
PARADIGMS IN REMOTE EXPERIMENTATION

Paradigms in Remote Experimentation
MJ. Callaghan, J. Harkin, TM. McGinnity and LP. Maguire

Intelligent Systems Research Center
University of Ulster, Magee Campus, Derry City, Northern Ireland, UK BT48 7JL

Abstract—Experience in teaching engineering related
subjects has shown that a complementary approach
combining theoretical and practical exercises is vital for
effective learning. Increasingly, teaching institutions are
offering remote access to distant laboratories as part of an
overall e-learning strategy. However, the majority of remote
access laboratories developed to date have suffered from a
major deficiency, namely the provision of a web based
environment that accurately recreates the collaborative
group working and tutor driven experiences of traditional
on-campus based laboratories. New collaborative remote
experimentation environments and architectures are
required to enable students in disparate locations to
simultaneously and collaboratively complete complex
experimental exercises. This paper presents several client-
server paradigms that facilitate single user remote access,
collaborative working and lecturer led approaches to the
provision of remote experimentation facilities.

Index Terms—E-learning, Embedded Systems, Remote
experimentation, Collaborative working, Lecturer-led

I.

II.

INTRODUCTION
The proliferation of distance education courses in recent

years poses unique challenges for disciplines involving a
high level of practical work [1, 2]. For electronic and
electrical engineering disciplines, hands-on experience is
essential for effective student learning. Traditionally
students attended practical sessions in campus based
laboratories at fixed times during the academic year [3].
This approach restricts access to laboratory resources to
normal working hours which does not meet the needs of
students requiring more flexible attendance patterns in line
with current lifestyle commitments. The recent growth
and widespread availability of high speed broadband
Internet access facilitates the inclusion of increased
functionality in the development of fully interactive and
collaborative e-learning solutions.

Remote experimentation facilities offered as part of a
web-based learning approach, affords a number of critical
benefits and for engineering distance education courses it
is the only realistic method of performing many
experiments. This approach allows remotely located
students to complete laboratory assignments
unconstrained by time or geographical considerations
facilitating the development of skills in the use of real
systems and instrumentation.

The DIESEL project (Distance Internet-Based
Embedded System Experimental Laboratory) was a three
year distance learning project funded by the UK
Engineering and Physical Sciences Research Council and
located at the Intelligent Systems Research Centre on the
Magee campus of the University of Ulster, Northern
Ireland [4]. The project focused on the development of
remote-access laboratories for embedded systems modules

on several undergraduate and postgraduate courses. The
facilities developed complement, extend and augment
existing course provision by enabling students to conduct
practical experiments in this area remotely via the Internet
[5]. However the DIESEL project and indeed the majority
of remote laboratories developed to date have suffered
from a major deficiency, namely the provision of a web
based environment that accurately recreates the lecturer
led and group working experiences of traditional on-
campus based laboratories [6, 7]. The architectures and
remote experimentation environments described in this
paper are extensions to the existing DIESEL project and
describe approaches to the provision of collaborative and
lecturer-led practical remote experimentation sessions for
geographically dispersed students. The collaborative
working environment described in this paper allows
remote users to synchronously access and share on-
campus resources to complete group work on complex
engineering based practicals. The lecture-led environment
presented allows the lecturer to create, manage and deliver
live course material complemented by real-time access to
advanced remote experimentation facilities to a widely
dispersed audience of students. The approach shown here
allows students to undertake real (non-simulated) practical
exercises either individually or collaboratively, or
alternatively under the direct guidance and supervision of
the lecturer. This approach accurately recreates a similar
level of lecturer-student and student-student interaction
remotely.

Section 2 of this paper summarizes the authors’ recent
work in this area which focuses on overcoming existing
deficiencies in similar and related remote experimentation
projects. An overview of the single DIESEL client-server
architecture, its components and their functionality are
discussed. Section 3 discusses the extension of the
existing client-server architecture to facilitate remote
collaborative working between groups of students or
between a lecturer and students. Section 4 describes the
development and implementation of a new client-server
architecture to facilitate live lecturer-led collaborative
remote experimentation. Section 5 summarizes the
authors’ research to date and discusses future research
opportunities in this area.

SINGLE CLIENT-SERVER ARCHITECTURE
The existing DIESEL client-server architecture is a

non-collaborative learning environment for remote
experimentation which allows individual students to
perform real, non-simulated hardware based laboratories
for embedded systems remotely, unconstrained by
temporal or geographical considerations. At the start of
the DIESEL project a comprehensive review and analysis
of existing web based remote laboratories was carried out.
From this review process a number of key deficiencies in
existing remote experimentation laboratories were

 iJOE – Vol. 3, No. 4, 2007 5

PARADIGMS IN REMOTE EXPERIMENTATION

identified. It was concluded that in contrast to traditional
laboratories, web based remote access facilities were
crude in nature with only a fraction of the functionality,
accessibility and flexibility of their campus based
counterparts, and failed to fully utilize existing hardware
and software resources. To address these deficiencies, key
features and functionality currently available in campus
based laboratories were identified that would need to be
replicated in remote access facilities to make the overall
experience comparable. These features included
facilitating full functional access and remote control of a
diverse range of software and hardware resources. The
complete comprehensive in-depth review is available in
[8].

The DIESEL environment subsequently developed
addressed all of the existing deficiencies identified in the
review process and offers access to a comprehensive
range of modern embedded system technologies and
design tools. To facilitate distant access and control of
these resources a generic architecture and access-control
methodology for remote laboratories was developed
which efficiently integrates instrumentation and
experimental hardware components (Fig.1). The generic
architecture consists of a gateway server (laboratory
administrator) connected to the Internet and number of
experimental workstations connected to the server via a
network-hub.

Figure 1. Architecture of remote access laboratory

This architecture is functionally composed of three
interacting components; a server based booking system,
accessible through the web which allows students to
reserve a time slot on any available experimental
workstation; a client application which the end user
installs on their PC to facilitate access to remote
experimentation resources; and a server application which
runs on each remote workstation to facilitate the remote
access process. The server application is accessed through
the client allowing the user full access and control to all
the functionality required to complete a laboratory session
on a remote workstation.

Students accessing the remote laboratory initially
connect to the gateway server which handles
administration and authorisation duties and connects
validated users to available experimental workstations.
Each individual workstation is identical and hosts a range
of experimental related hardware and software tools
required to carry out practical experiments. Fig.2
illustrates the hardware components of a workstation
which includes test instrumentation and a range of

experimental boards. The test instruments are configured
and controlled from the workstation using the GPIB
protocol while the experimental boards are accessed from
the workstation using either RS232 or parallel connections
as required. A GPIB controlled switching matrix allows
the test instrumentation to be connected to a number of
test points on the experimental boards as necessary in the
course of an experiment.

To enable these hardware and software resources to be
remotely accessed and controlled the DIESEL software
architecture was developed [8]. The DIESEL client-server
approach uses a distributed software architecture
developed using Microsoft .NET technology. The
architecture for the remote access laboratory consists of a
client application, a number of experimental workstations
which host individual server applications, a web server
which hosts a database, a web service and a web-based
booking system.

Figure 2.

III.

Generic DIESEL architecture

CLIENT-SERVER ARCHITECTURE FOR REMOTE
EXPERIMENTATION

Fig.3 shows the communication and data flow between
the various parts of the remote access lab. Communication
between the client application and the server application
on the experimental workstation uses peer-to-peer TCP
communication and operates over a secure encrypted
.NET Remoting channel using 256-Bit encryption.
Interaction with the web service occurs over HTTP and
messages and data are exchanged using the Simple Object
Access Protocol (SOAP). This approach circumvents any
problems that could arise with access through firewalls
and avoids cross platform issues [9].

Figure 3. Communications protocol in DIESEL system

 6 iJOE – Vol. 3, No. 4, 2007

PARADIGMS IN REMOTE EXPERIMENTATION

The system implements a four-tier communication
model: the presentation layer, the data layer, the business
layer and the physical layer (Fig. 4). The presentation
layer consists of the DIESEL client application and the
booking system which is accessed through a web browser.
The DIESEL client provides the user interface which
allows the user to configure and manipulate embedded
systems and instruments remotely. The booking system
provides the user interface for making and managing
bookings. The data layer provides access to the database
through either a web service or the web booking system.
The business layer is implemented in the DIESEL server
application, and provides access and control to the
physical layer. The physical layer consists of all of the
hardware resources (e.g. experimental boards). A web
service is used as a gateway between the presentation,
business and data layers to allow the client application and
server application to access the database. This approach
was preferred as it allows the separation of the client and
server applications from the data storage process.

The server application (business layer) responds to
commands from the client application by executing the
appropriate control programs on the hardware architecture
(physical layer) to configure the embedded circuits, signal
routers and instruments while sending commands to the
circuit under test. In this approach authenticated individual
users complete experiments on remote workstations using
a Peer-to-Peer client/server model [9].

Figure 4.

IV.

DIESEL four tier communication model

The only operational requirement for environment
access and control for the remote student is the installation
of a relatively small client application on their PC and a
high speed (500kps+) Internet connection.

COLLABORATIVE WORKING ARCHITECTURE
The initial objective of the DIESEL project was to

recreate as accurately as possible the on-campus
laboratory experience for the remotely based student [4].
The architecture and approach described previously goes
some way to achieving this goal. However in an on-
campus laboratory setting, students will typically work in
groups to complete experiments, mentored and guided in
this process by lecturers and support staff [5]. The ability
to recreate this aspect of the on-campus laboratory
experience was until recently generally unavailable in
remote experimentation architectures. To address this
deficiency the DIESEL architecture was redesigned and
extended to facilitate synchronous remote collaborative
working between geographically diverse users [10].

Figure 5. DIESEL collaborative working architecture

A collaborative working server was added and the
existing components of the integrated learning
environment were enhanced and augmented functionally
to facilitate remote working between groups of students or
students and lecturers (Fig. 5). In a practical sense, this
added collaborative functionality allows remotely based
users to work together on the same experiment hosted on
the same remote workstation simultaneously, while
accessing, viewing and controlling each component of the
integrated learning environment e.g. virtual circuits,
instrumentation, remote desktop and webcams together.
Any changes made by one user to any of the components
of the environment are immediately replicated to all users.
This enhanced client/server architecture was implemented
using the C# platform with .NET Remoting and using
Web Services for secure bi-directional communications
between the client and server (Fig. 6). To facilitate
collaborative working the server application running on
the remote workstation listens on a secure .NET Remoting
channel for connections from remote users. When an
instance of the client software connects to the workstation
it attempts to retrieve references to a number of objects
located in the workstation’s server application.

Figure 6. Communications protocol in DIESEL collaborative working

architecture

The client application will then subscribe to events
from the remote objects and through these events the
server application will be able to communicate and
synchronise with each instance of the client software. The
collaborative version of the integrated learning
environment uses a modified remote desktop facility

 iJOE – Vol. 3, No. 4, 2007 7

PARADIGMS IN REMOTE EXPERIMENTATION

based on a Virtual Network Computing (VNC) client
implemented using C#, and the Remote Framebuffer
Protocol (RFB) to facilitate simultaneous multiple users
working on a single workstation. An existing version of
the VNC Server provides the server-side functionality.

Figure 7. Communications and collaborative working environment

The Macromedia Flash Communication Server was
used to provide video conferencing and instant messaging
functionality. Visual and audio communication and instant
text messaging between users is provided by a Flash
ActiveX component embedded in the client application.
The Flash component captures the user’s webcam and
microphone and streams it to a server running
Macromedia Flash Communication Server. Flash
Communication Server then streams the live audio/video
feed to all of the other connected users as illustrated in
Fig.7. A remote laboratory session can be reserved
through the collaborative booking system. This system
will allow a user to book a session and invite users to
collaborate in that session. The booking system was
developed using ASP.NET with SQL Server as the
database. The booking system first requires the user to log
in and authenticate. When the user books a session they
can choose the date and time and also the student or
member of staff they would like to work with (Fig. 8).

Figure 8. Choosing a booking date and time

After the user has selected their working partners the
booking system will send an email to each user notifying
them that they have been invited to collaborate on a
remote lab session (Fig. 9). The email will provide a web
link which the user must click to accept the invitation.

When the invitation has been accepted all parties involved
will receive notification that the collaborative working
session has been booked. The users will be able to connect
to the remote lab at the reserved time and collaborate with
the other users sharing the session.

Figure 9. Inviting users to share remote lab sessions

Fig. 10 shows two students working collaboratively
using video conferencing tools, remote desktop and a
virtual circuit interface to write, compile and download a
program to a microprocessor which executes a washing
machine simulator program.

Figure 10.

V.

 Collaborative working session in progress

LECTURER-LED EXPERIMENTATION
The lecturer-led system extends the collaborative

working approach to allow educational institutions and
training providers to provide remotely located students
with access to campus based laboratory resources for
remote experimentation augmented by live lectures and
tutorials given by tutors [11,12]. The environment
developed allows lecturers/trainers to create, manage, and
deliver live lectures to a widely dispersed audience of
students while allowing students to undertake real (non-
simulated) practical exercises using real hardware and
instrumentation, either individually or collaboratively.
This advanced e-learning environment uses a distributed

 8 iJOE – Vol. 3, No. 4, 2007

PARADIGMS IN REMOTE EXPERIMENTATION

architecture (Fig. 11) developed using Microsoft .NET
technology and is comprised of four core software
components including; the lecturer application, the student
application, the experiment workstation server application,
and the collaboration server application. In addition to
these components there is a web server which hosts an
online booking system, a web service and an SQL Server
database. The remotely located laboratory hosts a number
of experiment workstations similar to those described in
the single user model each running the workstation server
software and includes the collaborative server which
manages intercommunication between clients (lecturers
and students), and experimental workstations. These
software components interact over a number of different
communications protocols including HTTP
communication and peer-to-peer TCP communication
(Fig. 12). The HTTP communication is used by web
browsers to access the online booking system, which
allows lecturers and students to schedule access time in
the remote laboratory. The HTTP communication is also
used by the web service to provide the software
components of the e-learning environment with access to
the central database. The software components
communicate with the web service by exchanging SOAP
(Simple Object Access Protocol) messages to access
various remote methods served by the service, where
typically the web service is used to authenticate users and
verify bookings. Peer-to-peer TCP communication is used
for intercommunication between the software components
i.e. student application, lecturer application, workstation
server and collaboration server. The TCP communication
operates over a secure, encrypted .NET Remoting channel
and uses 256-bit encryption.

.NET Remoting is used to publish a number of server
based objects, exposing them to remote processes. These
published services can then be accessed by a client
application. When a client application subscribes to a
remote object it can access the methods, properties and
events of that remote object. The collaboration server
application manages interaction between experimental
workstations and users. By publishing a number of .NET
Remoting services the collaboration server allows the
other software components to interact (Fig. 13). The
collaboration server provides a workstation management
service which allows each experimental workstation to
register.

 Through the workstation management service the
collaboration server allows students or lecturers to gain

access to multiple workstations simultaneously to either
provide or receive assistance and work collaboratively.
The user management service maintains a list of
connected students and their current activities. This
functionality allows lecturers to monitor connected
students. The communication service provides a central
point for text chat or audio/video communication between
users allowing users to communicate. The collaboration
server is responsible for broadcasting live lectures from a
lecturer application to all students’ clients. Through these
services the workstation server application allows
connected users to control the remote experiment
hardware. Each remote workstation also hosts remote
desktop server software which allows students and
lecturers to access and control the desktop of the
experiment workstation.

A.

B.

 Lecturer Application
The lecturer client application (Fig.14), when installed

on any PC allows a lecturer to create, manage and deliver
live online courses from any remote location. The
installation is a straightforward once off install requiring
little end user configuration and a download of less than 5
megabytes dependant on the software configuration of the
client PC (system operation requires the .Net framework).
Once installed and connected the lecturer can deliver a
live presentation to a group of connected students, take
part in live discussions and provide technical
demonstrations through the shared remote desktop and
interactive whiteboard facility. The lecturer can monitor
students as they work and provide assistance if required.
In addition the lecturer can form/arrange remotely located
students into groups for practical work providing
individual or group support during these practical
exercises facilitating an advanced level of collaborative
working between diversely located students.

 Course Administration
Before a course can commence the lecturer must create

it through the administration panel of the lecturer
application. Here the lecturer can view and edit current
user details adding or removing new or existing users as
required. Lecturers can also create new courses, upload
new course material and edit existing courses as well as
manage course schedules and arrange timetables for live
presentations.

 iJOE – Vol. 3, No. 4, 2007 9

PARADIGMS IN REMOTE EXPERIMENTATION

Figure 11. e-learning environment distributed architecture

Figure 12. Communications structure

 10 iJOE – Vol. 3, No. 4, 2007

PARADIGMS IN REMOTE EXPERIMENTATION

Student Application

Workstation Server Application

HARDWARE

.NET Remoting
Services

Switching Matrix
Circuit Boards
Instruments

Remote
Desktop
Server

Software

Remote Workstation
Collaboration Server Application

.NET Remoting Services

Collaboration Server

Communication
Services

Remote
Desktop

Live Circuit
Tools

Learning
Support
Material

Communication ToolsMultiple-Session
Management

Lecturer Application

Administration
Tools

Live
Monitoring

Communication Tools Live Lecture Tools

Hardware
Controller

Workstation
Management

Live Lecture
Broadcaster

Remote
Desktop

User
Management

Figure 13. Communication structure: Interaction between applications

Figure 14. Communications structure of the lecturer application

 iJOE – Vol. 3, No. 4, 2007 11

PARADIGMS IN REMOTE EXPERIMENTATION

C.

D.

Live lecture and demonstrating
At pre-scheduled times the lecturer can conduct a live

lecture with accompanying hardware/software
demonstrations. The live lecture can consist of a live
presentation delivered by the lecturer followed by
supported/monitored individual and group practical work.
A range of tools are available to the lecturer including
webcams, text chat, a presentation/slide-show, a shared
remote desktop, and a shared whiteboard. In addition the
lecturer can demonstrate and operate a real hardware
training board or instrumentation. At scheduled lecture
times the students connect to the remote learning
environment using the student client. Similarly the lecturer
connects to the remote learning environment using the
lecturer client.

At initialisation both clients subscribe to the
collaborative server which facilitates the communication
elements of the environment. When the lecture starts the
live presentation it automatically appears on all of the
students’ client interfaces and includes dynamic content
from the lecturer’s remote desktop, training board,
instrumentation, whiteboard and the lecturer’s
audio/visual feed. Lecturers can annotate slides which
will then be replicated on the student’s client interface.
The remote desktop element of the environment allows
the lecturer to broadcast live demonstrations of software
packages/tools and other applications hosted on the
remote workstations.

At any time during a session a student may request
individual assistance. The lecturer can facilitate this by
temporarily suspending the live presentation and
connecting directly to the student’s experiment
workstation to provide individual assistance. When the
live element of the session is complete the students can
carry out the practical elements working either
individually or in groups. At any stage during the practical
sessions the student/s can request assistance from the
lecturer. The lecturer can take control of the students’
client and demonstrate the software or configure hardware
as needed.

 Student Application
In addition to watching live lectures, the student client

provides the student with all the functionality required to
carry out practical remote experiments and to work
collaboratively with fellow students. These include
videoconferencing and text facilities, virtual
instrumentation tools and remote desktop features. The
student client has three modes of operation normal
working mode, live lecture mode, and help request mode.

During normal working mode the client application
allows students to schedule and access remotely based
hardware and software resources to undertake practical
experimentation either individually or collaboratively.
This requires the student to book remote experimentation
sessions in advance using the central booking system.
Normal working mode does not require the lecturer to be
connected to the learning environment. In live lecture
mode the student client application will display the
content being broadcast by the lecturer while participating
in the live session.

In this mode, the lecturer controls what the users see on
their screens. The final mode of operation of the student
application is the help request mode. In this mode the
remote students can request assistance from any other
connected student or the lecturer. When assistance is
granted the lecturer or helping student shares control of
the student’s client application and can then demonstrate
the solution operating all aspects of the system as needed
e.g. virtual instrumentation and circuits.

Fig.15 gives an overview of the initialisation process
and shows the sequence of events involved in the help
request process. As each client application (student and
lecturer) connects to the e-learning environment they
register with the collaborative server, subscribing to
remote events and retrieving remote object references
[stages 1-4]. The collaborative server maintains a dynamic
list of currently connected students and lecturers which is
visible to all users of the system.

Figure 15. Software interaction during a help request between a student

and the lecturer

Any user can initialise the process to start the
collaborative assistance session. A student requiring
assistance will request a list of active users from the
collaborative server [stages 5-6]. When the student selects
another fellow student to be the assistant, an invitation is
sent to that user’s client application and a prompt is
displayed informing the requested user that their
assistance has being sought [stages 7-8]. If the help
request is accepted the user’s client application will
connect to the experiment workstation of the user who
requested help [stages 9-12]. The assistance provider can
temporarily access and control the workstation of the
student in need for the duration of the help session [stages
13-14].

Fig.16 shows the lecturer client components which
include webcams, text chat, a presentation/slide-show, a
shared remote desktop, and a shared whiteboard. Fig.17
shows a multi-user lecture-led session in progress with the
lecturer broadcasting and presenting live to a number of
students.

 12 iJOE – Vol. 3, No. 4, 2007

PARADIGMS IN REMOTE EXPERIMENTATION

Figure 16. Overview of the student application features

Figure 17. Live presentation using the lecturer client

 iJOE – Vol. 3, No. 4, 2007 13

PARADIGMS IN REMOTE EXPERIMENTATION

DISCUSSION AND CONCLUSION V.
This paper presented several integrated learning

environments for remote experimentation laboratories which
encompassed single, collaborative and lecturer-led
approaches. Single user environments are now commonplace
and extensively used both in education, training and industry.
As high speed internet becomes increasingly commonplace
the demand for functionality that includes collaborative
working and tutor led systems will increase. The lecturer-led
environment presented in this paper allows the presentation
of live lectures and demonstrations to diversely located
students and offers remote assistance and individual tuition if
required. In addition, students can complete complex
practical laboratory exercises either individually or
collaboratively with the majority of the functionality
currently offered by the campus experience. The approach
offered here affords a number of critical benefits allowing
remotely located students to attend live lecturers and
complete laboratory assignments unconstrained by time or
geographical considerations. This integrated learning
environment, while initially developed for educational use,
has great potential for use in the continuing professional
development market. Future research in this area will
concentrate on extending the range of experiments available
in the system and on investigating the issue of implementing
an automated help system for user support in complex
remote experimentation environments.

In a wider research context, 3D virtual collaborative and
immersive environments are becoming mainstream and
increasingly educational institutions are investigating the use
of persistent virtual worlds for experiential and practical
based learning. Recent conferences on Second Life [13]
highlight the level of educational interest in this domain and
already companies including IBM are investigating the
integration of real world data with instrumentation in the
context of virtual worlds [14]. Clearly there will be future
opportunities in this emerging area for remote education and
distance learning.

REFERENCES
[1] Gillet D. et al., (2000), "Advances in Remote Experimentation", 19th

American Control Conference, ACC'2000, 20 -25
[2] Shen H. et al., (1999), "Conducting Laboratory Experiments over the

Internet", IEEE Trans. on Education, 30, 191-199
[3] Beetner, D., Pottinger, H., Mitchell, K. (2000) ‘Laboratories Teaching

Concepts in Microcontrollers and Hardware-software Co-design’,
30th Annual Frontiers in Education Conference, Vol.2, S1/1-5

[4] Callaghan M.J, Harkin J, McGinnity T.M, Maguire L.P, (2006)
"Client-Server Architecture for Remote Experimentation for
Embedded Systems", International Journal of Online Engineering
(iJOE) , Vol. 2, No. 4, Kassel University Press, ISSN 1861-2121

[5] Callaghan, M.J, Harkin, J, McGinnity, T.M, Maguire, L.P, (2002):
“Internet-based Methodology for Remotely Accessed Embedded
Systems”, IEEE Conf. Systems, Man and Cybernetics, 157-162

[6] Callaghan, M.J, Harkin, J, McGinnity, T.M, Maguire, L.P (2003):
“Collaborative Environment For Remote Experimentation”, Intl.
Conf. Microelectronic systems Education 1st-2nd June 2003
Anaheim, California, 157 -162

[7] Esche, S. A (2002): “Scalable System Architecture for Remote
Experimentation. Proc. 32nd ASEE/IEEE Education Conf. Boston,
Mass., USA, Nov. 6th - 9th

[8] Callaghan, M.J., Harkin, J., McGinnity, T.M., Maguire, L.P. (2003)
‘Integrated Architecture for Remote Experimentation’, IEEE
International Conference on Systems, Man and Cybernetics, pp.
4822-4827

[9] Harkin, J., Callaghan, M.J., McGinnity, T.M., Maguire, L.P, (2005)
'Intelligent User-Support in Learning Environments for Remote
Experimentation', IEEE International Conference on Information
Technology and Applications, Sydney, Australia, pp. 203-209

[10] Callaghan MJ, Harkin J, McColgan E, McGinnity TM, Maguire LP,
(2007) "Client-server architecture for collaborative remote
experimentation", Special Issue of the Journal of Network and
Computer Applications, Vol. 30, No. 1, Elsevier, ISSN 1084-8045,
Pages 1295-1308

[11] Amaratunga, K., Sudarshan, Raghunathan (2002) "A Virtual
Laboratory for Real-Time Monitoring of Civil Engineering
Infrastructure," International Conference on Engineering Education,
Manchester, UK.

[12] Wolf, W., Madsen J. (2000) ‘Embedded Systems Education for the
Future’, Proceedings of the IEEE, Vol.88, No.1, pp. 23-30

[13] http://www.secondlife.com
[14] Proceedings of the Second Life Education Workshop, Second Life

Community Convention, Slccedu2007 San Francisco, California,
August 18-20, 2007

AUTHORS
Michael Callaghan is a Lecturer in the School of

Computing and Intelligent Systems at the University of
Ulster. He is a member of Intelligent Systems Research
Center within the University of Ulster. His current research
interests relate to the Remote Experimentation and Hybrid
Intelligent Systems. (e-mail: mj.callaghan@ulster.ac.uk)

Jim Harkin is a Lecturer in the School of Computing and
Intelligent Systems at the University of Ulster. He holds a
Bachelors, MSc and PhD in Electronic Engineering from the
University of Ulster. He is a member of the Intelligent
Systems Research Center within the University of Ulster and
his current research interests relate to the design and
implementation of intelligent reconfigurable embedded
systems. (e-mail: jg.harkin@ulster.ac.uk)

Martin McGinnity is Professor of Intelligent Systems
Engineering at the University of Ulster. He holds a first class
honours degree in physics, and a doctorate from the
University of Durham. He is a Fellow of the IEE, member of
the IEEE, and a Chartered Engineer and leads the research
activities of the Intelligent Systems Research Center. His
research interests relate to the creation of intelligent
computational systems and the area of intelligent systems in
general. (e-mail: tm.mcginnity@ulster.ac.uk)

Liam Maguire is a Professor of Computational
Intelligence and Head of the School of Computing and
Intelligent Systems, University of Ulster. He obtained a
MEng (distinction) and a PhD in Electrical and Electronic
Engineering from the Queen's University of Belfast. His
current research interests relate to the creation, design and
implementation of intelligent systems. (e-mail:
lp.maguire@ulster.ac.uk).

Manuscript received 11 November 2007. Published as submitted by the
authors.

 14 iJOE – Vol. 3, No. 4, 2007

http://www.secondlife.com/
mailto:mj.callaghan@ulster.ac.uk
mailto:jg.harkin@ulster.ac.uk
mailto:tm.mcginnity@ulster.ac.uk
mailto:lp.maguire@ulster.ac.uk

