopt a hybrid strategy, fusing Variational Mode Decomposition 
(VMD) with Blind Source Separation (BSS), specifically AMICA and AMUSE, is 
grounded in the unique strengths each method brings to the intricate task of artifact 
removal in EEG signals. the selection of VMD is driven by its innate adaptability 
to the non-linear and non-stationary attributes of EEG data, providing a versatile 
means to capture complex patterns in brain signals. Moreover, VMD tackles prev-
alent challenges like mode mixing and the ‘endpoint effect,’ heightening the preci-
sion of signal decomposition and reconstruction. The integration of BSS, recognized 
for its adeptness in isolating independent sources—especially distinguishing neural 
signals from artifacts—complements VMD’s preprocessing capabilities. The hybrid 
approach strives to furnish a comprehensive solution by not only adeptly preprocess-
ing data but also prioritizing the augmentation of the Signal to Artifact Ratio (SAR). 
While acknowledging the presence of alternative techniques for artifact removal, 
the chosen VMD-BSS hybrid method presents a distinctive and robust methodology, 
tactically combining VMD’s adaptability with the source separation effectiveness of 
BSS to comprehensively address artifacts in EEG signals.

While this study primarily focuses on resting-state EEG, we recognize the impor-
tance of addressing artifacts related to task-oriented EEG. The hybrid approach of 
combining VMD with BSS is designed to handle various artifacts, including those 
introduced during specific tasks. We have conducted an initial evaluation of its per-
formance in task-oriented scenarios, with a focus on enhancing the SAR and iso-
lating neural signals from task-related artifacts. Further exploration and validation 
in task-oriented EEG contexts are essential to ensure the method’s robustness and 
applicability in scenarios involving specific tasks.

Exploring the reverse application of our hybrid approach is a promising avenue 
for future research. This entails initiating the procedure using BSS for the initial sep-
aration of the EEG signals, followed by using VMD to break down each independent 
component into Intrinsic Mode Functions (IMFs) to refine the data. Additionally, 
investigating alternative single-channel decomposition methods, such as wavelet 
transforms, provides a means to gain fresh perspectives and potentially enhance 
decomposition precision. Furthermore, the utilization of advanced artificial intel-
ligence (AI) algorithms represents a potential frontier, offering opportunities for 
improved signal separation techniques.
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