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PAPER

Histopathological Image Classification Using 
Convolutional Neural Networks for Detection  
of Metastatic Breast Cancer in Lymph Nodes

ABSTRACT
Breast cancer is currently one of the most diagnosed oncological diseases worldwide, with 
thousands of new cases per year. Early detection and identifying its progression are key to 
overcoming the mortality rate. A recurrent test, to determine how far the disease has spread 
throughout the patient’s body, is the histological analysis of the sentinel lymph node near 
the breast. Although an expert pathologist performs this, it is usually an exhausting and 
time-consuming task, with a high possibility of error. This work presents a method to detect 
breast cancer metastasis through histological imaging of sentinel lymph nodes using con-
volutional neural networks. In this study, the performance of three models DenseNet-121, 
DenseNet-169 and DenseNet-201 are tested and compared. Experimental results indicated 
that the accuracy, precision, sensitivity and specificity (97.93%, 97.4%, 97.48% and 98.24%) 
of DenseNet-201 could reduce pathologist errors during the diagnostic process or serve as a 
second opinion tool.
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1	 INTRODUCTION

Nowadays, the most proficient and efficient method for automatic image 
classification and recognition is based on convolutional neural networks (CNNs) [1]. 
It is mentioned in [2] that CNNs have performed well in medical image process-
ing, mainly due to their effectiveness in extracting features. For example, in [3] 
they employ a DenseNet network together with a SENet to classify histopatholog-
ical images of lymph nodes by applying data augmentation (rotate, invert, move, 
among other changes) to increase the training set in order to minimize overfitting. 
Multiclass classification with SENet is performed on the optimized parameters. 
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The experimental model with the best performance is MFSCNet A, in which the 
SENet block acquires information from the dense block channel and the transition 
layer of the DenseNet model. Similarly, in [4] they use an architecture based on 
DenseNet interleaved with SENet. For training and validation, use is made of the 
BreakHis dataset of 7909 (resized and normalized) images. The data augmentation 
technique is also applied to avoid overfitting. The developed model, called IDSNet, 
was able to outperform other compared models by 1 to 7%.

On the other hand, in [5] the authors have as a first stage the input of the images 
to the Faster R-CNN network, which delivers many false positives. Therefore, 
post processing is done to mitigate this problem through the extraction of appro-
priate features. Then, the post-processing outputs are input to the Resnet-50 and 
DenseNet-201 networks, so that in fourth stage, their final classification as a sample 
with or without mitosis is performed. As in [3], [4], data augmentation techniques 
are applied. The authors find that by applying the proposed model, they obtain 
87.6% accuracy for the ICPR 2012 dataset and 84.8% for ICPR 2014.

Iqbal and Qureshi in [6] make use of the BreastUNet model to identify probably 
mitotic regions in histopathological images. Then these are classified into mitotic and 
non-mitotic nuclei. The model has as a first instance of cancer distinction the deep 
segmentation of instances. With this, probable mitotic parts are identified, which 
then with BreastUNet will be classified as mitotic and non-mitotic nuclei. It is impor-
tant to note that the datasets of [6] were MITOS14, BreakHis as well as [4], BreCaHAD 
and TUPAC-16. [7] proposes a model called 6B-Net, which consists of 35 layers  
with a concurrent processing level. The network is first pre-trained to extract fea-
tures, which then enter the feature selection algorithm of PSO and ACS. In parallel, a 
character vector is extracted using ResNet-50, similar to those performed in [5], [6]. 
The proposed method achieves 94.20% accuracy in classifying four classes of breast 
cancer and 90.10% accuracy in classifying eight classes of breast cancer.

Another very useful tool is the use of customized U-Net networks with dense 
connections, hopping connections, among others. According to [8], standard U-Nets 
are very good for medical computer vision tasks. [8] seeks to demonstrate that the 
design of a standard component model, with its larger architecture, mimics expert 
diagnostic procedures and can perform better diagnosis.

In [9], neural networks are used to identify ER/PR/HER2 status and histological type. 
A neural network capable of classifying images into 6 types of breast carcinoma is 
designed. The model was initialized with ImageNet weights and stochastically trained 
three times for each classification task. The network employed was Inceptionv3 with 
data augmentation during training. Model parameters including learning rate and 
batch size were initialized with values extracted from other networks designed to 
classify lung cancer. In contrast, a hybrid CNN composed of a recurrent unit controlled 
by another AlexNet is presented in [10]. A positive feature of the employed model is 
to use less computing resources compared to the network used in [9]. With the CNN 
AlexNet model, the authors propose to automatically extract features from the PCam 
dataset and identify samples with metastatic cancer. The updated PCam dataset is 
extracted from Kaggle, to which the data augmentation technique is applied before 
training. Finally, AlexNet-GRU [10] during the experiment phase proved to be more 
efficient than the CNN-GRU and CNN-LSTM models, achieving an accuracy of 99.50 %.

As expressed in multiple works reviewed in this section, not only is the chosen 
neural network model important, but also many other parameters that determine 
the training of the network are relevant [11]. As expressed in [12], the learning rate 
is the crucial hyperparameter used during the training of deep convolutional neural 
networks. That is why the authors emphasize the relevance of the dynamic learn-
ing rate over the fixed learning rate. It is important to specify that in [12], the range 
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of change of such rate is preset between lower and upper bounds, obtaining bet-
ter accuracy in a smaller number of iterations and less loss. The authors using the 
triangular learning method achieved a validation accuracy of 91.84%, with lower 
epochs than the fixed learning rate counterparts.

It is important to know how noise can affect the effectiveness of image classifi-
ers based on convolutional neural networks. Ademola et al. [13] warns that noise 
in images can have a significant impact on any type of classification, decreasing the 
degree of accuracy. In [14], [15], it is mentioned that it is a frequent problem in medical 
imaging and can have a significant effect on the results. Bayram et al [16] supports this 
claim, as in their experiments it was observed that the model accuracy decreases by 
1.05% if no image processing technique is used. Furthermore, in [17], it is mentioned 
that pre-training the network on a larger data set helped to reduce the impact of noise.

As demonstrated in this section, convolutional neural networks are able to clas-
sify mammary lymph node images with an accuracy ≥ 90%. The negative counter-
part of obtaining a high percentage of accuracy is the high training time and high 
consumption of computational resources. Many authors cited use a large number 
of epochs during training. Despite the search for optimization algorithms and the 
adjustment of the learning rate with multiple methods, they do not achieve a sig-
nificant reduction in training time. The authors cited in this section mostly focus on 
modifying or combining existing CNNs to optimize the performance of the classifier 
model. However, the definition and adequate adjustment of the hyper parameters 
has a transcendental role in obtaining a high accuracy rate, during the review of 
previous bibliography, the lack of scientific studies that focus on the choice of the 
most adequate values has been identified, and with it the decrease of the training 
time and the obtaining of high accuracy rates.

2	 METHODOLOGY

This section presents the models and methods used in this study. The DenseNet 
family architectures used, the weight allocation and optimization, the hyperparam-
eters used to validate the model performance, the implementation environment and 
the dataset used are disclosed.

2.1	 DenseNet architecture

In a DenseNet architecture, each layer is connected to all other layers, hence the 
name densely connected convolutional networks [18]. In the present research, the 
CNN architectures DenseNet-121, DenseNet-169 and DenseNet-201 will be employed. 
The three CNNs employed are pre-trained models, using the ImageNet database. 
The convolutional layer weights have been tuned to capture different types of edge 
patterns that can be easily reused for inference in other types of images.

2.2	 Optimization methodology

In training, the hyperparameters of the model govern the process. They control the 
behavior during training and have a significant impact on the accuracy and convergence 
of the model. Leslie Smith in [19] proposed a technique for setting hyperparameters in 
complex models that optimizes time and effort, but improves performance. In this sec-
tion, we discuss how the 1-cycle policy is employed within the present research work.
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1-cycle policy. It is posited that, by monitoring the loss in validation and testing at 
the beginning of training, sufficient information is obtained to tune the architecture 
and hyperparameters. This eliminates the need to run random searches or run the 
rest of the training. This approach is based on the well-known concept of the trade-
off between under-fitting and over-fitting, through the setting of learning rate (LR) 
and weight drop (WD).

Learning rate finder. In order to develop the 1-cycle policy, the maximum learn-
ing rate must first be defined. For this purpose, a learning rate finder is implemented. 
A way to estimate a good learning rate is described in [20]. During an epoch, an SGD 
is started with a very low learning rate, which changes in each mini-batch until it 
reaches a very high value. The loss decreases at first, then stops and increases again, 
usually very quickly. As recommended in [20], losses are plotted against learning 
rates on a logarithmic scale. A good learning rate would be in the range where the 
loss continues to decrease instants before the minimum, where the loss still improves.

Search for weight decay. Weight decay is not like learning rates, the best value 
should remain constant during training. Since the performance of the network 
depends on a suitable weight decay value, during experimentation we plot the learn-
ing rate range over three weight decay values in order to find the best learning rate 
with its respective weight decay. Leslie Smith [19], [20] proposes to select the largest 
WD that allows us to train at a high learning rate, so we do a manual logarithmic 
grid search with 1e−2, 1e−4 and 1e−6 weight decays.

2.3	 Tuning the reference model

Once the first training using the 1-cycle policy is completed, all parameters are 
saved and frozen. Then a more accurate tuning process or second training is applied, 
although the percentage of success is ≥ 90%, but this can be better. This process 
allows us to unfreeze all the trainable parameters of the model and improve them. 
For this second training, the 1-cycle policy is used again. Therefore, we must define 
a new optimal learning rate, in [19] it is mentioned that it must be much lower than 
the first one. The value of WD is constant during the whole training process.

According to the above, the convolutional neural network will be trained in two 
successive training stages. For practicality, we call the first stage as first tuning, and 
the second stage as final tuning.

2.4	 Development environment

The experimentation is done in the environment provided by Kaggle, using the 
Python programming language [21]. Additionally, FastAI [22] was used to import the 
pretrained model, apply the 1-cycle policy, learning rate search and weight decays. 
FastAI is an open source deep learning library, built on top of PyTorch [23], which 
provides high-level APIs for training and applying deep machine learning models. 
PyTorch is an open source deep learning library based on Python.

2.5	 Dataset

The Kaggle library dataset [24], is a filtered version of the PCam dataset. The 
only difference between these two is that all duplicate images have been removed. 
The collection contains 220025 images of sentinel lymph node histopathologic studies 
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from 162 women diagnosed with breast cancer. Each tissue sample is stained with 
H&E, examined using a x40 objective. For the creation of the array, x10 subsampling 
is used to increase the field of view, resulting in a pixel resolution of 2.43 microns. 
Table 1 provides more details of the images that make up the data set.

Table 1. Descriptors of the PCam images

Property Value

Size 96 × 96

Channels 3 (BGR)

Bits per channel 8

Format TIF

Figure 1 shows a sample labeled as positive, indicating that at least one pixel 
of the central region (32 × 32) contains tumor tissue. However, during the training 
of the network, the central region is not cropped and analyzed alone, as valuable 
information that helps in the generalization of the model could also be found at 
the edges.

Fig. 1. Image labeled as positive samples [24]

The data set was divided into three segments. First, the test stage contains 10% of 
the total images. The training stage contains the remaining 90%, from which 10% is 
randomly taken for validation. The segmentation of the 220025 images is detailed 
in Table 2.

Table 2. Segmentation of data set

Total Images Training Images Images for Testing

Negative samples Positive samples
220025

Training images Validation images
198025

Number of images

130908 89117 178223 19802 22000

2.6	 Image preprocessing

Data augmentation is a strategy to virtually increase the size of the training 
data set that makes the model more robust to slight changes in the input data. 

https://online-journals.org/index.php/i-joe


	 36	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 2 (2024)

Cadillo-Laurentt and Paiva-Peredo

This research applied random flip, random horizontal flip and random vertical flip 
techniques. These transformations are employed since breast lymph node tissue 
samples do not have an axis or reference point. In addition, it is common for the 
slides placed before the microscope to be rotated and inverted during analysis. 
Therefore, the application of the aforementioned techniques seeks to increase 
the samples in concordance similar to those that could be generated in a real 
environment.

3	 RESULTS

3.1	 Considerations

Each model is trained in a separate programming environment, avoiding errors 
or compromising the veracity of the evaluation metrics. In order to obtain such met-
rics, multiple trainings are carried out by modifying the number of epochs, both for 
the first adjustment and for the final adjustment. The number of epochs defined for 
each test is presented in Table 3.

Table 3. Number of epochs used in each test

Test N° CNN First Tuning Final Tuning

1

DenseNet-121

5 epochs 10 epochsDenseNet-169

DenseNet-201

2

DenseNet-121

10 epochs 20 epochsDenseNet-169

DenseNet-201

3

DenseNet-121

20 epochs 40 epochsDenseNet-169

DenseNet-201

The search for learning rate and weight decays is run only once per model so that 
the CNNs start on equal footing during the first fit stage in all three tests performed. 
Figure 2 shows results from the learning rate and weight decay search. The values 
selected during the logarithmic scale search are shown in the Table 4.

Table 4. LR and WD found for the first fit

CNN WD Maximum LR

DenseNet-121 1e−2 5e−2

DenseNet-169 1e−4 4e−2

DenseNet-201 1e−4 3e−2

The final tuning only determines the new maximum learning rate for the 
second stage. We will obtain the value with the learning rate finder, as seen in 
Table 5. Additionally, the LR is much lower compared to the first adjustment as 
mentioned in [19].
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Fig. 2. LR and WD search results. (a) Result of DenseNet-121. (b) Result of DenseNet-169.  
(c) Result of DenseNet-201

Table 5. LR for final tuning

Test N° CNN WD Maximum LR

1 DenseNet-121 1e−2 4e−4

DenseNet-169 1e−4 6e−4

DenseNet-201 1e−4 3e−4

2 DenseNet-121 1e−2 3e−4

DenseNet-169 1e−4 3e−4

DenseNet-201 1e−4 4e−4

3 DenseNet-121 1e−2 7e−4

DenseNet-169 1e−4 1e−4

DenseNet-201 1e−4 3e−4

3.2	 Training

A set of 178223 different histopathological images were used for training and 
19809 for validation. The accuracy achieved by the three models during the nine 
training sessions is detailed in Table 6.
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Table 6. Comparison of validation accuracy

Test N° CNN First Tuning Final Tuning

1 DenseNet-121 0.9459 0.9630

DenseNet-169 0.9520 0.9689

DenseNet-201 0.9515 0.9700

2 DenseNet-121 0.9482 0.9660

DenseNet-169 0.9570 0.9748

DenseNet-201 0.9584 0.9758

3 DenseNet-121 0.9464 0.9740

DenseNet-169 0.9632 0.9755

DenseNet-201 0.9648 0.9795

All models, after undergoing the first tuning, achieve classification of lymph node 
histopathological images with accuracy equal to or greater than 94%. Moreover, 
regardless of the increase in the number of epochs, the final tuning raises the effi-
ciency of all models. Plots of training and validation losses obtained during final 
tuning are shown in Figures 3–5.

Fig. 3. First test. (a) Result of DenseNet-121. (b) Result of DenseNet-169. (c) Result of DenseNet-201
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Fig. 4. Second test. (a) Result of DenseNet-121. (b) Result of DenseNet-169. (c) Result of DenseNet-201

Fig. 5. Third test. (a) DenseNet-121 result. (b) Result of DenseNet-169. (c) Result of DenseNet-201
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3.3	 Prediction

After the training of each convolutional neural network, 22 thousand histopatho-
logical images, which were not part of the training or validation, are presented to 
the network so that it can perform the binary classification, this process is called 
prediction. Additionally, the evaluation of the performance of each model takes into 
account the confusion matrix, accuracy, precision, sensitivity, specificity, FDR, and F1.

3.4	 First test

Figure 6 shows the confusion matrices obtained and Table 7 shows the metrics.

Fig. 6. Confusion matrices of the first test. (a) Result of DenseNet-121. (b) Result of DenseNet-169. (c) Result of DenseNet-201

Table 7. Evaluation metrics of the first test

CNN Acc* Pre** Sen*** Spe**** FDR F1
DenseNet-121 0.9613 0.9574 0.9463 0.9715 0.0426 0.9518

DenseNet-169 0.9676 0.9613 0.9583 0.9739 0.0387 0.9598

DenseNet-201 0.9673 0.9657 0.9528 0.9771 0.0343 0.9592

Notes: *Accuracy; **Precision; ***Sensibility; ****Specificity.

The best performance was obtained by DenseNet-169, reaching an accuracy of 
96.73%. However, there is no noticeable difference between the three models.

3.5	 Second test

As in the first test, the confusion matrices are obtained from the binary predic-
tions of the three models, see Figure 7. The increase in the number of epochs also 
increases the training time with respect to the first test, but as shown in Table 8, 
the DenseNet-201 model improves its accuracy by 0.72% with respect to the last 
test. Nevertheless, the accuracy achieved by DenseNet-169 and DenseNet-201 is 
very similar.
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Fig. 7. Confusion matrices of the second test. (a) Result of DenseNet-121. (b) Result of DenseNet-169. (c) Result of DenseNet-201

Table 8. Evaluation metrics of the second test

CNN Acc* Pre** Sen*** Spe**** FDR F1

DenseNet-121 0.9651 0.9576 0.9559 0.9713 0.0424 0.9567

DenseNet-169 0.9721 0.9668 0.9640 0.9776 0.0332 0.9654

DenseNet-201 0.9745 0.9707 0.9660 0.9803 0.0293 0.9683

Notes: *Accuracy; **Precision; ***Sensibility; ****Specificity.

3.6	 Third test

The number of epochs and training time are considerably increased for this 
third test. Figure 8 shows confusion matrices of the third test and Table 9 shows 
that the DenseNet-201 model has higher accuracy, since it misclassifies 455 out of 
22000 images.

Fig. 8. Confusion matrices of the third test. (a) Result of DenseNet-121. (b) Result of DenseNet-169. (c) Result of DenseNet-201
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Table 9. Evaluation metrics of the third test

CNN Acc* Pre** Sen*** Spe**** FDR F1

DenseNet-121 0.9739 0.9678 0.9676 0.9782 0.0322 0.9677

DenseNet-169 0.9731 0.9695 0.9637 0.9795 0.0305 0.9666

DenseNet-201 0.9793 0.9740 0.9748 0.9824 0.0260 0.9744

Notes: *Accuracy; **Precision; ***Sensibility; ****Specificity.

This last test identifies the best performance of DenseNet-201, outperforming 
the other models in all evaluation metrics. DenseNet-201 from the third test outper-
forms its sister models and itself from past tests. In Figure 9, we plot the ROC curve, 
obtaining a 99.69% area under the curve.

Fig. 9. ROC curve of DenseNet-201 in the third test

In Figure 9, the area under the curve is close to 1, implying that the model perfor-
mance is optimal. The performance metrics obtained from the DenseNet-201 model 
of the third test are compared against the values presented in other studies employ-
ing a similar data set against. Finally, our proposed model shows better performance 
achieving accuracy, precision, sensitivity and F1 measure of 97.93%, 97.40%, 97.48% 
and 97.44%, respectively.

4	 CONCLUSIONS

This manuscript proposes the use of convolutional neural networks for the 
binary classification of histopathological images of sentinel lymph nodes. In order 
to achieve the research objectives, each model was trained in two stages using 
the 1-cycle policy. Having completed the experimental tests and having used the 
evaluation metrics, we can conclude that the search for learning rate and weight 
decay simplified and optimized the training process of the models presented in this 
research. Additionally, the use of the 1-cycle policy improves the performance of the 
DenseNet architecture CNNs. Only 5 epochs of training are necessary to achieve an 
accuracy of approximately 95%.
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On the other hand, two-stage training allows, in the second part, reducing the 
learning rate to increase the performance of the model without over tuning the 
network. Therefore, CNN networks are shown to be a potentially viable solution 
for binary classification of histopathological images of sentinel lymph nodes. 
DenseNet-201 achieves an accuracy of 97.93%, precision of 97.4%, false discovery 
rate of 2% and an area under the curve of 99.69% (see Table 10).

Table 10. Comparisons of the proposed method versus other methods

Models Dataset Acc* Pre** Sen*** F1

Our proposal Kaggle 97.93% 97.40% 97.48% 97.44%

CNN-GRU [10] Kaggle 97.10% 96.90% 96.87% –

Resnet50 [25] Kaggle 94.13% – – –

VGG16 [25] Kaggle 90.75% – – –

CNN-GRU [26] Kaggle 86.21% – 85% 86%

SVM [27] Kaggle 65% – 64.90% 66%

CNN-6L [28] PCam 73% – – –

Resnet-50 with Densenet-201 [5] ICPR 2014 84.8% – – 69.1%

ShuffleNet [29] BreaKHis 96.94% 96.85% 96.70% –

VGG16 [30] BreaKHis 96.0% 96.0% 93.90% –

DenseNet and SENet (IDSNet) [4] BreaKHis 81.8% – – –

Notes: *Accuracy; **Precision; ***Sensibility.
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