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PAPER

Digital Pathology in Healthcare: Current Trends  
and Future Perspective

ABSTRACT
Diagnosing a disease requires observing the affected tissues and drawing conclusions based 
on specific known features. Conventionally, a pathologist would diagnose the sample manually 
by placing it on a glass slide and viewing it under the microscope. These microscopes existed 
400 years ago, but over the years, there have been modifications aimed at digitizing every pos-
sible diagnostic test. One of the major advantages of digitizing the process is the reduced time 
consumption for acquiring, processing, and analyzing the slides. Another positive aspect is the 
reduction in subjectivity achieved by utilizing artificial intelligence (AI) algorithms to classify 
and diagnose specific diseases. This is achieved by attaching a digital camera to the microscope, 
which captures images of the glass slides for subsequent processing and diagnosis. There has 
been a lot of research in this field, but its implementation has been hindered by challenges such 
as interoperability and high-resolution data, resulting in large file sizes. Various applications for 
whole slide imaging, such as disease diagnosis techniques, whole slide imaging (WSI) scanners, 
digital slide scanners, the Internet of Things (IoT), and AI, have been explored in this study. This 
paper reviews the trends and evolution of microscopes leading to present-day digital pathology 
scanners, with a major focus on one of the digital techniques, which is whole slide imaging.  
It also explores various areas where AI has been integrated into whole-slide imaging.
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whole slide imaging (WSI), image analysis, artificial intelligence (AI), pathology

1	 INTRODUCTION

Digital pathology involves acquiring pathology slides from a hospital, reporting 
them, sharing them between hospitals, and storing and managing them. Digital 
pathology is a field of pathology that utilizes digital images of biological samples 
to study and diagnose diseases. It has several advantages over conventional 
microscopy, including faster, more accurate, and more reliable diagnoses; better 
access to specialist advice; improved patient care; enhanced education and training; 
and the ability to store and share large datasets. It utilizes a digital microscope with a 
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digital camera to capture the image, which is then displayed on the computer screen 
for storage, editing, and analysis. It is different from the conventional approach in 
terms of time, efficiency, and accuracy. These digital images are obtained through 
whole-slide imaging (WSI) technology, where glass slides are scanned to generate 
digital images. Digital pathology enables the transmission of WSI data electronically 
from one hospital to another through high-speed digital lines, satellites, the Internet, 
or any other communication medium [1]. This feature is used for telepathology.  
To perform telepathology efficiently, the pathologist selects a video image for diag-
nosis. Both real-time and static images are transmitted simultaneously in hybrid 
telepathology [2]. A remote location or primary care center can upload digital 
images to a web browser for access from anywhere in the world. Specialized pathol-
ogists can virtually report and provide expert opinions on digital images of slides. 
For transferring them over the network, they need to be standardized. The standard 
for medical images is DICOM, while the standard for information is HL7. The evolu-
tion of microscopes started in the 14th century, and it took six centuries to reach the 
digital era. Table 1 describes the evolution of modern-day microscopes, including 
their inventors and advancements [3, 4, 5, 6, 7].

Whole slide imaging technology emerged in 1999 [8], which allowed pathologists 
to digitally convert all the tissue on the glass slide into a virtual slide with higher 
resolution [9]. There are four processes involved: image acquisition, storage, 
processing, and visualization. There are several modes of digital pathology, including 
static mode, dynamic mode, and hybrid mode [10]. In all these modes, whole-slide 
images were included. Static modes were used in transplantation using a private 
network and client-server architecture. In hematopathology, static images of blood 
cells were transmitted via email from one place to another [11].

Table 1. Evolution of digital microscope

Century Inventor Progress

14th Century Roman Philosophers The invention of a microscope, which could 
concentrate sun rays into a small area.

Two lenses were set on opposite sides, leading to a 
simple magnification tube.

16th Century Dutch lens makers A device that could magnify objects

Galileo Galilei Complete microscope, i.e., today’s simple microscope

Mid-16th Century Zacharias Jansen and 
Hans Lipherhey

Created microscope based on lenses in a tube

Late 16th Century Anton Von Leeuwenhoek Started polishing the lens and also measured which 
would be of good quality

18th Century Chester Moore Hall Made the achromatic lens

19th Century Charles Spencer Observed how light affects the image in the 
microscope and later developed an independent 
light microscope

Ernst Liedst Different magnifications in a microscope

20th Century Maxx Roll and Ernst Rucher Invention of the electron microscope

Gerard Benign Scanning tunnelling microscopy and atomic force 
microscopy

Digital Microscopes
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Whole-slide imaging technology, also known as virtual microscopy, scans and 
captures the entire microscopic slide using a camera to produce a high-resolution 
image [12]. It follows the Pixel Pathway process, which traces the flow of image data 
from a glass slide to a human. These static images provide us with relatively more 
data on magnification and its focal planes. The time required for this process is very 
short. After the acquisition of the pathological image data, it is stored on an SD card 
or in the cloud and then viewed using a virtual slide viewer [13]. Figure 1 illustrates 
the fundamental workflow of the WSI process.

• Preparation of sample

• Whole slide scanner digitizes the glass slides

• Digital slides stored on local storage

• Uploaded on virtual slide viewer for
viewing and editing

Integrated with EMR and LIS for the
pathologist to perform diagnosis remotely

Fig. 1. WSI workflow

To initiate the process of acquiring WSI, various magnifications need to be 
taken into consideration. The basic concept of light microscopy is different from 
the one used in WSI because of the objective used to scan the slide and the imaging 
sensor [14]. The most widely used magnifications are 20× with a resolution of 0.5 μm 
per pixel and 40× with a resolution of 0.25 μm per pixel [15]. Figure 2 shows whole 
slide images of a human esophagus at different magnifications.

Under the same umbrella, there have been other review papers as well.  
“AI and Digital Pathology: Challenges and Opportunities [16]” and “Image Analysis 
and Machine Learning in Digital Pathology: Challenges and Opportunities [17]” 
are two articles that discuss the current state and future potential of using AI in 
the field of digital pathology. Both papers highlight the benefits of digital pathol-
ogy, such as improved accuracy, efficiency, and accessibility of pathology services. 
It also notes that there are several challenges that need to be addressed, such as 
data privacy, lack of standardization, and the need for extensive training data sets. 
Along with this, Amerikanos et al. [17] also discuss various image analysis and 
machine learning techniques that have been applied to digital pathology, such as 
convolutional neural networks (CNNs), deep learning, artificial neural networks 
(ANNs), and different types of applications of these techniques in digital pathology, 
including diagnostic support, disease prognosis, and treatment planning. WSI is 
a part of digital pathology that digitizes high-resolution digital images of entire 
tissue samples, which can be viewed and analyzed using specialized software. 
[18] is another review paper that delves into past experiences with digital pathol-
ogy implementations, explores future possibilities with the integration of AI, 
addresses technical and occupational health challenges, and considers potential 
changes to the pathologist’s profession.
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Fig. 2. Whole slide image of human oesophagus. A) Whole slide image viewed at 0× magnification. B) Whole 
slide image viewed at 5× magnification. C) Whole slide image viewed at 10× magnification. D) Whole slide 

image viewed at 20× magnification. E) Whole slide image viewed at 40× magnification.  
F) Whole slide image viewed at 80× magnification [19]

Whole slide imaging: technology and applications [20] and WSI in pathology: 
advantages, limitations, and emerging perspectives [21] review the same topics, 
highlighting the benefits of WSI technology, including enhanced diagnostic accuracy 
and efficiency, improved collaboration, and greater accessibility of pathology 
services. They also discuss various challenges that must be overcome. It also dis-
cusses the digital pathology ecosystem and the clinical and nonclinical applications 
of its use. Additionally, [21] highlights the barriers to the adoption of WSI, which 
include limitations in technology, image quality, difficulties in scanning all materials, 
slide storage, costs, the inability to handle high-throughput routine work, regulatory 
barriers, ergonomic concerns, and pathologists’ reluctance.

Our contributions include:

•	 Highlighting the top three most-used methods for the acquisition, analysis, and 
storage of whole slide images. This breadth of coverage allows readers to gain a 
comprehensive understanding of the field.

https://online-journals.org/index.php/i-joe
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•	 A comparative study of various methodologies used for different applications, 
along with their results and limitations, highlights the diverse applications and 
architectures of CNNs. This study provides valuable insights into the role of this 
technology in pathology research and practice.

2	 REVIEW METHODOLOGY

We used the PRISMA methodology to screen articles. The articles written in 
English were reviewed. Standard databases such as Google Scholar, PubMed, 
Scopus, Crossref, and Web of Science were used to search for articles. The keywords 
used were “digital pathology,” “AI and digital pathology,” “whole slide imaging,” and 
“deep learning.”

All published articles were prescreened, removing commentaries, letters to 
editors, animal research, and case reports. Out of  381 articles, 20 were chosen.  
The prism diagram is described in Figure 3.

Fig. 3. PRISMA diagram

3	 WHOLE SLIDE IMAGING: ACQUISITION, ANALYSIS, AND STORAGE

A whole-slide scanner is essentially a microscope controlled by robotics and 
computers. This is attached to a highly specialized camera containing advanced 
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optical sensors. The entire setup includes a microscope, a light source, robotics for 
loading and moving glass slides, a computer, and software for processing, analyzing, 
storing, and viewing digital slides. The slides, including tissue microarrays [22], can 
be loaded into trays, racks, or carousels. The process of acquisition begins by loading 
the slide feeder with glass slides. WSI instruments are capable of batch scanning, 
where one slide is scanned at a time, and continuous or random-access process-
ing, where slides can be uploaded while another is being scanned. Various vendors 
provide slide scanners with different batch capacities and compatibility. Scanning of 
slides can be done via two methods: tile-based and line-based [13]. Tile-based scan-
ning employs a robotics-controlled motorized slide stage to scan various sections 
in the form of tiles [23], whereas line-based scanning utilizes a servomotor-based 
slide stage that moves in a jitter-free linear fashion to scan along a single axis [13]. 
Though tile-based scanning seems to be a more accurate scanning method, it focuses 
on the smallest sections of the specimen. However, the software must have the 
capability to handle this complexity. Otherwise, alignment issues at each point can 
lead to an increased number of artifacts. Line-based scanning is a relatively sim-
pler process due to its methodology. The outputs consist of strips of images that are 
stitched together to form a complete image. The improved version of these tech-
niques is TDI (time, delay, and integration) line scanning, which utilizes multiple line 
scan stages to enable faster imaging speeds and area scanning techniques [24, 25].  
Two primary types of luminescence required for specimen acquisition are bright-
field, traditionally utilizing tungsten lamps, and fluorescent scanning techniques, 
traditionally employing xenon arc lamps, mercury vapor lamps, and lasers [25]. 
These scanning cameras need to transfer the data captured from the sensors to the 
image processing unit, and this is accomplished with the assistance of a camera bus. 
We also see a mobile phone microscope used for acquiring WSIs [26].

Image analysis has gained popularity after the advent of digital imaging 
techniques and their transfer capabilities. The images produced as output are very 
large files that cannot be analyzed with basic tools. Hence, numerous new tools, 
such as video cameras, digital slide scanners, and WSI models, have captured the 
market. Several new software applications, such as TMarker, Orbit, and Qupath, 
with the primary goal of WSI analysis, have been developed [27]. For the analysis of 
WSI, one of the major requirements is the detection and classification of the nucleus 
in a cell. TMarker software uses a super pixel-based approach to classify nuclei 
as benign or malignant, and stained or unstained [28]. According to the results,  
it was found to be 76% accurate. As an application, it was used for cell counting 
and staining estimation of pathological IHC-stained tissue images with the assis-
tance of techniques such as color deconvolution, super pixels, and active learning. 
Though it has proven to be accurate, it needs further validation and improvement 
on larger and more diverse datasets. Orbit is a tool for whole-slide image analy-
sis that utilizes machine learning to comprehend the context within extensive WSI 
and applies this knowledge to analyze structures at various magnification levels. 
It utilizes a context-based structural classification method that can calculate various 
features across multiple image resolutions by processing the images in a tile-based 
manner. Orbit supports a variety of quantification methods, such as pixel classifica-
tion and object segmentation. These methods lead us to the region of interest (ROI).  
Orbit is a user-friendly tool that can integrate with various algorithms in a straightfor-
ward manner [29]. Traditional bioinformatics methods heavily rely on prior knowl-
edge and handcrafted features, which limits their capacity to uncover novel insights 
hidden within complex genomic data. On the contrary, unsupervised machine 
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learning models offer the flexibility to learn intricate patterns without requiring 
labeled training data [30]. QuPath is an open-source digital pathology image anal-
ysis software that offers robust batch-processing and scripting capabilities, as well 
as a wide range of tools for tumor identification and high-throughput biomarker 
evaluation. It allows the creation of custom workflows and links them together 
with scripting functionality and existing software such as MATLAB and ImageJ.  
The development applications are Java  8 and JavaFX [31]. Histo-Cloud is a tool 
for pathologists that offers image segmentation functionality and allows for the 
extraction of features through a graphical user interface [32]. One of the major 
advantages of this tool is its ability to perform segmentation without staining the 
sample. The concept behind this, i.e., state-of-the-art CNN, is explicitly demonstrated 
by the segmentation of various structures from kidney tissues (renal histopathology).

After scanning the histology data with WSI scanners, it needs to be stored for 
future use. This is achieved with the help of the digital slide archive, which allows 
the physician to manage large collections of histologic images and integrate them 
with clinical and genomic metadata [33]. It allows you to view, search, and manage 
the data uploaded to the cloud remotely, i.e., without the need to download it to the 
device. It was a collaboration with HistomicsTK and Kitware, primarily focusing on 
managing cancer slides. A study at Emory University highlighted the importance of 
managing and querying both WSI and analytical results generated from images [34]. 
It, therefore, developed a database called the pathology image database system, 
which is a standard image-oriented database compatible with DICOM. This system 
was capable of storing images, making annotations, and retrieving them through 
a unified interface and architecture. Additionally, it can be integrated with PACS 
(picture archiving and communication system). An enhanced version of the storage 
system facilitates scalable storage of WSIs and rapid retrieval of image tiles by lever-
aging Apache Spark, a space-filling curve, and common data storage formats [35]. 
This study proposes two different methods of storing the WSI: parquet and ORC 
(optimized row columnar). ORC proved to be better in terms of fast retrieval and 
space efficiency for storage. Some additional storage image management software 
includes Slide Manager and Virtuoso, which can be utilized for storing, retrieving, 
viewing, annotating, and analyzing images [15]. Table 2 presents a summary of the 
techniques utilized for the acquisition, analysis, and storage of all slide images.

Table 2. Summary of the techniques used in WSI

Author Technique Result Novelty Limitation

R. Hoffman 
et al. [23]

Tile Based Scanning Classifying Biological 
Regions in Whole-Slide 
Histopathological Images

Using Tile-based technology in 
histopathology images

Complexity

N. Farahani 
et al. [13]

Line Based Scanning Stripes of Images that needed to be 
stitched together

Slide navigation technique loss of minute details 
as compared to 
tile-based

Patel et al. [24] TDI line scanning Multiple line scan stages to allow 
faster imaging

Multiple line scan stages

Wild et al. [28] TMarker for WSI analysis Classification of nuclei that are 
benign or malignant and stained 
or unstained using a super pixeled-
based approach.

Super pixeled-based approach Validation is lacking 
for larger and 
different dataset

(Continued)
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Author Technique Result Novelty Limitation

Manuel Strittl 
et al. [29]

Orbit for WSI analysis Use of context-based structure 
classification for WSI image pixel 
classification, object segmentation, 
and object classification.

A user-friendly approach to 
compute various features at 
multiple magnification levels

Peter Bankhead 
et al. [31]

Qupath for WSI analysis Image analysis software using Java8 
and JavaFX that provides a powerful 
batch-processing and scripting 
functionality

Open-source desktop software 
application that incorporates 
extensive annotation and 
visualization tools. Novel 
algorithm to create custom 
workflows.

Brendon Lutnick 
et al. [32]

Histo-cloud for 
WSI analysis

Segmentation of different renal 
and non-renal WSIs and scalability 
demonstration.

Cloud-based tool.
Developed easy-to-use plugins 

using Digital Slide Archive.

Limited applicability
Needs the user to 

know the basics

David A. Gutman 
et al. [33]

Digital Slide Archive-built 
on a data management 
toolkit called Girder 
that is developed and 
maintained by Kitware

A cloud-based server for cancer 
investigators with a free digital 
pathology platform, avoiding the 
need for costly commercial software 
that is expensive to scale.

Remotely viewing, searching, 
and managing the data 
uploaded to the cloud

Fusheng Wang 
et al. [34]

Pathology Image 
Database System

A database capable of storing images 
as well as annotations, retrieving 
through a unified interface and 
architecture.

Standard image-oriented 
database compatible 
with DICOM

Fast retrieval

Rao et al. [35] Optimized Row Columnar Scalable storage of WSIs and fast 
retrieval of image tiles. ORC type of 
storage was found to be better

Two different 
methods of storing the 
WSI, Parquet and ORC

4	 USE OF ARTIFICIAL INTELLIGENCE IN DIFFERENT APPLICATIONS 
OF WHOLE SLIDE IMAGES

Using automated systems, such as artificial intelligence, for the classification and 
segmentation of whole slide images has recently gained prominence in the pathology 
research community. These systems are more efficient, accurate, and time-saving. 
Yottixel is an image search engine for extensive archives of histopathology 
whole-slide images and presents them in a compact format. The mosaic, i.e., 
patches of WSI, are converted into barcodes. The performance of the prototype 
platform is qualitatively tested using 300 WSIs from the University of Pittsburgh 
Medical Center and 202 WSIs from the Cancer Genome Atlas program provided by 
the National Cancer Institute. It uses various supervised and unsupervised algo-
rithms, such as segmentation and clustering algorithms [36]. For any application of 
WSI using artificial intelligence, a sufficient quantity and quality of well-annotated 
data are required for training the model. Ink marking on the slides was deemed 
unsuitable; therefore, Jun Jiang et al. developed a system that digitally scanned the 
slides with annotations and then removed the annotations [37]. Recent studies men-
tion that artificial intelligence (AI) is playing a significant role in cancer detection.  
For instance, a deep learning cluster can be beneficial for illustrating the immuno-
phenotypes and functional heterogeneity of the tumor microenvironment in 
patients with bladder cancer (BLCA) [38]. Further, if the AI score is calculated, 

Table 2. Summary of the techniques used in WSI (Continued)
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it can quantify the clusters within the WSI. AI-based algorithms have proven to 
be a valuable tool in detecting prostate adenocarcinoma and Gleason grading 
using multilayer CNNs specifically designed for image classification tasks [39]. The 
instrumentation requirement for acquiring the WSI in this case was determined to 
be a 40× magnification scanner (Philips Intellisite Scanner) with slide-level analysis. 
The algorithm is highly accurate, based on a large, blinded, external validation 
dataset, for identifying and quantifying prostate cancer. Along with classification 
tasks, some algorithms can be used for the localization of abnormal regions in 
WSI, making it easier for the pathologist to focus on the region of interest [40]. 
It was done for colorectal cancer using a customized Inception-ResNet-v2 Type 5 
(IR-v2 Type 5) model. Diabetic retinopathy diagnosis typically involves the man-
ual examination of retinal fundus images by ophthalmologists, which can be 
time-consuming and prone to human error. Automated DR diagnosis using AI and 
image processing techniques has the potential to improve diagnostic accuracy and 
efficiency [41].

Similarly, another model for cancer detection could be the residual neural 
network-18 (ResNet-18), an 18-layer deep CNN, and ResNet-50, a 50-layer deep CNN, to 
identify primary cutaneous squamous cell carcinoma with a risk for metastasis [42]. 
These ResNet module architectures were trained and then fine-tuned using a single 
tumor tile AI model. The technique used here is easy to implement and visualize 
but is prone to label noise. For any WSI analysis, the balance between specificity 
and selectivity is crucial for reducing false positive predictions. To address these 
issues with balance [43], it was suggested to implement two deep CNNs. The first net-
work should prioritize higher sensitivity, while the second should prioritize higher 
specificity. The screening was conducted on digitized slides for mycobacteria using 
a patch-based approach. This algorithm also included an additional feature that 
presented the detected mycobacteria in a web-based gallery format alongside the 
WSI for the pathologist to review.

There are various models of AI techniques being utilized in histopathology 
diagnoses of WSI, as discussed and reviewed by the authors in their paper [44]. 
The CNN extracts features from the region of interest derived from the whole slide 
image to gather information for regression fitting tasks. Under CNN, the EfficientNet 
series models were found to have remarkable advantages over previously used 
models [45]. With the help of this, a chronic rhinosinusitis evaluation platform was 
built to obtain the proportion of inflammatory cells needed for cellular phenotyping 
and the diagnosis of nasal polyps.

Convolutional neural networks can also be used to distinguish between two 
different forms of pathological issues, for example, differentiating Spitz and con-
ventional forms of melanocytic lesions [46]. The patches from the lesions were 
curated and then processed using CNN for classification. The major limitation of 
using CNN for this application is its accuracy, which was 92%. Nasopharyngeal car-
cinoma (NPC) is a type of head-and-neck cancer. To detect this cancer, 220 NPC 
patients were divided into training, internal, and external test cohorts. Radiomic 
features were extracted from MRI images selected and integrated into the radiomic 
signature. This histopathological signature was extracted from the WSI of biopsy 
specimens using an end-to-end deep learning method [47]. In neuropathology, deep 
learning approaches have been reported for classifying Alzheimer’s disease patho-
physiology in magnetic resonance and positron emission tomography images, 
as well as for correlating gene expression with the neuropathology dataset [48]. 
Previous studies have predominantly relied on CNNs for AD diagnosis using MRI 
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data. However, these models often struggle to capture long-range dependencies 
due to their limited receptive fields. In contrast, swin transformers demonstrate 
superiority in handling hierarchical representations, making them suitable can-
didates for AD detection tasks [49]. The swin transformer architecture is used to 
generate segmentation masks of different brain structures. The model employs 
self-attention mechanisms to capture contextual information at varying scales, 
thereby overcoming limitations associated with conventional CNNs. Secondly, tra-
ditional human image detection methods often rely on deep learning models that 
require large amounts of annotated data for training. However, these models may 
struggle with detecting humans in complex backgrounds or under occlusions [50]. 
Al-Hazaimeh proposed a geometric-based approach and evaluated it on standard 
human detection benchmarks, including datasets with varying levels of complexity 
and occlusions. The results demonstrated improved detection accuracy and robust-
ness compared to traditional deep learning-based methods, especially in challeng-
ing scenarios.

Table 3 presents a summary of AI in various applications of WSI.

Table 3. Summary of different applications of WSI using AI

Ref Application Methodology Result Novelty Limitation

Shivam Kalra 
et al. [36]

Image Search  
Engine

CNN
The patches of WSI 

are converted 
to Barcodes

Except for the rectum 
adenocarcinoma, all other 
graphs show that hit rate 
values reach ~ 100%

As for the classification task, the 
recall and sensitivity are-

Adrenal gland (0.90,0.91), Brain 
(0.87,0.87), Kidney (0.70,0.68), 
colorectal (0.52,0.59), uterus 
(0.55,0.96) and lung (0.70,0.70)

Supervised and 
unsupervised 
algorithms, including 
segmentation 
and clustering 
algorithms for search 
application

Accuracy and speed, 
which can be 
improved further

Jun Jiang 
et al. [37]

Annotation  
removal

Conditional 
generative 
adversarial 
network (GAN) 
based on Pix2Pix.

With this method, a decrease in 
image fidelity after cleaning 
was observed.

For the tissue-only patches, 
both PSNR and SSIM slightly 
increased, but VIF changed 
only slightly.

Concept that allows 
us to annotate the 
training data without 
ink marks affecting 
the analysis

Relative blurriness  
of some colour- 
normalized  
images

Computational time

Yiheng Jiang 
et al. [38]

Bladder Cancer k-means Cluster 
formation 
with deep 
learning and CNN

The average classification 
accuracy came out to be 86%, 
and the AUC was found 
to be 0.95

Use of Deep learning 
modules in the 
field of BLCA

–

Liron 
Pantanowitz 
MD et al. [39]

Prostate Cancer 
diagnosis in 
WSI of core 
needle biopsies

Multilayer 
Convolutional 
Neural Network

AUC of 0.997 for the internal 
test and AUC of 0.991 for the 
external test

High-performance 
characteristics of 
a multifunction 
algorithm by 
extending its study 
beyond just detection 
and grading, which 
is one of the first 
models to be used 
as clinical validation 
as a routine 
pathology practice.

Ground truth 
is sometimes 
difficult to reach.

The algorithm 
is generalized 
and, therefore, 
needs experts.

(Continued)
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Ref Application Methodology Result Novelty Limitation

Pushpanjali 
Gupta et al. [40]

Colorectal cancer CNN
Customised 

Inception-
ResNet-v2 Type 5

For the pre-trained CNN, the 
sensitivity of VGG16 was found 
to be the highest, i.e., 0.99 ± 
0.012 and an AUC of 0.96.

For the custom model, 
the AUC was reduced 
except for Customized 
Inception-ResNet-v2. Among 
Inception-ResNet-v2 variants, 
type 5 obtained an AUC of 0.99

Customizing the 
pre-trained model to 
increase the accuracy 
in the detection of 
colorectal cancer

Population 
considered 
in this study 
representing only 
a specific region.

The slides used for 
collecting the WSI 
belonged to a single 
hospital, reducing 
generality.

Jaakko S. 
Knuutila 
et al. [42]

Detection of primary 
cutaneous 
squamous 
cell carcinoma

CNN (ResNet 18 
and ResNet 50 
architecture)

In the single-tile model, the 
AUROC obtained was 0.689.

With Rapid metastasis, the AI 
model was 0.814 with an 
accuracy of 73%

Prone to label noise
Overfitting

Liron 
Pantanowitz 
et al. [43]

Mycobacteria Two CNN (GhostNet)
Patch-based deep 

learning approach

The algorithm showed an AUC 
of 0.96, a sensitivity of 0.60, 
and a specificity of 0.99 at 
the image patch level, while 
an AUC of 0.9, a sensitivity 
of 0.83, and a specificity 
of 0.80 at the WSI level.

Two Deep 
Convolutional Neural 
Networks to achieve 
a balance between 
sensitivity and 
specificity

Clinical validation

Qingwu Wu 
et al. [45]

Cellular phenotyping 
diagnosis of nasal 
polyps by WSI 
based on the 
proportions of 
inflammatory cells

CNN (efficient net) AICEP 2.0 could quantify all four 
types of inflammatory cells as 
compared to only eosinophils 
in AICEP1.0. The MAE% and 
PMSE% difference between 
them was approx. 5%.

This methodology 
was first to confirm 
the positive 
correlation between 
the percentage of 
peripheral blood 
eosinophils and 
eosinophils in polyp 
tissue on WSI, and 
it could predict 
whether patients were 
eCRSwNP or not.

The real-world 
diagnostic 
accuracy of AI 
was lower.

Steven N. Hart 
et al. [46]

Melanocytic lesions CNN For the curated patches, both 
de novo and pre-trained 
networks had a validation 
accuracy of 99.0% and 95.4%, 
respectively.

For noncurated patches, it 
was 52.3%.

Obtaining the result 
with the help of

The training took 
significantly 
longer and had 
lower overall 
performance.

Fan Zhang 
et al. [47]

Nasopharyngeal  
Carcinoma

DCNN (Resnet-18) 
multi-
scale nomogram

Multi-scale nomogram showed 
a consistently significant 
improvement in predicting 
treatment failure compared 
with the clinical model in 
the training with a C-index 
of 0.817 versus 0.730, p < 0.050.

It utilised a 
computer-aided 
algorithm to predict 
treatment failure.

Retrospective nature 
and relatively small 
sample size of data.

A molecular 
profile was not 
included in the 
multi-scale model.

The validation study 
was done on 
subjects that were 
all Chinese cohorts.

Table 3. Summary of different applications of WSI using AI (Continued)
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5	 DISCUSSION

Advancements in deep learning models, particularly in the fields of image 
analysis and pattern recognition, show great promise for improving the accu-
racy and effectiveness of digital pathology systems. These improvements will 
contribute to more accurate and prompt diagnostic outcomes, thereby positively 
impacting patient care. With the increasing sophistication and reliability of  
AI algorithms, their integration into routine clinical practices is becoming inevi-
table. Digital pathology applications may involve supporting pathologists in mak-
ing diagnoses, prioritizing cases, and forecasting patient prognosis by analyzing 
histopathological images.

The expansion of digital pathology for telepathology and remote consultations 
is anticipated due to its ability to facilitate global cooperation among pathologists, 
bridge geographic barriers, and promote equitable access to specialized pathology 
services, especially in underprivileged regions. By integrating digital pathology 
data with other “omics” information, such as genomics and proteomics, research-
ers can gain deeper insights into disease processes and develop novel therapeutic 
strategies.

To ensure seamless integration with other health IT systems and promote data 
sharing and collaboration, ongoing efforts are being made to standardize and 
improve the interoperability of digital pathology platforms. Such initiatives aim to 
streamline workflows, foster innovation, and accelerate progress in personalized 
medicine and biomedical research. Digital pathology faces several challenges due 
to the lack of standardized infrastructure, hindering the seamless exchange of data 
and images. The substantial data volumes generated, with biopsy slides often requir-
ing several gigabytes per patient, present storage challenges, especially for facili-
ties in resource-constrained countries. Ensuring interoperability among different 
digital pathology systems is a key challenge that impacts data retrieval, navigation, 
and integration with other healthcare IT systems. Compliance with existing regu-
lations and the development of frameworks for new ones are vital for the success-
ful implementation of digital pathology systems, requiring careful management of 
regulatory and compliance issues. Moreover, establishing specialized training pro-
grams and resources is crucial to ensuring the correct usage and interpretation of 
digital images. However, this can be challenging due to the diverse workflows and 
technologies employed in different laboratories.

One potential area for future research in digital pathology is investigating the 
tumor microenvironment through AI-powered techniques. The tumor microenvi-
ronment is a complex ecosystem consisting of various cell types, such as CD8 T cells, 
NK cells, regulatory T cells, apoptotic cells, dendritic cells, and myeloid cells. The 
presence and distribution of these cell types within tissues can provide valuable 
insights into diseases and the mechanisms of action of drugs. Human pathologists 
often find it challenging and time-consuming to identify relationships between 
cell types and tissue regions. However, with the use of WSI and AI interpretations, 
this process can be streamlined. AI-powered digital pathology can provide metrics 
related to cell counts, densities, and spatial relationships across various cell types 
and tissue regions. This approach has the potential to revolutionize our understand-
ing of the tumor microenvironment and its role in disease progression and treat-
ment response.

Artificial intelligence image management systems have the potential to 
revolutionize pathology by enabling pathologists to identify cells with greater 
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confidence and accuracy. These systems utilize algorithmic scoring mechanisms to 
analyze pathology images, offering quantitative metrics that can assist in diagnosis 
and treatment planning. By leveraging AI, pathologists can benefit from improved 
workflow efficiency and more accurate diagnostic outcomes.

Adding on to that, considering the large size of pathology datasets and the signif-
icant storage requirements they entail, integrated workflow solutions are becoming 
increasingly important. LIS systems that are integrated with WSI and EMR systems 
enable physicians to access annotated images of pathologic slides along with their 
interpretations at the point of care. This integration streamlines the diagnostic pro-
cess, enhances collaboration between pathologists and clinicians, and improves 
patient care outcomes.

In summary, the adoption of AI image management systems and integrated 
workflow solutions represents a promising future direction for digital pathology. It 
offers opportunities to enhance diagnostic accuracy, improve workflow efficiency, 
and facilitate better patient care.

6	 CONCLUSION

This comprehensive review highlights the significant advancements in digital 
pathology, with a specific focus on WSI. The paper emphasizes how WSI has rev-
olutionized the acquisition, analysis, and storage of pathology images, presenting a 
digital alternative to traditional microscopy. These advancements have been largely 
driven by the integration of deep learning modules, particularly CNNs, into digital 
pathology workflows.

Conventual neural networks have emerged as highly effective tools for vari-
ous tasks in digital pathology, such as image analysis, classification, distinguishing 
between different tissue types, and retrieving relevant information from large data-
sets. Their ability to learn complex patterns and features from pathology images 
has made AI models the cornerstone of many digital pathology applications, leading 
to their widespread adoption in the field. Despite the considerable progress made 
in digital pathology, achieving full automation of the system remains a significant 
research challenge. One of the key obstacles is the high pixel density of whole slide 
images, which increases storage requirements and poses challenges for data man-
agement and processing. Additionally, issues related to standardizing slide naviga-
tion and ensuring interoperability between different digital pathology systems need 
to be addressed to facilitate seamless integration and data sharing.

To overcome these challenges, researchers are exploring various solutions, such 
as implementing cost-effective components like stepper motors to facilitate easy 
slide navigation. The paper acknowledges the challenges that remain in achieving 
full automation of the digital pathology system. By identifying obstacles such as the 
high pixel density of whole slide images and issues related to standardization and 
interoperability, the paper demonstrates a clear understanding of the current lim-
itations in the field. These efforts aim to enhance automation, standardization, and 
interoperability in digital pathology, ultimately resulting in more efficient and accu-
rate pathology workflows.

In conclusion, the field of digital pathology continues to advance rapidly, driven 
by ongoing research efforts to overcome existing limitations. Future research should 
focus on further improving automation, standardization, and interoperability to 
realize the full potential of digital pathology in enhancing patient care and outcomes.
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