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PAPER

Optimizing Blood Glucose Regulation in Type 1 Diabetes 
Patients via Genetic Algorithm-Based Fuzzy Logic 
Controller Considering Substantial Meal Protocol

ABSTRACT
Effective management of blood glucose levels in individuals with type 1 diabetes, especially 
after meals, is crucial for diabetes care. Artificial pancreas systems (APS) perform automated 
insulin delivery in subjects with type 1 diabetes mellitus (T1DM). In this study, an optimized 
fuzzy logic controller was designed to achieve a euglycemic range after a substantial meal 
intake. All in silico simulations were performed using the MATLAB/Simulink environment, 
leveraging control variability grid analysis (CVGA), and the performance of the controller was 
evaluated. The proposed controller is based on a fuzzy-logic control law designed in three 
stages. First, a nonlinear framework of the glucose-insulin regulatory system was identified 
based on the heavy meal protocol of three patients given as follows: for subject ID 117-1, 
a total of 295 gCHO; for subject ID 126-1, 236 gCHO; and subject ID 128-1, 394 gCHO over a 
day. Then, an iterative tree structure was employed to establish a stabilizing control rule for 
insulin delivery, integrating inputs from two Mamdani Fuzzy Inference System (FIS) objects. 
Finally, a genetic algorithm refines the control system by fine-tuning the uncertainty of the 
fuzzy membership functions. Two scenarios were considered for three patients to assess the 
performance of the proposed controller. The results indicated its effectiveness under various 
conditions, achieving a time in the range of 61.25%, 71% and 61.10% respectively for the 
three subjects. The obtained results are analyzed and compared with IMC and multi-objective 
output feedback controllers. The findings of the study reveal that the proposed controller 
shows promising advancements in tailored strategies for type 1 diabetes  patients, outper-
forming the other controllers in terms of blood glucose regulation.
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1	 INTRODUCTION

Diabetes is a complex physiological condition characterized by disrupted insulin 
production and utilization, leading to elevated blood glucose levels [1–3]. It is cat-
egorized into two primary types: Type 1 and Type 2 [4, 5]. In Type 1 diabetes, the 
pancreatic β-cells responsible for insulin regulation are progressively destroyed, ren-
dering precise blood glucose management elusive [6–9]. Even in Type 2 diabetes, in 
which some insulin remains in the patient’s body, challenges persist because of the 
inadequacy of insulin for effective glucose control [10]. This study primarily focused 
on type 1 diabetes; a condition characterized by the inability of the pancreas to pro-
duce insulin. Effective blood glucose control in such cases necessitates continuous or 
infusion-based insulin administration [11]. Diabetes is a growing global health con-
cern worldwide [12]. By 2045, an estimated 700 million people are projected to be 
affected, up to 463 million by 2021 [13, 14]. Diabetes does not discriminate; it can affect 
individuals regardless of their characteristics such as height, weight, ethnicity, blood 
group, age, or gender [15]. Multiple factors contribute to the development of diabe-
tes, including dietary choices, physical activity, stress levels, and sleep patterns [16]. 
Current methods for managing diabetes, such as manual daily insulin injection 
(MDII) or continuous subcutaneous insulin injection (CSII), have limitations [17]. 
MDII often lacks precise data and accuracy because the insulin dose must be man-
ually selected [18]. By contrast, CSII offers greater precision and effectiveness [19]. 
However, commercial CSII devices typically employ a single hormonal channel for 
insulin delivery [20]. Proper glucose homeostasis relies on the coordinated function 
of the liver and pancreas [21]. The pancreas, upon detecting fluctuations in blood glu-
cose, instructs the islets of Langerhans to regulate insulin production, prompting the 
liver to either reduce or increase glucose release [22–24]. Inadequate control of blood 
glucose levels can lead to severe complications [25]. Hypoglycemia, in which glucose 
levels fall below the euglycemic range, results in symptoms such as dizziness, confu-
sion, severe cases, coma, and death [26–28]. Conversely, hyperglycemia, with glucose 
levels above the euglycemic range, leads to symptoms such as increased thirst, fatigue, 
skin issues, frequent urination, dry mouth, and blurry vision, potentially causing long-
term complications, such as cardiovascular diseases, kidney damage, and eye and ear 
defects [29]. Artificial pancreatic systems (APS) have been developed as a closed-loop 
system [30]. These closed-loop automated insulin administration systems aim to mimic 
the action of a healthy pancreas and to maintain physiological glucose levels [31]. An 
APS typically comprises a sensor, actuator, and controller responsible for modulating 
insulin administration based on sensor measurements [32]. Figure 1 shows a schematic 
of the closed-loop control system used for glucose management. In general, develop-
ing a control algorithm for insulin infusion faces challenges due to nonlinearities, 
time-varying parameters, and uncertainties in the glucose-insulin regulatory system. 
Additionally, subcutaneous sensing and insulin delivery introduce delays. Addressing 
these complexities is crucial for effective artificial pancreas (AP) control. Extensive 
efforts, including diverse mathematical models and controller design techniques, have 
been employed to overcome these challenges, as detailed in comprehensive reviews 
such as [33, 34] on existing models and the utilized controllers. MPC and PID are 
widely applied in APS [35, 36]. Additionally, various advanced control design methods 
are systematically employed for improved automatic regulation system performance. 
In [37], an IMC algorithm was designed for subjects with T1DM. A multi-objective 
output feedback controller, addressing BG regulation under regular and irregular 
meal scenarios over four days with a reduced carbohydrate count, was proposed 
and solved using the linear matrix inequality technique [38]. In [39], Mamdani-type 
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fuzzy structure was used to develop an insulin advisory system for TIDM patients.  
A machine-learning algorithm has also been used to achieve safer blood glucose regu-
lation [36, 40]. Furthermore, fuzzy logic has found other applications as mentioned in 
[41–43]. Despite the promising outcomes achieved through these endeavors, striking a 
balance between the assertiveness of control actions and postprandial glucose excur-
sion remains a challenging issue, particularly in cases where the controller necessi-
tates meal announcement. Certainly, extended periods of elevated blood glucose levels 
may arise when the controller lacks aggressiveness in response to a meal disturbance. 
Conversely, if the controller is overly aggressive, there is an elevated risk of experienc-
ing postprandial hypoglycemia. It therefore becomes imperative to have an approach 
that can address optimal insulin infusion and proffer better performance.

In this study, to fulfil the optimality requirement and strike a balance between 
control action aggressiveness and postprandial glucose excursion in individuals with 
T1DM, a unique approach is introduced. The method employs a fuzzy logic controller 
to delicately manage hyperglycemia and hypoglycemia. Using an iterative tree struc-
ture, a stabilizing control rule for insulin delivery is established by integrating control-
ler inputs. This technique involves two Mamdani Fuzzy Inference System (FIS) objects 
alongside Hovorka’s model, known for its capacity to address patient-specific parame-
ters based on daily variations in meal consumption. Additionally, a genetic algorithm is 
applied as a meta-heuristic tool to fine-tune the uncertainty footprint in fuzzy member-
ship functions, enhancing the control system’s precision. To evaluate the effectiveness 
of the proposed controller, we examined two scenarios for three patients. Our approach 
surpassed the performance of the other two controllers in terms of blood glucose reg-
ulation, indicating significant advancements in tailored strategies for managing type 1 
diabetes in patients. In summary, this paper makes the following key contributions:

•	 If the patient experiences an increase in blood glucose (BG) levels following a sub-
stantial meal, the suggested controller effectively mitigates the adverse impacts 
of the meal and minimizes the potential for induced postprandial hypoglycemia. 
As demonstrated through our computational simulations, the proposed model 
consistently maintains BG levels within the safe target range of 70–180 mg/dl for 
the majority of the time (as detailed in Section 4: 61.25% for subject 117-1, 71% 
for subject 126-1, and 61.10% for subject 128-1)

•	 An iterative tree structure was adopted to stabilize a control rule for insulin deliv-
ery by using two Mamdani FIS in other to achieve the optimal dose of insulin 
infusion for each patient

•	 The integration of a genetic algorithm enabled the attainment of an optimized 
control architecture and optimal insulin infusion, facilitating the adjustment of 
uncertainty in the fuzzy membership function

•	 The Hovorka model was employed to estimate parameters, addressing diverse 
profiles of diabetic patients

Fig. 1. Closed-loop insulin administration architecture
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The paper follows the subsequent organization. Section 2 outlines the adopted 
methods. Results and discussions are detailed in Section 3, and Section 4 highlights 
the evaluation metrics. Finally, Section 5 concludes the paper alongside future 
perspectives.

2	 METHODS

2.1	 The nonlinear framework of type 1 diabetes mellitus (T1DM)

A precise mathematical representation of the glucose-insulin regulatory system 
is crucial for the development of effective control strategies. Several mathemati-
cal models related to the glucose-insulin system have been previously introduced. 
These models encompass varying numbers of parameters within the glucose-insulin 
regulatory system, ranging from a few to several, depending on the application of 
mass balance equations and the consideration of flow rates. The ability to accurately 
solve and estimate parameters in mathematical models for patients with diabetes 
has the potential to revolutionize diabetes care and ultimately achieve optimal con-
trol. Hovorka’s model stands out because of its ability to effectively elucidate the 
dynamics of the glucose-insulin regulation system using a modest number of easily 
identifiable parameters considering its nonlinear framework.

Hovorka model. Hovorka’s model is divided into three sections [44]: a glucose 
subsystem for glucose absorption, distribution, and disposal; an insulin subsystem 
for insulin absorption, distribution, and disposal; and an insulin action subsystem 
for insulin action on glucose transport, disposal, and endogenous production. The 
ordinary differential equations (ODEs) defined by the model were implemented and 
analyzed in the MATLAB SIMULINK environment to gain insights into the behav-
ioral patterns exhibited by typical patients. This framework serves as a fundamental 
tool for understanding glucose-insulin regulation systems.

•	 In the context of the research paper, the glucose subsystem is a critical com-
ponent, and it encompasses several key elements. Specifically, it comprises a 
representation of the heart’s behavior, which is articulated through a pair of 
compartmental equations that describe the glucose dynamics. These equations 
are denoted by (1) and (2), respectively. Additionally, the glucose subsystem incor-
porates a model that characterizes the rate at which the gut takes up glucose, as 
shown in equation (3). This section of the research paper delineates the essential 
components of the glucose subsystem and the mathematical expressions used to 
capture their behavior
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Where Q1 and Q2 are the quantities of glucose in the reachable and non-reachable 
chambers, respectively; k12 is the transfer rate constant from the non-reachable to 
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the reachable portion; VG is the reachable chamber dispersion volume; y and G are 
the glucose concentrations; and EGP0 is endogenous glucose production hypothe-
sized to be zero. Furthermore, F01c depicts total non-insulin-dependent glucose flow 
slated for the outer glucose rates, FR stands for renal glucose elimination above its 
threshold, the gut intake rate is symbolized by UG, tmaxG represents the duration of 
maximal appearance of glucose in the reachable glucose chamber, DG corresponds 
to the number of carbohydrates broken down, and AG represents carbohydrate bio-
availability. It should be noted that;

F01c = Total non-insulin-dependent glucose flux corrected for the ambient glucose 

concentration and is expressed as = F c
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•	 Within the context of the insulin segment, the process of insulin uptake is specif-
ically described through equations (4) and (5), whereas equation (6) represents 
the concentration of insulin within the plasma. This section provides a compre-
hensive overview of the handling and quantification of insulin in the system
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S1 and S2 reflect the uptake of subcutaneously injected short-acting insulin; u(t) 
represents insulin delivery; and tmaxI is the time to maximum insulin uptake. The 
insulin uptake rate was calculated as UI = S2(t)/tmaxI. Furthermore, ke is the fractional 
clearance ratio and VI is the dispersion volume.
•	 In the segment regarding the influence of insulin, it is notable that the subsys-

tem incorporates three distinct effects of insulin on glucose dynamics, which are 
encapsulated by equations (7), (8), and (9). Furthermore, within this subsystem, 
the modelling extends to encompass the intricacies of insulin uptake rates in 
both the slow and fast channels within the subcutaneous layer, a representation 
achieved through equations (10), (11), (12), and (13). Additionally, these equa-
tions are employed to capture the localized breakdown of insulin at the point 
of administration, thus providing a comprehensive portrayal of the impact of 
insulin on the overall system dynamics
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where x1, x2, and x3 represent the impact of insulin on glucose transport, glucose 
elimination, and endogenous glucose production; ka1, ka2, and ka3 depict deactivation 
rates; and kb1, kb2, and kb3 symbolize activation rates, respectively. Furthermore, u is 
the insulin input, Q1a, and Q1b state the quantity of insulin in the slow uptake channel 
composed of two chambers, Q2 is the amount of insulin in the fast uptake region, 
V denotes the insulin dispersion volume, k reflects the fraction of the sum of input 
flux distributed via the slow uptake region, ka1, ka2, and ke are the transfer rates, and 
LDa and LDb indicate the local insulin degradation rate at the infusion location. The 
Michaelis-Menten dynamics depicted by (14) and (15) are assumed for LDa and LDb;

	 LDa = Vmax,LD Q1a /(KM,LD + Q1a)	 (14)

	 LDb = Vmax,LD Q1b /(KM,LD + Q1b)	 (15)

where Vmax,LD is the saturation rate and KM,LD denotes the amount of insulin at 
which insulin breakdown is equivalent to half of its zenith point.

Hovorka’s model nominal parameters, constants and it’s definitions. To 
reduce complexity while still effectively representing the diverse glucose fluctuations 
observed in patients with type 1 diabetes under physiological conditions, model quanti-
ties were categorized into parameters and constants. The parameters and constant val-
ues for the diabetic patient model were adopted from [44], as shown in Tables 1 and 2.

Table 1. The model constants

Symbol Definition Value Unit

k12 Transfer rate 0.006 min−1

ka1 Deactivation rate 6 × 10−3 min−1

ka2 Deactivation rate 6 × 10−2 min−1

ka3 Deactivation rate 3 × 10−2 min−1

ke Fractional clearance ratio of insulin 0.138 min−1

VI Insulin distribution volume 0.12 Lkg−1

VG Glucose dispersion volume 0.16 Lkg−1

AG CHO bioavailability 0.8 unitless

tmaxG Time-to-maximum CHO uptake 40 min
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Table 2. The model parameters

Symbol Definition Value Unit

S f
k

kIT

b

a

= � �

�

1

1

Insulin sensitivity of distribution 0.0512 min−1 per mU L−1

S f
k

kID

b

a

= � �

�

2

2

Insulin sensitivity of disposal 0.0082 min−1 per mU L−1

S f
k

kIE

b

a

= � �

�

3

3

Insulin sensitivity of EGP 520 × 10−4 min−1 per mU L−1

EGP0 EGP hypothesized to zero amount of insulin 0.0161 mmol kg−1 min−1

F01c Non-insulin-dependent glucose flux 0.0097 mmol kg−1 min−1

Q1a and Q1b Slow chamber transfer rate 0.0112 sec−1

Q2 Rapid chamber transfer rate 0.0210 sec−1

Vmax,LD Saturation level 1.93 mU/sec

k Proportion in slow channel 0.67 unitless

tmax,I Time-to-maximum subcutaneous infusion  
of short-acting insulin

55 min

Note: a = The parameter’s mean value for Bayesian parameter estimation; b = The utilization of an 
alternative parameterization.

Estimating Hovorka’s model parameters using the Bayesian technique. 
The nonlinearity in Hovorka’s model arises from the influence of insulin on various 
parameters related to glucose synthesis, distribution, and disposal. Bayesian param-
eter estimation, a method applied to ascertain time-varying model parameters, was 
used to mitigate the issues related to posterior identifiability. This technique involves 
the derivation of a multivariate log-normal distribution for specific parameters SIT f, 
SID f, SIE f, F01 and EGP0, as established by [44]. To facilitate ease of implementation and 
enhance numerical stability during optimization, this multivariate normal distribution 
was represented as a linear combination of five individual univariate normal distribu-
tions, each characterized by a mean of zero and standard deviation of one (pi ∼ N(0, 1), 
i = 1,2,3,4, and 5) as shown in (16)–(20). The random variable transformation technique 
was used to determine coefficients aij and bi. In addition, the log-normal prior distribu-
tion for the remaining parameter tmax,I , was obtained from the existing literature [44], 
standardized to ensure numerical stability, and streamlined the implementation.

	 lnSIT f = a11p1 + b1	 (16)

	 lnSID f = a12p1 + a22p2 + b2	 (17)

	 lnSIE f = a13p1 + a23p2 + a33p3 + b3	 (18)

	 lnF01 = a14p1 + a24p2 + a34p3 + a44p4 + b4	 (19)

	 lnEGP0 = a15p1 + a25p2 + a35p3 + a45p4 + a55p5 +b5	 (20)

Stability analysis of the Hovorka’s model. The model’s distinct equilibrium 
point is defined as (Q*, I*), and is determined by solving the equations dG/dt = 0 
and dI/dt = 0. However, finding a clear solution for Q and I in the Hovorka model 
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is rather challenging [44]. To assess the stability of the nonlinear model at equilib-
rium points (Q, I), we employed the linearized approach method described by the 
Jacobian matrix.

Considering the model parameters by Hovorka’s model as follows [44]:
K12 = 0.006 per min (transfer rate); Ka1 = 0.006 per min (deactivation rate) 
Ka2 = 0.006 per minute (deactivation rate), Ka3 = 0.003 per minute (deactivation rate)

Ke = 0.138 per minute (fractional clearance), S f
k

kIT

b

a

� � � �� .�

�

1

1

1 10 0512  min per mUL  

S f
k

kID

b

a

� � � �� .�

�

2

2

1 10 0082  min per mUL  (insulin sensitivity of disposal).

The system was linearized around an equilibrium point representing the desired 
glucose and insulin levels. We set the equilibrium points to Q* and I*.

So; linearizing glucose dynamics considering the first compartment gives 
equation (21);
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Furthermore, linearizing glucose dynamics in the second compartment 
results in (22);
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where δQ1(t) = Q1(t) − Q* represents the deviation of glucose from its equilibrium 
point. In essence, the dynamic parameters of glucose become [K12 Q2]. 

Also; linearizing insulin dynamics results in (23);
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where δI(t) = I(t) − I* represents the deviation of insulin from its equilibrium 
points, δUI(t) represents the deviation of external control, and δV1 represents the 
deviation of the insulin distribution volume.

The eigenvalues of the Jacobian matrix of the linearized system were calculated. 
The Jacobian matrix A is given by;

	 A
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Applying the concept of characteristic equations results in;
det (A-λI) = 0 where A is the Jacobian matrix, λ = eigenvalues, and I = Identity  

matrix.
So; 
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	 (25)

	 λ2 + 0.144λ + 0.003348 = 0	 (26)

Therefore, the solution to the quadratic equation is given as;

	 λ = -0.072 and λ = -0.216	 (27)
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As all eigenvalues have negative real parts, the system is asymptotically stable 
(i.e., returns to equilibrium). Therefore, based on the stability analysis result, there 
was no need to increase the insulin therapy regimen, because a stable and effective 
glucose control was attained.

2.2	  Controller’s design architecture

The proposed fuzzy logic controller based on the Mamdani fuzzy system consists 
of a comprehensive architecture. It comprises two input linguistic variables and one 
output linguistic variable, making use of dynamic parameters for effective control 
of blood glucose levels in individuals with Type 1 Diabetes Mellitus (T1DM). The two 
input linguistic variables employed in the system were the current glucose level (g(t)) 
and rate of change (dg/dt). These variables are essential for quantifying the glucose 
dynamics and enabling real-time glucose control. The output linguistic variable in the 
controller corresponds to the calculated insulin volume, which is crucial for main-
taining glucose homeostasis. Fuzzy logic principles have been extensively employed 
in the development of this controller. Fuzzy sets were defined, and membership func-
tions for these sets were determined through a detailed process of fuzzy classifica-
tion of both input and output variables. In this context, the FLC utilizes a triangular 
membership function, which is a representative choice for fuzzy systems owing to its 
simplicity and efficiency. Figure 2 shows the membership functions of the input vari-
ables. A vital component of the FLC is the set of 75 IF-THEN rules that govern its opera-
tion. These rules were meticulously crafted to establish a connection between desired 
and actual glucose concentrations. These rules were designed as minimum-type 
antecedents to optimize the capacity of the controller and minimize discrepancies. 
Moreover, the rule base is associated with the input and output membership func-
tions (MFs), further fine-tuning its control capabilities. To obtain precise values for the 
control actions, the CENTROID defuzzification method was employed to ensure that 
the output decisions were aligned with the desired control objectives. To enhance the 
effectiveness of FLC, a novel Fuzzy Inference System (FIS) tree controller structure is 
introduced. Although expert knowledge was initially used to build a single FIS with 75 
rules, the complexity of manually constructing fuzzy rules for various combinations 
of input MFs prompted the exploration of alternative approaches. This new method-
ology resulted in the creation of two Mamdani FISs by using an incremental design 
strategy. The first-tier FIS aimed to pre-calculate the insulin injection rate by combin-
ing the effects of the blood glucose level (BGL) and blood glucose rate (BGR). Because 
blood glucose acceleration is typically less significant and can introduce noise into the 
output, it is handled in the second tier of the FIS. Within this framework, the blood 
glucose level was characterized by three membership functions (low, medium, and 
high) and the blood glucose rate was categorized using three membership functions 
(negative, zero, and positive). The FIS generated five distinct membership functions 
for the output representing various insulin dosage levels (low, medium, high, very 
low, and very high). The fuzzy rules of the FLC, displayed in Tables 3 and 4, along with 
a surface view of the control operation in Figure 3, illustrate the decision-making 
process. To further enhance the controller’s performance, the rule and MF param-
eters of the FIS object underwent optimization using the “tunefis” function. Genetic 
algorithms were employed for this optimization process, with the parameters set to 
a maximum of 3 generations and a population size of 100. These adjustments were 
facilitated by a cost function evaluation that ultimately selected the rule base with 
the lowest cost function to be integrated into the fuzzy system within the FIS tree. 
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To evaluate the effectiveness of the controller, the average results, considering the 
meal protocols of the three subjects, were compared when utilizing the FLC with and 
without optimization. The results of these evaluations are listed in Table 6. This com-
prehensive controller framework plays a pivotal role in maintaining glycemic control 
in individuals with T1DM, offering enhanced accuracy and adaptability in managing 
blood glucose levels. Furthermore, an optimization problem is formulated based on 
the disparity between the outcomes of Hovorka’s model and the glucose-insulin reg-
ulatory system. The variables K12, Ke, Q2, and Vi are to be determined to minimize the 
cost function represented by equation 28. This cost function (Y0), seeking minimiza-
tion, is defined with respect to the measured blood glucose level Gm(T), the predicted 
glucose level Gp(T) from Hovorka’s model, and Zf , which represents the total num-
ber of blood glucose samples. The optimization problem described in equation 28 is 
addressed using the widely recognized genetic algorithm (GA). The genetic algorithm 
is configured with a population size and generation set at 100 and 3, respectively.
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0 12 2

1

2
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� 	 (28)

Fig. 2. Membership function of input variables

Fig. 3. Surface view of the control operation
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Table 3. Rule base of FIS1

BG Rate: N BG Rate: Z BG Rate: P

BG Level: L Predose: VH Predose: M Predose: M

BG Level: M Predose: VL Predose: M Predose: H

BG Level: H Predose: M Predose: H Predose: VL

Table 4. Rule base of FIS2

BG Accell: N BG Accell: Z BG Accell: P

Predose: L Dose: VH Dose: VL Dose: H

Predose: M Dose: VL Dose: L Dose: L

Predose: H Dose: L Dose: VL Dose: VL

Proposed system for the regulation of blood glucose level (BGL). An opti-
mized fuzzy logic controller (FLC) is proposed to regulate blood glucose levels 
(BGL) in individuals with type 1 diabetes mellitus (T1DP). The Hovorka’s model was 
employed to assess the performance of the controller, thereby providing an accurate 
representation of the patient’s physiological dynamics. Acknowledging the param-
eter variations in Hovorka’s model across different patients, the FLC controller was 
designed to be adaptive rather than fixed and its parameters were fine-tuned using a 
metaheuristic technique. In this case, a Genetic Algorithm (GA) was utilized to mod-
ify the membership function uncertainties, allowing the FLC controller to effectively 
handle changing uncertainties and perturbations. Figure 4 illustrates a schematic 
representation of the proposed BGL regulation, with the controller taking the inputs 
of the error signal (e) and its rate of change (Δe).

Fig. 4. Block diagram for the proposed fuzzy logic-based controller for type 1 diabetes patients

2.3	 Numerical simulation

The numerical simulation phase involved the development and testing of the pro-
posed Fuzzy Logic controller system, integrated with the Hovorka model, to assess 
its performance and effectiveness in regulating blood glucose levels for individuals 
with Type 1 Diabetes Mellitus (T1DM). The simulation framework was implemented 
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using the MATLAB-Simulink software. The primary objective of this simulation 
was to enable the fuzzy-logic controller to effectively manage the input insulin 
rate, ensuring that the blood glucose concentration remained within a normal and 
desirable range. The simulation spanned 24 hours, commencing at 0s and ending 
at 84600s. The Fuzzy Logic controller received essential inputs related to blood glu-
cose levels, rate of blood glucose change, and rate of acceleration. These inputs are 
crucial for guiding the controller’s decision-making process, which aims to maintain 
optimal blood glucose levels. To achieve this objective, a Fuzzy Logic controller was 
designed with a hierarchical structure consisting of two Mamdani Fuzzy Inference 
System (FIS) objects. This hierarchical architecture facilitates the integration of the 
input data and streamlines the decision-making process. It is important to note that 
control responses were primarily influenced by the quantity and rate of change in 
blood glucose levels rather than by acceleration, which typically has a negligible 
impact and the potential to introduce output distortion. This hierarchy featured two 
levels, with the first tier focusing on pre-calculating the insulin dosage by consider-
ing the effects of blood glucose levels and their rate of change. However, the second 
tier incorporated the rate of acceleration to further refine insulin dosage calculation. 
Performance tests were carried out on the controller, considering two challenging 
scenarios: performance analysis of a challenging scenario considering the meal pro-
tocol, and performance analysis of insulin clearance rate variability.

Performance analysis of challenging scenario considering meal protocol. 
In this section, we present a comprehensive evaluation of the performance of our 
proposed controller. This analysis was conducted by simulating a challenging sce-
nario in which we considered the meal protocol of three distinct subjects over a day, 
as outlined in Table 5 [45]. To add an aspect of the meal protocol to create a supper 
scenario, one-third of breakfast was consumed, thus emulating real-world dietary 
variations. Key time vectors were identified to assess meal intake at different hours, 
including the 1st, 5th, 11th, and 13th hours, corresponding to breakfast, lunch, din-
ner, and supper, respectively. Moreover, the simulation tracked parameters related to 
glucose utilization and carbohydrate (CHO) intake for each subject, namely ID 117-1, 
126-1, and 128-1. Figures 5–10 visually represent the glucose utilization and CHO 
intake patterns for these subjects. To gain insight into the dynamics of blood glucose 
levels when the body absorbs glucose without corrective insulin infusion, a simu-
lation with constant zero control action was executed. The results were analyzed. 
For the initial subject, ID 117-1, the patient’s blood glucose level fluctuated between 
100 mg/dl and 1250 mg/dl, ultimately settling at approximately 600 mg/dl. This sta-
ble glycemic state was not reached, as shown in Figure 11, and the corresponding 
insulin injection rate is shown in Figure 12. A similar pattern was observed for sub-
ject 126-1, with blood glucose levels oscillating between 100 mg/dl and 1200 mg/dl. 
Ultimately, the glucose concentration settled at approximately 580 mg/dl, failing 
to achieve a stable glycemic state, as shown in Figure 13, along with the insulin 
injection rate illustrated in Figure 14. Subject 128-1’s blood glucose levels displayed 
similar fluctuations, varying between 100 mg/dl and 1500 mg/dl. Eventually, the gly-
cemic state settled at approximately 700 mg/dl; however, like the other subjects, a 
stable glucose level was not achieved, as demonstrated in Figure 15, along with the 
corresponding insulin injection rate captured in Figure 16. In light of these findings, 
we reintroduced a Fuzzy Logic controller, both with and without the incorporation 
of a genetic algorithm, to optimize insulin infusion to achieve improved glycemic 
control. The details of these findings are presented more comprehensively in the 
results section. This performance analysis serves as a vital precursor to understand-
ing the effectiveness and adaptability of the proposed controller under challenging 
real-world conditions.
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Table 5. The adopted subjects’ meal protocol

Subject ID Breakfast 
at (7 am), g

Lunch 
at (noon), g

Dinner 
at (6 pm), g

Supper 
at (8 pm), g Total gCHO

117-1  80  80 108 27 295

126-1  64  64  87 21 236

128-1 107 107 144 36 394

Fig. 5. Glucose utilization against time Fig. 6. CHO intake against time

Fig. 7. Glucose utilization against time Fig. 8. CHO intake against time

Fig. 10. CHO intake against timeFig. 9. Glucose utilization against time
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Fig. 11. BG level against time Fig. 12. Insulin injection against time

Fig. 13. BG level against time Fig. 14. Insulin injection against time

Fig. 16. Insulin injection against timeFig. 15. BG level against time

Performance analysis of insulin clearance rate variability. In this per-
formance assessment, we examined the influence of variable insulin clearance 
rates among the individuals. The underlying assumption was that this parameter 
exhibited significant variance with an acceptable margin of ±25%. This parameter, 
referred to as the insulin clearance rate, governs the rate at which insulin is absorbed 
into the body. Notably, this rate of absorption is subject to considerable divergence 
among patients, resulting in an array of possible scenarios. The importance of this 
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variability lies in its direct connection with the degradation rate of insulin. A higher 
insulin clearance rate signifies accelerated insulin degradation, ultimately resulting 
in elevated blood glucose levels in diabetic individuals. Acknowledging this inherent 
variability, our analysis encompassed a parameter range extending up to 25% from 
the nominal value originally set at 0.08 within our model. Crucially, the optimized 
fuzzy logic controller that we proposed and implemented emerged as a potent tool 
to ensure that the glucose concentration remained well within acceptable bounds. 
The effectiveness of the controller in adapting to varying insulin clearance rates 
served as a cornerstone for the robust performance of our system in maintaining 
glycemic control even in the face of uncertain insulin dynamics. This performance 
analysis provides valuable insights into the adaptability and resilience of our pro-
posed controller in the presence of real-world variability and challenges encoun-
tered by individuals with diabetes.

3	 RESULTS AND DISCUSSIONS

This section presents the comprehensive findings of the observed performance of 
the fuzzy logic controller (FLC) with and without genetic optimization across three 
individual subjects. This study aimed to evaluate the impact of the optimization 
scheme on glycemic control and assess the efficacy of the controller in maintaining 
blood glucose levels within the desired range while optimizing the insulin dosage 
for each patient.

3.1	 Performance of fuzzy logic controller with and without optimization 
for subject ID 117-1

In Figure 17, the graph illustrates the blood glucose levels, whereas Figure 18 
depicts the corresponding insulin injection patterns of Subject ID 117-1 under the 
influence of FLC with optimization. Conversely, Figure 19a and b show a compari-
son between the systems with and without the optimizer. The findings revealed that 
when the FLC was optimized, the plasma glucose concentration fluctuated between 
110 and 258 mg/dl upon glucose intake, eventually stabilizing at 80 mg/dl. This more 
favorable glycemic state was achieved, as opposed to the system without optimiza-
tion, where the blood glucose level remained constant at 100 mg/dl.

Fig. 18. Insulin injection against timeFig. 17. BG level against time
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Fig. 19a. BG level against time

Fig. 19b. Insulin injection against time

3.2	 Performance of fuzzy logic controller with and without optimization 
for subject ID 126-1

For Subject ID 126-1, the performance of the FLC with optimization is shown 
in Figures 20 (blood glucose levels) and 21 (insulin injections). Figure 22a and 
b compares the behavior of the system with and without the optimizer. Similar 
to the previous case, it was observed that FLC with optimization led to plasma 
glucose concentration fluctuations between 110 mg/dl and 220 mg/dl, ultimately 
settling at 80 mg/dl, reflecting a notably improved euglycemic state. Conversely, 
the system without optimization maintained a steady blood glucose level of 
100 mg/dl.

Fig. 20. BG level against time Fig. 21. Insulin injection against time
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Fig. 22a. BG level against time

Fig. 22b. Insulin injection against time

3.3	 Performance of fuzzy logic controller with and without optimization 
for subject ID 128-1

Subject ID 128-1’s response to the FLC with optimization is presented in Figures 23 
(blood glucose levels) and 24 (insulin injections), while Figure 25a and b contrast 
the system’s performance with and without the optimization. Upon analyzing the 
optimized system, it was evident that the patient’s plasma glucose concentration 
fluctuated from 110 mg/dl to 310 mg/dl and eventually settled at 80 mg/dl, thus man-
ifesting an improved euglycemic state. In contrast, the system without optimization 
maintained a blood glucose level of 115 mg/dl. 

Fig. 23. BG level against time Fig. 24. Insulin injection against time
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Fig. 25a. BG level against time

Fig. 25b. Insulin injection against time

In essence, the results obtained from the three subjects distinctly illustrate the pos-
itive influence of genetic optimization on glycemic control. The optimized FLC demon-
strated the ability to respond to glucose intake more effectively, leading to improved 
blood glucose regulation. These findings highlight the significance of employing 
advanced control mechanisms, such as fuzzy logic controllers with genetic optimi-
zation, to enhance diabetes management and achieve superior glycemic outcomes.

4	 EVALUATION METRICS

To assess the performance of the control systems in regulating blood glucose lev-
els, internationally recognized glycemic control parameters [46] were employed for 
comprehensive comparisons. The following metrics were used.

Average Glucose Level (MG): This metric represents the mean blood glucose concen-
tration and provides an overview of glycemic control. Time in Range (TIR): TIR indi-
cates the proportion of time spent within the desired blood glucose range, which is a 
key indicator of effective glycemic management. Time Below Range (TBR) Ratio: The 
TBR ratio reflects the time spent with blood glucose levels below the desired range, sig-
nifying the extent of hypoglycemia risk. Time Above Range (TAR) Ratio: Conversely, the 
TAR ratio illustrates the time spent with elevated blood glucose levels above the desired 
range, indicating hyperglycemia episodes. Time below 54 mg/dL: This parameter spec-
ifies the proportion of time spent with blood glucose levels below the critical threshold 
of 54 mg/dL, emphasizing the risk of hypoglycemia. Standard Deviation (STD): The STD 
measures the dispersion of blood glucose values, offering insight into glycemic vari-
ability. Average Insulin Administration per day (INS): INS quantifies the daily insulin 
dosage, a vital factor in glycemic control. The evaluation was conducted in both open-
loop and closed-loop scenarios (i.e., with and without the fuzzy logic optimizer) for 
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each subject, and the results are presented in Table 6. In addition, the Coefficient of 
Variation of Glucose Area (CVGA) for the optimized control architecture was computed 
for all three subjects, as shown in Figures 26, 27, and 28. CVGA serves as a comprehen-
sive indicator of glycemic stability and reflects the overall performance of the control 
system in maintaining blood glucose levels within the desired range. Furthermore, 
to evaluate the efficacy of the proposed controller, a comparative analysis was con-
ducted against the outcomes of two existing strategies: compound internal model con-
trol (IMC) [37] and a multi-objective output feedback controller [38]. Notably, our study 
incorporated a more extensive meal protocol (Subject ID 126-1) than those considered 
in the referenced papers, highlighting the robustness of our controller. The results, as 
presented in Table 7, underscore the superior time in the range achieved by our pro-
posed system compared to the outcomes reported in the two aforementioned studies.

Table 6. The open and closed-loop scenarios (i.e., with and without fuzzy logic optimizer) of each patient

Subject Metrics Open Loop System FLC FLC with Optimization

117-1 MG (mg/dl) 675 153 145

TIR (%) 0 60.10 61.25

> 180 (%) 100 39.9 38.75

< 70 (%) 0 0 0

< 54 (%) 0 0 0

STD 341.3 82.5 79.53

INS (U/day) 16.3 20.1 23.8

126-1 MG (mg/dl) 617 187 180

TIR (%) 0 69.8 71

> 180 (%) 100 30.2 29

< 70 (%) 0 0 0

< 54 (%) 0 0 0

STD 315 100.2 99.33

INS (U/day) 14.5 17.9 20.7

128-1 MG (mg/dl) 808.33 184 175

TIR (%) 0 60.50 61.10

> 180 (%) 100 39.50 38.9

< 70 (%) 0 0 0

< 54 (%) 0 0 0

STD 436.29 105.66 101.45

INS (U/day) 16.6 23.2 25.3

Table 7. Assessment of controller’s performance in comparison with IMC algorithm and a multi objective 
output feedback controller

References Controller MG (mg/dl) TIR (%) > 180 (%) < 70 (%) LBGI HBGI

[37] Compound IMC 165.8 62.95 37.04 0 0.032 7.4

[38] A multi-objective output 
feedback controller

 165.51 63.89 36.11 0 0 7.43

Current study Proposed controller 180 71 29 0 0 7.47
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Fig. 26. CVGA plot for subject ID 117-1

Fig. 27. CVGA plot for subject ID 126-1

Fig. 28. CVGA plot for subject ID 128-1
Notes: The following abbreviations in the CVGA plot depict: A: Accurate control; Lower B: Benign 
deviations in hypoglycemia; Upper B: Benign deviations in hyperglycemia; B: Benign control deviations; 
Lower C: Overcorrection in hypoglycemia; Upper C: Overcorrection in hyperglycemia; Lower D: Failure 
to deal with hypoglycemia; Upper D: Failure to deal with hyperglycemia; E: Erroneous control.
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5	 CONCLUSION AND FUTURE PERSPECTIVES

In this study, an optimized fuzzy control scheme tailored for three distinct sub-
jects with unique physiological characteristics was developed and assessed. The 
study yielded significant insights into the complex dynamics of blood glucose reg-
ulation. Subject 117-1 exhibited a noticeable reduction in blood glucose variability, 
specifically a decrease in standard deviation, upon transitioning from an open-loop 
to a closed-loop control system. This decline in variability indicates a smoother and 
more stable blood glucose profile, suggesting improved health under the closed-
loop scenario. Additionally, subjects 126-1 and 128-1 showcased remarkable gly-
cemic control when subjected to the optimized fuzzy control system, highlighting 
the potential efficacy of such control mechanisms in managing blood glucose lev-
els effectively. While the primary focus of this study centered on the physiological 
aspects of glucose dynamics, it is imperative to acknowledge the multifaceted nature 
of glycemic management. To achieve a more comprehensive understanding of the 
glycemic significance for subjects, future research avenues should explore alterna-
tive strategies, including data-driven approaches, the design of new fuzzy artificial 
pancreas models considering time delays, adoption of fuzzy type 2 control designs, 
and the incorporation of hybrid models. Furthermore, broadening the scope of the 
investigation to encompass external factors such as stress, sleep patterns, and phys-
ical activity (exercise), known to influence blood glucose concentrations, will con-
tribute to a more adaptive and encompassing model. The contributions of this study 
include the design of a controller aimed at maintaining blood glucose levels within 
the target range of 70–180 mg/dl. It introduced an iterative tree structure to stabi-
lize insulin delivery and incorporated a genetic algorithm to achieve an optimized 
control architecture and insulin infusion, accommodating uncertainty in the fuzzy 
membership function. In summary, this study marks a significant step towards 
advancing our understanding of blood glucose regulation and control mechanisms. 
The optimization of fuzzy control schemes holds promise for enhancing the quality 
of life for individuals with diabetes. As we continue to explore innovative solutions, 
we progress towards achieving optimal glycemic control and ultimately improving 
the well-being of those living with this condition.
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