
 48 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 7 (2024)

iJOE | eISSN: 2626-8493 | Vol. 20 No. 7 (2024) | 

JOE International Journal of 

Online and Biomedical Engineering

León, G., López, E., López, H., Hernandez, C. (2024). Characterization and Identification of Dependence in EMG Signals from Action Potentials  
and Random Firing Patterns. International Journal of Online and Biomedical Engineering (iJOE), 20(7), pp. 48–68. https://doi.org/10.3991/ijoe.v20i07.47373

Article submitted 2023-12-14. Revision uploaded 2024-02-10. Final acceptance 2024-02-11.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Characterization and Identification of Dependence 
in EMG Signals from Action Potentials and Random 
Firing Patterns

ABSTRACT
Electromyographic (EMG) signals are biomedical signals that represent neuromuscular activ-
ities. The EMG signal is neither stationary nor periodic and exhibits complex interference 
patterns of several single motor unit action potentials (SMUAPs). This study aims to character-
ize EMG signals concerning firing patterns and other characteristics and to identify whether 
these MUAP firing patterns present short-range dependencies (SRD) or long-range dependen-
cies (LRD). To do so, we characterized 208 EMG signals in terms of the number of phases, 
turns and combinations of phases. Then, we performed a statistical comparison of the (more 
efficient) Variance-time plot against the (less bias) Log-scale diagram for the estimation of the 
Hurst parameter and detection of LRD. Using these estimators, we managed to detect LRD in 
a sample taken with needle electrodes. In contrast, the tools used for the dependence identi-
fication on signals achieved with surface electrodes did not yield conclusive results on such 
dependence.
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1	 INTRODUCTION

Physiological processes are complex phenomena, of which nervous or hormonal 
stimulation and control are part; these are inputs and outputs that can take the form 
of physical material, neurotransmitters or information, and actions that can be 
mechanical, electrical, or biochemical. These processes are accompanied by signals 
that reflect their nature and activities [1]. 

Throughout time, these signals from the body have been one of the biggest 
unknowns in the study of the understanding of the human being. These bioelectri-
cal signals fulfill different functions depending on the area of activation for which 
they are destined. Among the most studied signals are electrocardiographic (ECG), 
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photoplethysmographic (PPG), encephalographic (EEG), and electromyographic (EMG) 
signals, and the last one will be the object of study of this work. EMG signals are bio-
medical signals that represent contractions that occur in response to a single stimulus, 
creating a propagated action potential and representing neuromuscular activities [2, 3].

The EMG signal does not have waveforms that can be easily identified; in fact, 
they are complex interference patterns of innumerable single motor unit action 
potentials (SMUAPs) [1]. Therefore, an EMG signal does not present a recognizable 
structure different from an ECG signal. Additionally, these signals are neither station-
ary nor periodic, and their duration depends directly on the movement performed 
at the instant of measurement. However, depending on how their measurement is 
performed, different voltage and frequency ranges can be divided into three types: 
single fiber electromyography signals (SFEMG), which are normally measured with 
a needle EMG electrode or a concentric facial needle electrode; the motor unit action 
potential (MUAP), which represents the changes generated by the motor unit (MU) 
and is measured with needle electrodes [4]; and finally, surface electromyography 
signals (EMG), which are obtained with a surface electrode [5].

Although quantitative analysis techniques have been developed to standardize the 
analysis of the data provided by EMG signals and related to these when obtained with 
needle electrodes, it is often difficult to extrapolate the structure and activation of the sur-
rounding muscle tissue [6]. So, using simulation or synthetic EMG signal generation, the 
structure and activation of muscles could be explored. But if this artificial generation of 
signals is not carried out based on their physiology and without considering the signal’s 
characteristics, including its range dependence, a similar signal to the one produced by 
the human body would not be obtained, and its study would not be appropriate.

Inter-discharge interval (IDI) characterization of motor unit firing patterns has 
been studied in very selected works. In [7], the researchers model the distribution of 
IDI including accommodation for false positives and false negatives, and in [8], they 
derive an exact solution to the distribution when a gamma distribution is used to 
model the physiological firing pattern. However, none of them study the presence of 
long-range dependence (LRD) in the firing patterns of EMG signals. 

In this sense, we have set the goal of developing a synthetic EMG signal generator 
that would allow us to configure the most significant parameters, such as the number 
of SMUAPs, the number of phases and turns of them, and being able to recreate the 
firing pattern. In the latter, the identification of short-range dependence (SRD) or long-
range dependence of the IDI is of significant importance for two reasons: the first is 
that although LRD has been detected in other types of biological signals (as in the case 
of RR intervals of an ECG signal), no evidence has been found, in the literature con-
sulted, that the existence of LRD in the firing patterns of EMG signals has been stud-
ied; the second is that, if the LRD is detected in this type of signals, the complexity of 
the generator would increase significantly, since the generation of random numbers 
with long range dependence is an area of research that is still in development, which 
makes part of our research interests, and which contrasts with the random genera-
tion of independent numbers (which can be easily solved with the help of the inverse 
transformation method). For these reasons, we have decided to divide the project into 
two parts, with the characterization of the EMG signals and the identification of the 
dependence of the IDI being the objectives to be pursued with this first work.

The characterization of the EMG signals was performed through a literature review, 
as well as databases of actual signs taken with needle electrodes from the emglab.net 
website. Using the MATLAB application EMGLAB, some signals were filtered, and 
all of the cues were decomposed into SMUAP. Once obtained, the characteristics to 
be reviewed in on the decomposed signals were decided, such as duration, the total 
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number of data points, their temporal and spatial recruitment, the number of SMUAP, 
the waveform of each the SMUAP, and percentage of appearance of each SMUAP in 
the signal. Finally, in this phase, identification and classification were performed for 
each waveform found according to its turns and stages. The identification of SRD 
or LRD was carried out through a Variance-Time Diagram and a Log-Scale Diagram, 
first with numbers that present independence, then with the bias identification with 
dependent numbers, and ending with obtaining the Hurst parameter of the SMUAPs.

2	 FUNDAMENTALS

2.1	 EMG	signals

EMG signals are electrical signals produced by a muscle during the contraction 
and relaxation process; these signals can be used to diagnose pathologies affecting the 
peripheral nervous system, functional alterations of nerve roots, plexuses, and periph-
eral nerve trunks, as well as muscle and neuromuscular junction pathologies [9].

Some applications of these signals are the determination of the muscle activation 
time, the estimation of the force produced by a muscle contraction, and the index of 
muscle fatigue. The latter applications are highly indicated in sports medicine. Such 
signals have amplitudes ranging from μV to a low mV range with a frequency range 
from 50 to 150 Hz [10]. 

On the other hand, some authors consider that the frequency range of these sig-
nals is higher than that of ECG and EEG, ranging from 100 to 10 kHz [11] and of 
higher amplitude [12]. If this statement is considered, filtering overcomes interfer-
ence problems that can alter these signals; filtering above 20 Hz can reduce skin 
potentials and signals from other movements (motion artifacts).

Action Potentials are called motor unit action potential (MUAP). In an electro-
myographic signal, the most basic concept is called the motor unit (MU), which rep-
resents the anatomical and functional elements of the neuromuscular system [13]. 
The MU is formed by the alpha spinal motor neuron and its corresponding set of 
innervated cells; the changes generated by the activity of the MU are acquired and 
amplified using electrodes located in the muscle mass, called motor unit action 
potential (MUAP) [14]. Each MUAP can be analyzed as a Dirac pulse train, which, 
when passed through an LTI system, allows the production of the corresponding 
waveforms, thus allowing it to be implemented in an EMG signal generator.

MUAP Waveforms are characterized by a series of parameters related to aspects 
of the structure and physiology of the motor unit. So, features such as duration and 
basic parameters in electromyography define the limits of the MUAP waveform and 
its period [13].

Figure 1 shows the principal waveforms that can occur in MUAPs. In the context of 
electromyography, the phases represent the polarity of the waveform. Additionally, 
several local maxima and minima (referred to as turns) can occur in each stage, as 
shown in Figure 2.

Firing Patterns are defined by Nikolic [15] as the temporal activation of the 
motor unit; graphically, they are considered a vertical line on the time axis. Firing 
patterns give information about the function of the central nervous system and the 
control of the MUs. Firing trains can be found in different ways; generally, these are 
found by the excitation and inhibition correlation between movements [16].

Recruitment of MUAPs is the successive activation of the same or different 
MUs, with increasing force applied at the time of voluntary muscle contraction. 
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There are two types of recruitment: spatial recruitment, by activating new motor 
units with increasing effort; and temporal recruitment, by increasing the frequency 
of discharge (firing rate) of each motor unit with increasing effort [17].

MUs are recruited according to their size. When the muscle is activated, the first 
MUs to fire are weak and small (lacking in the degree of tension they can generate). 
But progressively, larger motor units are recruited, which causes an increase in mus-
cle contraction, as seen in Figure 3 [18].

Fig. 1. Representation of single-phase, two-phase, and three-phase waveforms. Adapted from [19]

Fig. 2. Illustration of a MUAP waveform. 
Adapted from [15]

Fig. 3. The recruitment and firing frequency of motor 
units force output and is reflected in the EMG signal 

in the superposition. Adapted from [18]

2.2	 Short-	and	long-range	dependence

For a discrete-time stochastic process, X[k], k ∈N where X[k] could represent the time 
sequence between R spikes, the instantaneous periods of a PPG signal, the time between 
firings of a motor neuron, etcetera. In general, X[k] is a discrete sequence that represents 
the values of interest, or under study, of a stochastic process a given at time k [20, 21].

Taking into account the role of second-order stationary auto similarity and taking 
the autocorrelation function r k k( ) ( ) /� � � 2, we have equation (1) [22].
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 r k H H k kH( ) ( ) , .� � ��2 1 2 2 �  (1)

If 0.5 < H < 1, r (k) behaves asymptotically as ck -β for 0 < β < 1, where c > 0 is a 
constant, β = 2 - 2H, obtaining equation (2).
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When the autocorrelation function decays slowly, hyperbolically, which is the 
essential property that causes it to be not summable, as it is shown in equation (2),  
X[k] is called long-range dependent (LRD). When H = 0.5, then r (k) = 0 and equation 
(2) does not hold, so X[k] is called short-range dependent (SRD) by virtue of being 
completely uncorrelated. The LRD refers directly to the self-similarity between data 
in its simplest models since, with this model, the dependence can be characterized 
by a single parameter called the Hurst parameter (H) [23].

Among the simplest methods for estimating the Hurst parameter are the vari-
ance-time diagram and the Log scale diagram.

The aggregated process of X[k] is defined, at the aggregation level m, as the dis-
crete sequence X (m), composed by the sample means of consecutive data groups, of 
size m, as shown in (3). If the process X[k] is exactly or asymptotically self-similar, the 
logarithm of the sample variance of the aggregate process is (4) [24].
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The Variance-Time Diagram is the graph of log�
( )

S
X m

2  versus log m, where H can 
be obtained by estimating the slope 2H - 2 using linear regression. 

Log-Scale Diagram is based on the discrete wavelet decomposition (DWT) of 
the stochastic process X[k], calculating with them the detail coefficients using a bank 
of filters with different sampling rates. Since the second moment of the DWT detail 
coefficients follows a power law with an exponent 2H - 1, the Hurst parameter can 
be estimated with equation (5), where µj is the arithmetic mean of the squared mag-
nitude of the detail coefficients at octave j and C is a constant. The plot of yj vs j is 
known as the (second order) log-scale diagram [22].

 yj = log2 µj = (2H - 1) j + log2C (5)

2.3	 EMGLAB

EMGLAB is a MATLAB program for viewing EMG signals, decomposing them into 
MUAP trains and averaging MUAP waveforms. It provides a convenient graphical inter-
face for displaying and editing results and advanced algorithms for matching templates, 
resolving overlaps, and averaging by decomposition [15, 24]. The program allows the 
decomposition of single and multichannel EMG signals into their action potentials.

3	 CHARACTERIZATION	OF	EMG	SIGNALS

This section presents the characterization of EMG signals regarding databases, 
firing patterns, waveforms, and recruitment.
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3.1	 Databases	and	decomposition	software

The EMG signals used for characterization were taken from the EMGLAB.net web-
site from two databases: clinical signals and real signals [23]. The names of “clinical” 
and “real” were taken from [23] for referential purposes, and it is necessary to clar-
ify that none of them were synthetic signals; in fact, the signals of both databases 
were recorded in clinical and laboratory conditions. Both databases were selected 
because they offer a heterogeneous sample of healthy and not healthy patients, mak-
ing the characterization more meaningful. In this vein, the material of the first data-
base consisted of a normal control group, a group of patients with myopathy and 
a group of patients with ALS. The database is composed of EMG signals recorded 
under normal conditions for analysis by MUAP, produced with a low level of con-
traction, with a concentric needle electrode; this signal was recorded with 5 points 
in the muscle and three levels of insertion, deep, medium, and low. High-pass and 
low-pass filters of 2 Hz and 10 kHz were used, respectively [15]. On the other hand, 
the second database has eleven sub-databases, according to the method with which 
the signal was captured and the type of contraction presented.

In addition, and as presented by Nikolic [15] and McGill [24], the software named 
EMGLAB allows the decomposition of the EMG signals (see Figure 4) provided in 
their different firing patterns and their waveforms. It should be clarified that the 
software decomposes correctly within ±0.5 ms at least 98% of the time, and MUAPs 
presenting peak amplitudes between 1.0 and 2.5 times the amplitude of the RMS 
signal can be misplaced up to ±5 ms up to 10% of the time [24].

Figure 4 shows an example of a signal decomposition from the clinical signal data-
base. In the upper part, the EMG signal used is in white, and the processed signal is in 
yellow. In the next window, the number of SMUAPs is shown, as are their waveforms 
found in the decomposition. Subsequently, the lower left part shows the firing patterns of 
each SMUAP, while the lower right part shows the amplitude of the desired EMG signal.

Fig. 4. EMGLAB program view

https://online-journals.org/index.php/i-joe
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3.2	 Trigger	patterns

The firing pattern can be identified as the temporal and spatial combination of 
the different MUAPs presented by the EMG signal. Figure 5 shows an example of a 
trigger pattern identified by EMGLAB from an actual EMG signal [15].

Fig. 5. Firing patterns were identified for the R00503 signal

For this reason, it is relevant to identify the number of individual motor unit 
action potentials (MUAPs) that can compose an EMG signal, which allows a simple 
construction process. From these databases, 208 signals were taken to perform their 
respective feature analysis, and Figure 6 shows the distribution of the number of 
MUAPs found.

Fig. 6. Distribution of the number of MUAPs for the EMG signals reviewed

In order to simplify some features derived from the identification of the signal 
firing patterns, a code was implemented in MATLAB to separate the firing pattern of 
each identified SMUAP from each signal, see Figure 7.
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Fig. 7. SMUAP separation code flowchart

3.3	 Waveforms

Once the potentials are completely identified, a distinction is made between with 
the results obtained by the program and the identifying equal waveforms of each fir-
ing pattern. Therefore, Figure 8 shows the phase distribution obtained for the 1236 
SMUAPs obtained through the EMGLAB software.

On the other hand, each SMUAP presents different phase signs (positive or neg-
ative), i.e., two motor units can represent the same number of phases but different 
signs, indicating that it is a different waveform. Similarly, the number of turns dis-
played in the signal (number of curves) may vary, which may be equal to or greater 
than the number of phases of the SMUAPs. The obtained distribution of the num-
ber of turns for the 1236 SMUAPs generated by the EMGLAB software is presented 
in Figure 9.

Fig. 8. Distribution of the number of phases for 
the SMUAPs of the EMG signals reviewed

Fig. 9. Distribution of the number of turns for 
the SMUAPs of the EMG signals reviewed
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Figure 10 shows different waveforms representing various examples of the 
potentials identified by EMGLAB, where diverse numbers of turns are presented. 
Likewise, Table 1 summarizes the previous characteristics (number of phases, turns, 
and polarity of phase signs).

Although up to nine phases and ten turns were identified in the SMUAP signals 
studied, Figure 8 shows that the number of turns is significantly reduced around 
seven stages. Similarly, Figure 9 shows a significant decrease in the number of turns 
of the signal between eight and ten. This reduction in the amount is because the 
noise contained in the sign is comparable to the signal waveform, so it is confused 
as an additional turn or phase.

Fig. 10. Examples of the turns of the SMUAPs found
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Table 1. Sample of the phase specifications of the SMUAPs were obtained

Phase Combination Turns Amount Phase Combination Turns Amount

1 + 1 238 5 - + - + -  5 12
- 1  41 + - + - +  5 28

+ + 2  7 + - + + - +  6  2

- - 2  1 - + - + + -  6  2

+ + + 3  35 + - - + - +  6  1

- - - 3  3 - - - + - - - + -  9  1

+ + + + 4  2 + - + - + + +  7  1

- - - - 4  1 + - + + + - +  7  3

+ + + + + 5  2 + + - - - + - - + + 10  1

2 - + 2 266 7 - + - + - + -  7  4

+ - 2  59 + - + - + - +  7  2

- + + 3  19 + - + - + + + - +  9  1

- - + 3  7 8 + - + - + - +  8  3

- + + + 4  48 9 + - + - + - + - +  9  2

- - - + 4  3 - + - + - + - + -  9  4

- - + + 4  5

- - - + + + 6  2

3.4	 Recruitment

Recruitment is divided into two types: temporal and spatial. For the temporal 
recruitment, a code was created in MATLAB software (see Figure 7), in which the 
decomposed signal obtained by EMGLAB is entered to be separated into the MUAPs 
that were identified. The code generates a two-column array where the time of 
appearance and the number of the identified MUAP are found, with the first column 
being the intermediate appearance times.

For spatial recruitment, it is indispensable to consider the beginning and end of 
each identified SMUAP. In addition, considering the total amount of signal data and 
the amount corresponding to each SMUAP, it is possible to determine the SMUAP 
percentage of occurrence in each one.

4	 DEPENDENCE	IDENTIFICATION

There are several tools for dependence estimation, either long-range or short-
range. These have been developed over time, and there are several algorithms 
implemented in software such as MATLAB, that show the Hurst parameter estima-
tion and a graph where the confidence interval on the input sample is identified.

To have accurate statistics on the estimation tools, the behavior of two means 
for such identification was evaluated, allowing us to estimate the bias they pres-
ent at the level of precision or accuracy and thus consider the errors in the estima-
tion of the dependence of the electromyographic signals. The selected tools are the 
variance-time diagram and the log-scale diagram, for which their behavior was eval-
uated when reliance between the data was present and not present. 
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In the search performed and characterization of the EMG signals, it was not pos-
sible to find EMG signals of long duration; therefore, it was decided to evaluate the 
Hurst parameter estimation tools with the average duration value of the signals 
found for the characterization, with a considerable minimum of 800 data points, 
understanding that the error is reduced for longer sequences.

For the development of these tests on the estimators, it was decided to divide 
them into two parts: random numbers without dependence and random numbers 
with dependence. In the first, the Hurst parameter is 0.5, and these random numbers 
generated in the MATLAB software have a normal distribution. Figure 11a shows 
the flow chart summarizing the algorithm used.

Fig. 11. Flowchart of the bias checking algorithm of the tools (a) for numbers with no dependence 
and (b) for numbers that have a specific dependence

On the other hand, the second test of the tool must be performed with numbers 
with dependence generated with the Multifractal Wavelet Model (MWM). In the 
MWM, a symmetric beta distribution is used in a multiplicative cascade where the 
desired Hurst parameter can be indicated. Figure 11b shows the flow chart summa-
rizing the algorithm used for this test.

Equation (6) was used to determine the bias in the tests.

 Bias E �= ˆ ( ) –H H
Theoretical

 (6)

4.1	 Variance-time	diagram

The Hurst exponent has been widely used in different fields as a measure of long-
range dependence in time series. The variance-time plot analysis is based on the 
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slowly decomposing variance property of self-similar processes undergoing aggre-
gation [25]. In [26], it is stated that it is based on the asymptotic relationship of the 
variance of sample averages. In the case of having a small amount of statistical data 
for the observation, the plot only allows for verifying if the time series is self-similar. 
If it is, it grants obtaining the approximate estimate of the Hurst parameter. For this 
reason, the tool has several shortcomings because it requires large sample sizes and 
an arbitrary level of aggregation [27]. 

Tests of the estimation with numbers without dependence. Consists of 
entering numbers with no dependence between them. This test determines the 
bias present in this type of data, using an algorithm in MATLAB software to obtain 
the Hurst parameter. Two different sets of data were used for the Hurst parameter 
evaluation, the minimum amount of 800 data points and the approximate average 
amount of 1000 data. It used a normal distribution to check the bias presented by 
the tool with independent random numbers or SDR, which has a Hurst parame-
ter of 0.5.

Figures 12 and 13 show the distribution presented by the tests with the two 
amounts of data, where it can be seen that it tends to remain at 0.5.

Fig. 12. Density function and cumulative dispersion of the independent data estimation  
with the vt function with N = 800

Fig. 13. Density function and cumulative dispersion estimation of the independent data  
with the vt function with N = 1000

Finally, Table 2 shows the biases obtained in the algorithm application to obtain 
the variance-time diagram with data that does do not show dependence. As can be 
seen, the range of error presented by the algorithm is considerable, but it is main-
tained at a low value.
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Table 2. The bias of the variance-time tool with numbers without dependence

No. Data Maximum Bias

800 -0.0072

1000 -0.0059

Tests of the estimation with numbers with dependence. In the study of esti-
mators, [27] stated that the variance-time estimation tool, when LRD is present in 
the study sample, presents a representative bias when the self-similarity of the data 
increases. As a demonstration, a MATLAB algorithm was used to determine the bias 
about the Hurst parameter presented, which is summarized in Figure 11b.

Figures 14 and 15 show the relationship of the bias with the Hurst parameter with 
two different numbers of iterations. As mentioned above, it depends on the amount 
of data that have the signals to be used for identification, and the tool that generates 
the random numbers handles data lengths in base 2, with a data length of 1024.

Fig. 14. Relationship of bias with Hurst parameter for N = 800

Finally, Table 3 shows the highest value biases obtained in the algorithm applica-
tion to obtain the variance-time diagram with data that present dependence between 
them. As can be seen, the error range presented by the algorithm with data that have 
reliance between them increases concerning those without dependence. So, depen-
dence could be detected for estimates greater than 0.6139 in discrete sequences of 
1024 samples.

Fig. 15. Relationship of the bias with the Hurst parameter for N = 1000
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Table 3. The bias of the variance-time tool with numbers with dependence

Iterations Average Bias Maximum Bias

800 -0.0480 -0.1139

1000 -0.0486 -0.1113

4.2	 Log-scale	diagram

Several methods have been developed that allow the calculation of the Hurst 
exponent from experimental data; among them is the calculation with the detail 
coefficients of the Discrete Wavelet Transform. This method has shown that esti-
mates with Wavelets are highly unbiased and stable in the presence of deterministic 
trends [27].

Tests of the estimation with numbers without Dependence. Firstly, and as in 
the procedure performed for the variance-time diagram, the study of the tool is car-
ried out when the data entered into it do not depend on each other, being random. 
The algorithm described in the diagram in Figure 11a is used in MATLAB software 
with which the Hurst parameter is obtained. Similarly, the highest concentration of 
data produced randomly by MATLAB is expected to be around 0.5.

Figures 16 and 17 show the distribution presented by the tests with the two 
amounts of data. In these, it tends to concentrate around 0.5.

Fig. 16. Estimation of the cumulative density and dispersion function of the independent data  
with the LD function with N = 800

Fig. 17. Estimation of the cumulative density and dispersion function of the independent data  
with the LD function with N = 1000
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Finally, Table 4 shows the biases obtained in the algorithm application to obtain 
the log-scale diagram with data without dependence. As can be seen, the error range 
presented by the algorithm with data without dependence is smaller than the one 
raised with the variance-time diagram for a smaller amount of data, but it is larger 
when there is more data.

Table 4. The bias of the log-scale tool with numbers without dependence

No. Data Maximum Bias

800 -0.0052

1000 -0.0103

Testing the estimation with numbers with dependence. Wavelets are an 
excellent mathematical tool that allow the analysis of signals and images in several 
dimensions. The Discrete Wavelet Transform (DWT) can reconstruct time series per-
fectly, so it is a suitable method for processes that present LRD [28, 29].

Figures 18 and 19 show the bias relationship with the Hurst parameter with 
the two amounts of iterations established. As mentioned above, it depends on 
the amount of data that signals have to be used for identification, and the tool 
that generates the random numbers handles data lengths with base 2, with a 
length of 1024.

As observed in Figures 18 and 19, the bias does not present a clear trend, 
oscillating highly and causing inconclusive results. This is due to the small num-
ber of iterations used for the estimation, so it was decided to perform a new test 
with a large number of iterations (N = 100000), obtaining the results presented in 
Figure 20.

As seen in Figure 20, by having a higher amount of data for the Hurst parameter 
calculation, the bias tends to decrease in amplitude, decreasing the error presented 
when using the algorithm.

Finally, Table 5 shows the biases obtained in the algorithm application to obtain 
the log-scale diagram with data that show dependence between them. It presents 
a lower bias than the one obtained in the experimentation with the variance- 
time diagram.

Fig. 18. Relationship of bias to Hurst parameter for N = 800
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Fig. 19. Relationship of the bias with the Hurst parameter for N = 1000

Fig. 20. Relationship of the bias with the Hurst parameter for N = 100000

Table 5. The bias of the log-scale tool with numbers without dependence

Iterations Average Bias Maximum Bias

   800 -0.0095 ±0.0270

 1000 -0.0090 ±0.0230

100000 -0.0090 ±0.0155

4.3	 Signals	used	for	the	identification	of	dependence	and	their	results

To identify the type of dependence presented by the electromyographic signals, a 
sample of those used for the characterization was selected. The selection of this sam-
ple was based mainly on the amount of data in the sign depending directly on the 
duration of the signal and taking a minimum total of 800 data points. Table 6 details 
the signals that meet this condition to obtain a fairer dependence.
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Table 6. Description of the signals used for the identification of the type of dependence

Signal Data Quantity Electrode Type 

R00401dc1 1495 Needle

R00401dc2 1484 Needle

R00401dc3 1484 Needle

R00609  801 Needle

R01101C1F500 2584 Superficial

R01102aC1F500 1881 Superficial

R01102bC2F500  999 Superficial

Figure 21 shows the algorithm used to estimate the actual signals with Hurst 
parameter. The signals shown in Table 6 are the signals to be considered due to their 
amount of data. Consequently, Table 7 shows the results of the Hurst parameter for 
those obtained and those corrected with the corresponding bias of the tool, assum-
ing the worst case. This adjustment is calculated using equation (7)

 Adjustment = H - Bias (7)

When detailing the results obtained, it is evident that the first four signals, when 
evaluated with the two tools, are above 0.5, and when applying the tool bias, it is 
noticed that the estimation value increases. This behavior indicates that the signals 
taken with needle electrodes selected for identification, although they have little 
data quantity, present long-range dependence between them.

Nevertheless, when the last three signals are evaluated with the two tools, differ-
ent results are obtained for the R01102aC1F500 signal about the dependence. I.e., 
with the variance-time tool, the sign has a long-range dependence (it remains above 
0.5), while with the log-scale tool, we obtain a short-range dependence indicating an 
independence between its data (it remains below 0.5). By obtaining different depen-
dencies, we conclude that the results for the signals generated by surface electrodes 
are not conclusive.

Table 7. Results of the dependence tests on the signals

Signal
VT LD

Estimation Adjustment with 
Average Bias Estimation Adjustment with 

Average Bias

R00401dc1 0.6786 0.7266 0.8095 0.8185

R00401dc2 0.7079 0.7559 0.8031 0.8121

R00401dc3 0.7079 0.7559 0.8031 0.8121

R00609 0.6271 0.6751 0.7064 0.7154

R01101C1F500 0.5636 0.6116 0.4973 0.5063

R01102aC1F500 0.5652 0.6132 0.3912 0.4002

R01102bC2F500 0.6137 0.6617 0.5590 0.5680
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Fig. 21. Flowchart of the algorithm for determining the dependence on real signals

5	 CONCLUSIONS

Electromyographic signals have characteristics such as firing trains, spatial 
recruitment, temporal recruitment, number of turns, and waveform phases, which 
make their characterization and reconstruction possible. The evidence presented 
above demonstrates that it is possible to model the generation of electromyographic 
signals using different statistical (variance-time and log-scale diagrams) and mod-
eling tools.

Even though most of the signals presented less than a thousand data points when 
performing the dependence tests on the EMG signals that were acquired by nee-
dle electrodes from the selected database, a long-range dependence was obtained. 
In contrast, the tools used for the dependence identification (variance-time and 
log-scale diagrams) on signals achieved with surface electrodes did not yield 
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conclusive results on such dependence; this may be because they do not present the 
same treatment, and the dependence result may vary if adequate signal preprocess-
ing is performed.

Similarly, it is relevant to highlight the results of the estimation tools reviewed. 
If greater efficiency (precision) is required, the tool to use would be the variance-time 
diagram since it has a narrower distribution but requires more processing time. On 
the other hand, if a lower bias (accuracy) is required in the results, the appropriate 
tool is the Log-scale diagram since it is centered around 0.5; however, it requires a 
large amount of data to generate adequate results.

According to the results obtained, it is important to highlight that evidence has 
been found that there is long-range dependence in the firing patterns of EMG signals, 
which is something new. In order to better support this finding, the capture of EMG 
signals, with needle electrodes, for a greater amount of time, is proposed as future 
work. The latter have longer discrete sequences and thus reduce the error in the esti-
mation of the Hurst parameter. The capture of EMG signals for extended periods of 
time is not usually done, because it is not necessary to apply other algorithms – such 
as RMS, which allows us to extract an indirect signal from the applied force – so 
there are no databases that can help us make the task easier.
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