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PAPER

Design of an EMG Signal Generator Based on Random 
Firing Patterns

ABSTRACT
Electromyographic (EMG) signals exhibit complex interference patterns that comprise several 
single motor unit action potentials (SMUAPs). Evidence of a model that can generate EMG 
signals and considers intrinsic characteristics, such as long-range dependence (LRD) or short-
range dependence (SRD), or that supports the study of pathology-related signals is lacking. 
Therefore, the present study aimed to develop an EMG signal generator based on SRD or LRD 
derived from firing patterns. We used a dynamic model to parameterize up to 15 SMUAP 
waveforms of real EMG signals extracted from a database. Then, we used relative appear-
ance rates for some signals based on the number of SMUAPs to generate the latter randomly. 
Furthermore, we complemented our model by generating a random firing pattern. The syn-
thetic reconstruction of the signals indicated a displacement compared with their respective 
firing patterns, with the highest error rate being 4.1%. The model of the EMG signal generator 
in its current state could be useful for a specialist who intends to study the behavior of the sig-
nals, starting with the exploration of synthetic signals and then proceeding to the real signals.

KEYWORDS
electromyography, long-range dependence, short-range dependence, signal generator, 
single-motor unit action potential

1	 INTRODUCTION

Electromyography (EMG) signals exhibit complex interference patterns that com-
prise single motor unit action potentials (SMUAPs) [1]. This type of signal is neither 
stationary nor periodic, and its duration directly depends on the movement at the 
instant of measurement. However, how the measurement is performed can lead to 
different traits regarding voltage and frequency, which are divided into the follow-
ing three categories: single-fiber EMG (SFEMG) signals, which are usually measured 
with an EMG needle electrode or a concentric facial needle electrode; motor unit 
action potentials (MUAPs), which represent the changes derived by the motor unit 
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(MU) and are measured with needle electrodes [2]; and surface EMG (sEMG) signals, 
which are obtained using a surface electrode [3].

At the time of writing this paper, the generators that have been proposed and 
implemented encompass the collection of another type of biological signal [4]–[6]. 
These are mostly simulations and not proper generators of electrocardiographic (ECG) 
signals, which are characterized as pseudo-periodic and semi-stationary, in contrast 
to EMG signals. Furthermore, the simulations do not consider intrinsic characteris-
tics, such as long-range dependence (LRD) and short-range dependence (SRD) [4],[7].

Moreover, very few articles have reported the generation of synthetic EMG signals. 
In [8], the authors presented an interactive program called EMGLAB, which decom-
poses EMG signals into motion unit potentials (MUPs). The program can also process 
mono- or multichannel signals recorded with needles or fine-wire electrodes during 
low and moderate muscle contractions. In [9], the authors discussed different EMG 
techniques for factoring the multilayer muscle model as well as the physiological 
behavior of type I and type II motion units during voluntary contraction, according 
to the literature. Noteworthily, none of the aforementioned applications encompass 
the relationship between action potentials proposed by the present study.

In [10], the IDEAS group presented the generation of random numbers based on a 
simulated memristor. The authors stated that in future work, the generator could be used 
as a tool for synthesizing electric biopotentials with mono- and multifractal features. 
This would require a physical prototype to corroborate proper behavior in this area.

This study sought to apply the findings from [10]. Given that no evidence existed 
of a model that can generate EMG signals based on their firing patterns (SRD or LRD) 
or support the study of pathology-related signals, this study focused on developing 
an EMG signal generator based on SRD or LRD derived from firing patterns.

The dynamic model proposed by McSharry [11], which is commonly applied in 
the generation of ECG signals, was used in this work to implement the SMUAPs. The 
random number generation model encompasses two constructs, the first of which 
uses up to 15 SMUAP waveforms of real EMG signals extracted from a database and 
the corresponding Gaussian bells representation of the McSharry dynamic model 
to conform a waveform battery. The second construct is based on the frequency 
at which SMUAPs appear in the database to develop a random number generation 
model that replicates the firing pattern.

Both models were combined to create a general one that can generate synthetic 
EMG signals with the chosen number of SMUAPs. The model was validated through 
comparing different synthetic EMG signals with their corresponding real signals. The 
synthetic reconstruction of the signals indicated a displacement compared with their 
respective firing patterns, with the highest error rate being 4.1%. Subsequently, the 
frequency response was analyzed for both the real and reconstructed signals. Lastly, 
synthetic signals were generated using the complete version of the model, thus validat-
ing its compliance with the signal generation according to the identified dependence.

The main and most novel contribution of this work is the development of a model 
that generates EMG signals that consider intrinsic characteristics, such as LRD and 
SRD, from firing patterns. Other significant contributions are as follows: (1) the char-
acterization of the waveforms of the MUAPs; (2) the spatial recruitment and appear-
ance of the different SMUAPs of the used signals; (3) the identification of the duration 
of the waveforms of the different SMUAPs; and (4) the calculation of the minima and 
maxima of the differences in the times of the action potentials.

The remainder of this article is organized as follows: Section 2 presents the 
related work; Section 3 describes the dynamic model of synthetic signals; Section 4 
presents the EMG signal generation model; Section 5 validates the developed model; 
and lastly, Section 6 presents the conclusions.
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2	 RELATED WORK

Body signals are a major topic in studies that seek to understand the human body, 
as they allow researchers to gather information on individuals’ health status. Hence, 
progress has been made in the study and analysis of the synthetic form of said sig-
nals, which have been the focus of the articles presented in this section. The first 
three studies have involved ECG signal generation within embedded systems or 
microcontrollers, while the subsequent three studies have involved simulations 
or decompositions of EMG signals without a physical implementation.

In [4], Al-Hamadi proposed an algorithm that automatically generates testing 
datasets of ECG signals. The resulting records are controlled by the user through a 
set of parameters that represent features of the fundamental components of the ECG 
signals. The ECG generation process begins with the identification of the signal com-
ponents (wave P, QRS, and wave T) that must be generated to subsequently generate 
the signal loop one wave at a time. The Pan–Tompkins algorithm requires two sec-
onds to operate properly and was modeled in MATLAB along with the general algo-
rithm. The author’s experimental results revealed that the records can be efficiently 
used to test specific scenarios, especially those that are more difficult to obtain.

In [5], Widodo presented an ECG waveform generator design based on minimal 
hardware that takes advantage of the Simulink support package for Arduino. This 
allows the modification and generation of the ECG waveform without processing. 
Two main blocks are included (i.e., hardware and software), where the software 
block involves the preprocessing, integer-to-bit converter, multiplexor, and digital 
output pins. The hardware block comprises the Arduino-one board, the DAC R-2R 
ladder, and the analog signal conditioner. The author’s results validated the design 
of the low-cost ECG waveform generator, which can generate a digital ECG signal 
based on data from Physionet, turning real ECG data into a real analog signal.

Furthermore, Yener and Mutlu [6] presented the design of a low-cost biomedical 
signal generator using an Arduino Mega 2560 R3 microcontroller. The generator can 
produce multiple ECG signals as outputs, even though it is designed with common 
electronic components, a microcontroller, and an additional potentiometer.

In [8], McGill described interactive software used to decompose EMG signals into 
MUAPs and then average the MUAP waveforms. The program admits mono- and 
multichannel signals obtained with needle or fine-wire electrodes; furthermore, it 
includes advanced algorithms for solving assumptions and subsequently comput-
ing the average of the waveforms. The author assessed the accuracy of the decom-
position through conducting a cross-validation of signals recorded with electrodes 
during the same contraction. The results indicated the correct operation of the pro-
gram, as it was able to decompose MUAPs with peak-to-peak amplitudes 2.5 times 
higher than the RMS amplitude of the signal.

Moreover, Mahabalagiri [12] described new methods and representations of 
sEMG signals. Regarding the simulation, a 2D state space model was chosen, while 
a 3D model was suggested, which could lead to irregularities and nonlinearities. 
On another note, the measurement process involved surface electrodes with a new 
amplifier circuit setting, which can reduce the effects caused by the capture process. 
The representation described a method for using wavelets to enable the signals of 
interest to be isolated. The results revealed that the simulation assisted in under-
standing the conduction of surface signals through different layers of fat, muscle 
and skin better. Although it is not exact, it serves more as a proof of concept.

Lastly, in [4], Ahad presented a technique for generating EMG signals that involves 
the multilayer muscle model and the physiological behavior of type I and II motion 
units during voluntary contractions. The author used the model to simulate EMG 
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signals from the tibialis anterior muscle in young and elderly people. Furthermore, 
they compared the spectrum of EMG signals to certain parameters, such as the RMS of 
the people included in the study. The results indicated that the model could predict the 
real behavior of EMG signals based on their frequency spectrum and strength chart.

3	 DYNAMIC MODEL OF SYNTHETIC SIGNALS

Real signals exhibit different types of behavior, which makes replicating them dif-
ficult. Synthetic signals have been conceived in various research projects to accord 
with the theorems of Nyquist [13] and Shannon [14]. The generation of synthetic 
signals is conditioned by certain constraints, such as the number of samples and 
frontier values. It can also be expressed through a first sample and the signal that 
corresponds to the base signal, as in (1) and (2) [15]:
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ECG signals are one of the most studied types of signals, and their synthetic genera-
tion is given by the dynamic model proposed by McSharry [11]. It consists of a circular 
limit cycle in radio units in the XY plane, where the trajectory varies as it approaches 
points P, Q, R, S, and T in the ECG signal. This model considers the pseudo-periodic 
nature of the signal, described in the trajectory equations around the limit circumfer-
ence. These equations are determined by three ordinary differential equations that 
can be expressed both in Cartesian coordinates and polar coordinates, as seen in (3):
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where � � � �1 2 2x y , ∆θi = (θ − θi)mod2π, arctan2(y, x) with a range [−π, π], 
and ω = 2π f is the angular velocity of the trajectory. Each signal component can be 
modeled based on Gaussian kernels with three parameters (θi, ai, bi), and the com-
plete signal is the sum of five fitted curves. Table 1 presents the typical values of the 
parameters of the ECG synthetic model:

Table 1. Typical parameter values of the ECG synthetic model

Index (i) P Q R S T

Time (seg) −0.2 −0.05 0 0.05 0.3

θi (rad) �
�
3

�
�
12

0
π
12

π
2

ai 1.2 −5 30 −7.5 0.75

bi 0.25 0.1 0.1 0.1 0.4

The dynamic term indicates that the model was defined in terms of differen-
tial equations, which can easily be converted into difference equations and hence 
generate synthetic ECG signals with a microcontroller. The model proposed by 
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McSharry [11] in terms of equations, differences θ (as seen in (4)), and deviation bi 
(as seen in (5)) is as follows:
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The model proposed by McSharry [11] can also lead to other synthetic signals 
with similar features. By applying slight changes to the model, one can generate pho-
nocardiography (PCG) signals, which have two typical sinusoidal forms in contrast 
to ECG signals. Almasi [16] defined a dynamic model for PCG signals that changes 
the signals of the McSharry model from Gaussian kernels to Gabor kernels (as seen 
in (6)) while introducing two additional parameters:
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In [17], Clifford stated that a proper dynamic model can perform the filtering, 
compression, and classification of signals of the same type [18],[19]. The author con-
cluded that the definition of accepted parameters and “noise” parameters tends to 
add errors during the classification process. This is accentuated when the signals 
contain elements defined as noise, as this forces the classification to occur after the 
signal filtering and adjustment [20]–[22].

4	 EMG SIGNAL GENERATOR MODEL

To determine the general algorithm for the synthetic EMG signal generator 
[23], the model was divided into the following two main parts: an initial model 
focused on the reconstruction of the EMG signal using real data and a model that 
pseudo-randomly generates initial time data between the potentials and their 
appearance rate. Furthermore, these models were subdivided into phases that 
center on specific and detailed processes, as depicted in Figure 1.

Fig. 1. Diagram of the project’s methodology
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4.1	 Signal firing train model

The first model centers on the reconstruction of a real EMG signal through the 
generation of a synthetic signal based on firing trains. This model does not contem-
plate the signal reconstruction in terms of amplitude or the relationship between the 
SMUAP waveform and signal recruitment [24],[25],[26].

To facilitate and simplify the process, a three-part methodology was adopted. 
Additionally, the work was module-based to ease the implementation stage. The first 
part involved using the McSharry model to represent waveforms. Second, the model 
was built by only considering a signal with a unique SMUAP. Lastly, a model that can 
capture a signal with multiple potentials was proposed.

Waveform models. Given the similarity of waveforms to ECG signals, the studies 
on the matter, and the implementation of algorithms that simulate signal shapes, 
the McSharry dynamic model was chosen since it can create different waveforms 
through a superposition of Gaussian waves.

This dynamic model is based on three differential equations, in which the 
standard deviation and amplitude of the Gaussian bells are specified. Hence, 
the work of McSharry [11] was used for the generation of realistic synthetic 
ECG signals.

An algorithm based on the McSharry model was implemented in MATLAB 
to generate signals and adjust the amplitude as required. To confirm that the 
model delivers signals like those obtained in EMGLAB, the amplitude of certain 
waveforms was applied to the model. Tables 2 and 3 include the parameters for 
waveform generation according to the McSharry model, while Figure 2 presents 
the comparison of two waveforms: SMUAP 1 of signal N2001M01TF67, which has 
four phases and turns, and SMUAP 3 of signal N2001M01TF54, which has five 
phases and turns:

Fig. 2. Comparison of the SMUAPs obtained in EMGLAB and delivered by the model

Table 2. Parameters of the SMUAP waveform generation for signal N2001M01TF54

Parameters Signal N2001M01TF54

ai −34.5047 13.3462 −3.9343 58.4050 −43

bi 0.1 0.1 0.1 0.18 0.1

θi −pi/5 −pi/10 0 pi/5 pi/3

https://online-journals.org/index.php/i-joe
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Table 3. Parameters of the SMUAP waveform generation for signal N2001M01TF67

Parameters Signal N2001M01TF67

ai −248.642 210.778 −5.2836 171.102

bi 0.1 0.1 0.1 0.18

θi −pi/10 0 pi/10 pi/5

Once the different waveforms of the SMUAPs had been obtained, the waveform 
duration was extracted as an essential feature for the creation of synthetic EMG 
signals. Furthermore, it was relevant to analyze the separation times between the 
SMUAP waveforms given by the differences between the firing patterns. Figure 3 
presents a flowchart of single-waveform trains:

a) General algorithm b) Zero function c) Pattern function

Fig. 3. Flowchart of a train: (a) general algorithm; (b) zero function; and (c) pattern function

Single-waveform trains. The reconstruction of the studied signals was proposed 
to obtain a solid understanding of the overall process. The described decomposition 
can be seen in Figure 3(a), including the general algorithm of the entire process and 
referenced diagrams of the internal processes.

https://online-journals.org/index.php/i-joe
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Figure 3(b) describes the zero function of Figures 3(a) and 3(b) presents the con-
ditioning process that normalized occurrence time data regarding the duration of 
the waveforms, seeking to avoid timeframes in which the signals overlap and are 
modified. Then, the result was approximated to the nearest integer, and lastly, one 
unit was subtracted to determine the number of null periods between the occur-
rence of signals. On another note, a zero was placed at the beginning of these peri-
ods to consider the first occurrence. Figure 3(c) describes the pattern function of 
Figures 3(a) 3(c) depicts the generation of a Boolean firing pattern that contemplates 
the aforementioned null periods.

Figure 4 presents a flowchart that corresponds to the McSharry dynamic model 
in terms of bits to facilitate the implementation phase:

Fig. 4. Flowchart of the output code for the McSharry dynamic model in bits

https://online-journals.org/index.php/i-joe
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The diagram in Figure 4 depends on the duration of the waveforms, the Boolean 
array of the firing pattern, and matrix A. Given that the timeframes of EMG signals 
are considerably small, the sampling frequency had to be sufficiently high to reach 
a proper approximation and simplify the implementation process using a micro-
controller. The application of the McSharry model only occurs if the firing pattern 
contains a ‘1’. Otherwise, an isoelectric line is created. Subsequently, the output is 
concatenated according to the firing pattern, and a reconstructed signal is delivered 
in terms of bits.

Two signals with a single SMUAP detected with EMGLAB were chosen for the 
reconstruction process. The first signal, N2001M01TF60, contained 151 data points, 
two phases, and two turns. Figure 5 presents the results of the implementation of the 
previously described model.

The authors decided to perform a closer analysis. The results are presented in 
Figure 6, which depicts some SMUAP waveforms with two phases and two turns.

Fig. 5. Reconstructed signal N2001M01TF60 with bit-based amplitude

Fig. 6. Amplification of signal N2001M01TF60 with amplitudes in bits

Lastly, the reconstructed signal and the real signal were both plotted to confirm 
their similarity, which led to Figure 7. Although the reconstructed signal contains 
considerable amounts of data for one SMUAP (151) compared with other signals in 
the database, it is not like the original waveform.

https://online-journals.org/index.php/i-joe
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Fig. 7. Comparison between the real and reconstructed signals (N2001M01TF60)

Next, the EMGLAB software results regarding the firing trains and the model 
implementation were compared objectively by plotting the real signal, reconstructed 
signal, and EMGLAB firing trains. This comparison is depicted in Figure 8:

Fig. 8. Comparison between the real signal (N2001M01TF60) and firing patterns

Given the significant number of patterns (151), the information depicted in 
Figure 8 cannot be visualized properly. This requires zooming in, as depicted in 
Figure 9, where the ‘X’ symbols represent the patterns delivered by the model and 
the ‘O’ symbols represent the trains obtained with EMGLAB. The trains delivered by 
the system either matched or came close to those from EMGLAB.

Fig. 9. Zoom-in of the comparison between the reconstructed signal,  
real signal (N2001M01TF60), and firing patterns

https://online-journals.org/index.php/i-joe
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The second signal, R00626, contains 24 data points, two phases, and two turns. 
It thus has less data than the previous signal. The comparison of the reconstructed 
and original signals indicated that less data caused the reconstructed signal to differ 
from the original signal.

Both tests revealed that the reconstruction process was ineffective for single-wave-
form signals. This is because the EMGLAB software could not generate a complete 
firing pattern with the number of waveforms that comprised the signal since it 
ignored some waveforms and added errors to the signal estimation. Therefore, tests 
were conducted with signals that had more than one SMUAP to validate the effec-
tiveness of the decomposition and the proposed model.

Trains with multiple waveforms. The modeling process for signals with two or 
more SMUAPs was based on the model conceived for signals with a single SMUAP. 
Hence, the process depicted in Figure 3(a) was conducted for every SMUAP, and the 
models of each SMUAP were added.

The addition process began by verifying which SMUAP had the largest number 
of samples to determine the number of columns required for the matrix container. 
The rows matched the number of SMUAPs in the signal to be reconstructed. Then, 
the isoelectric line in which the SMUAPs were located was removed so that it could 
be scaled by a factor equivalent to the number of SMUAPs in the signal. This ensures 
that saturation is avoided in an implementation. The matrix was then cyclically 
filled with the number of samples from each SMUAP until all of them were placed in 
the output. Once the output matrix was full, the signal was added and located in the 
isoelectric line, as depicted in Figure 10.

To confirm the correct operation of the sum model for signals with two or more 
SMUAPs, six signals were selected that contained between 2 and 15 SMUAPs detected 
by EMGLAB to perform the reconstruction of the SMUAPs; thus, they could be added 
and reconstructed. Table 4 presents the selected signals with their corresponding 
numbers of SMUAPs and data:

Fig. 10. Diagram of the addition process with multiple SMUAPs
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Table 4. Signals chosen by the model for reconstruction

Signal Number of SMUAPs Data

R00206C3 2 225

N2001M01TF63 2 30

R00209C3 5 562

R00903C2 7 428

R00903C1 12 495

N2001M01TF52 15 439

In Table 4, the data column refers to the total number of MUAPs obtained with the 
decomposition algorithm built into EMGLAB. For example, in the first signal, 225 wave-
forms were detected in the real signal, and these waveforms were of two types. To eval-
uate the effectiveness of the model, some signals from Table 4 are compared with the 
corresponding synthetic signal generated by our model in the following paragraphs.

First, the model was implemented for signals with two SMUAPs (R00206C3 and 
N2001M01TF63), which also differed in the amount of data generated through 
EMGLAB. This difference facilitated the analysis of the importance of sufficient data for 
signal reconstruction. Figures 11, 12, and 13 refer to signal R00206C3, which contains 
less data, while Figures 14, 15, and 16 refer to signal N2001M01TF63, which contains 
more data. In each triplet, the first figure depicts the synthetic or reconstructed signal; 
the second figure depicts a zoomed-in view of the reconstructed signal; and lastly, the 
third figure plots a comparison between the real and reconstructed signals.

To objectively compare the EMGLAB software results regarding the firing trains 
and the model implementation, the real signal, reconstructed signal, and firing trains 
from EMGLAB and the model were plotted simultaneously (Figure 17).

Fig. 11. Reconstructed signal R00206C3 with amplitudes in bits

Fig. 12. Zoom-in of the reconstructed signal R00206C3 with amplitudes in bits
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Fig. 13. Comparison of the reconstructed signal and the real signal R00206C3 with amplitudes in bits

Fig. 14. Reconstructed signal N2001M01TF63 with amplitudes in bits

Fig. 15. Zoom-in of the reconstructed signal N2001M01TF63 with amplitudes in bits
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Fig. 16. Comparison of the reconstructed signal and the real signal N2001M01TF63

Figure 17 reveals a connection between the firing trains and the resulting wave-
forms as well as a similarity between the trains delivered by the model and those 
obtained with EMGLAB. Afterwards, the implementation was conducted for signals 
with 5 and 7 SMUAPs; Figures 18 and 19 correspond to signal R00209C3 (5 SMUAPs), 
while Figures 20 and 21 correspond to signal R00903C2 (7 SMUAPs).

Fig. 17. Comparison between the real signal N2001M01TF63, reconstructed signal, and firing patterns

Fig. 18. Zoom-in of the reconstructed signal R00209C3 with amplitudes in bits
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Fig. 19. Comparison between the reconstructed signal and the real signal R00209C3

Fig. 20. Zoom-in of the reconstructed signal R00903C2 with amplitudes in bits

Fig. 21. Comparison between the reconstructed signal and the real signal R00903C2

Lastly, the implementation was performed for signals with 12 and 15 SMUAPs; 
Figures 22 and 23 correspond to signal R00903C1 (12 SMUAPs), while Figures 24 and 
25 correspond to signal N2001M01TF52 (15 SMUAPs).
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Fig. 22. Zoom-in of the reconstructed signal R00903C1 with amplitudes in bits

Fig. 23. Comparison between the reconstructed signal and the real signal R00903C1

Fig. 24. Zoom-in of the reconstructed signal N2001M01TF52 with amplitudes in bits
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Fig. 25. Comparison between the reconstructed signal and the real signal N2001M01TF52

Figure 11 to Figure 16 represent synthetic signals and their comparison with 
real signals. A significant difference exists between the signals, given that the data 
were insufficient for reconstructing them. A higher number of SMUAPs offers a 
better approximation of the original signal if a considerable amount of data exists 
for the decomposition process. Additionally, EMGLAB lacks sufficient patterns for 
decomposition.

4.2	 Signal generation model based on random numbers

The general model of new synthetic signals required a database that handles an 
issue beyond the scope of this project, namely the relationship between the appear-
ances per the number of SMUAPs in a signal. The generation of timeframes involved 
two generation techniques. The first one consisted of taking the distribution of 
time differences and generating a function with the same distribution; however, 
the resulting times did not have a long-range dependency. The second technique 
involved using random numbers with long-range dependencies.

Generation of initial data. To determine the generation of the initial data 
(i.e., the appearance times of each SMUAP for the random number generation 
model), a guide to the SMUAP distribution was required. This distribution depends 
on the amount of data and the SMUAPs of the signal. If the signal only comprises 
one SMUAP, then the appearance percentage would be 100%. If the signal has mul-
tiple SMUAPs, the appearance percentages would be divided among them. Table 5 
presents an example of the appearance rates obtained for each signal according to 
the number of SMUAPs:
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Table 5. Sample of relative appearance rates for some signals based on the number of SMUAPs

Number of  
SMUAPs 1 2 3 4 5 6 7 8 9 10 11 12 13 15

Number of 
data items 151 225 325 351 537 536 551 317 497 606 1495 801 754 439

Appearance 
rate per SMUAP

1 0.6667 0.3385 0.4131 0.2700 0.2183 0.1869 0.3281 0.0624 0.0363 0.0902 0.1323 0.0703 0.0342

0.3333 0.3569 0.1652 0.1657 0.2724 0.0290 0.0536 0.0563 0.0380 0.0375 0.0599 0.0491 0.0364

0.3046 0.1225 0.0372 0.1604 0.1688 0.0536 0.2575 0.1733 0.0689 0.0836 0.0279 0.0342

0.2991 0.2439 0.0578 0.2051 0.2019 0.1207 0.0611 0.0796 0.0737 0.0411 0.1093

0.0466 0.0914 0.0726 0.0473 0.1066 0.1337 0.1739 0.0612 0.0570 0.1071

0.1996 0.1198 0.0379 0.0543 0.0677 0.1719 0.0737 0.0491 0.0934

0.2178 0.2271 0.1348 0.1221 0.0809 0.1036 0.0995 0.1207

0.0505 0.0865 0.0677 0.0936 0.0562 0.1180 0.0478

0.1207 0.1716 0.0388 0.1049 0.0464 0.0387

0.1287 0.0368 0.0712 0.0584 0.0342

0.0776 0.0999 0.0981 0.0364

0.0799 0.1883 0.0934

0.0968 0.0296

0.1093

0.0752

Once the relative appearance frequency had been established for each SMUAP, 
this information was inputted into the initial data generation model, as shown in 
Figure 26(a).

The user must enter the expected number of SMUAPs, the final time of the signal, 
and whether it has a dependency. This serves as the basis for the generation of pseu-
do-random appearance rates through previously choosing a section of the loaded 
database (a complete table of relative appearance frequencies similar to Table 5). 
Afterwards, a vector is created with the percentage values, and the vectors are sepa-
rated for each SMUAP. Lastly, the time difference vectors are generated.

The pseudo-random selection of the database section involved a rand function 
that selected an integer number among the corresponding appearance columns 
according to the potential type. The generation of the time difference vector required 
two types of distributions, the first of which has no dependency and refers to a dis-
tribution of the actual time differences of the characterization. This was generated 
by using the inverse form, and the distribution was uniform. Second, the genera-
tion of the dependency-imbued vector involved a rand function that varied between 
0.55 and 0.95, which determined the Hurst parameter marking the dependency. This 
parameter entered the beta distribution function.

Complete generation model. At this point, the model implemented for the sum 
and the model for initial data generation were combined (see Figure 26(b)). The 
appearance rate vector resulting from the initial data generation process was loaded 
(Figure 26(a)) and then used as a basis for creating the pattern that generates the 
number of zeros that separate the different waveforms, as seen in the diagrams 
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of Figures 3(b) and 3(c). The selection of the waveform and its amplitude was per-
formed automatically by the algorithm. The data were then sent to the algorithm 
that generates the signals through the McSharry model used for the generation 
of the waveforms (Figure 4). Lastly, the signals generated for each SMUAP were sent 
to the algorithm in charge of the addition, as seen in Figure 10:

a) Process of initial data generation b) General model algorithm

Fig. 26. Flowchart of (a) the process of initial data generation; and (b) the general model algorithm
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5	 VALIDATION OF THE GENERATION MODEL

5.1	 Validation of the firing train model

The first test conducted to validate the correct operation of the model was a com-
parison of the real signals included in the database. Eight signals used in the model 
generation were selected and compared with the original signal on which it was 
based. The signals are presented in Table 6 with their corresponding numbers of 
data and SMUAPs:

Table 6. Real signals chosen to be compared with the reconstructed signals

Signal Number of SMUAPs Number of SMUAPs

R00626 1 24

N2001M01TF60 1 151

R00206C3 2 225

N2001M01TF63 2 30

R00209C3 5 562

R00903C2 7 428

R00903C1 12 495

N2001M01TF52 15 439

To present the results of the comparison between signals, a three-image figure 
was built: the first image is the real database signal, the second is the reconstructed 
signal of the implemented model, and the third is the overlapping of the pattern 
vector with the impulse train delivered by the model with EMGLAB. Noteworthily, 
in the figure, the patterns have two different conventions: (1) Color coding is used 
to distinguish the trains of each SMUAP; and (2) symbols labeled ‘X’ and ‘O’ are used 
to distinguish the patterns implemented from the ones issued by EMGLAB, where 
‘X’ symbols represent the patterns delivered by the model and ‘O’ symbols represent 
the trains generated by EMGLAB.

The results of the signals with 5 and 15 SMUAPs are presented in Table 6. The 
approximation to the real signal was improved by having more data. Figure 27 and 
Figure 30 present a comparison between the reconstructed signal and the real data-
base signal. Figure 27 presents a comparison of the signal with 5 SMUAPs, while its 
zoomed-in view can be seen in Figure 28. It was concluded that a larger number of 
SMUAPs causes a variation in amplitude with a waveform that is similar and close 
in terms of location.

Lastly, Figure 29 presents a comparison of the signal with 15 SMUAPs, while 
Figure 30 depicts a zoomed-in view. A large amount of data and large number of 
SMUAPs help to confirm that, in regions of the original signal with fewer wave-
forms, the firing patterns were reduced, which generated fewer waveforms in the 
reconstructed signal. This leads one to infer a similar behavior between the com-
pared signals.

The first result to highlight is the average error between the firing trains from 
EMGLAB and the synthetic generation of the model. Table 7 presents the average 
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errors for the studied signals, which should not exceed 5%. The highest error rate 
was 4.1%, and therefore, the results remained within the expected range.

Fig. 27. Signal R00209C3 (real and reconstructed) and firing patterns (real and reconstructed)

Fig. 28. Zoom-in of the signal R00209C3 (real and reconstructed) and firing patterns (real and reconstructed)

Fig. 29. Signal N2001M01TF52 (real and reconstructed) and firing patterns (real and reconstructed)
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Fig. 30. Zoom-in of the signal N2001M01TF52 (real and reconstructed) and firing patterns (real and 
reconstructed)

Table 7. Average error rate for each signal based on the number of SMUAPs

SMUAP Average Error Rate

1 2.63%

2 3.78%

5 4.10%

7 0.52%

12 0.44%

15 1.57%

5.2	 Validation of the complete generation model

Figure 31 depicts the resulting signal with the corresponding firing patterns.

Fig. 31. Synthetic EMG signal containing 2 SMUAPs without dependency

The last test involved generating the synthetic EMG signals using the complete 
version of the model. The results obtained through generating signals without 
dependency and signals with LRD that had been detected previously were explored. 
During the first part of the test, an EMG signal without dependency was generated. 
The model inputs were two SMUAPs and a signal duration of 50 seconds.
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Subsequently, a synthetic EMG signal with LRD was generated. It had 5 SMUAPs 
and a duration of 20 seconds. Figure 32 depicts the generated signal compared with 
the corresponding firing patterns:

Fig. 32. Synthetic EMG signal with 5 SMUAPs and LRD

6	 CONCLUSIONS

The model of the EMG signal generator can be used in its current state to perform 
dependency tests between firing trains without the need to generate the waveforms 
that comprise the signal. Furthermore, the model is useful for specialists who intend 
to study the behavior of the signals, starting with the exploration of synthetic signals 
and then proceeding to the real signals. Lastly, the algorithm can be modified to study 
the myopathies and neuropathies of patients and induce changes in the EMG signal.

The modeling of the proposed waveforms using the McSharry model offered 
a graphical solution close to the expected result. Additionally, the bibliographical 
search of the project led to the discovery of another model that uses Gabor kernels 
instead of Gaussian kernels. This aspect could be explored in future work by com-
paring the performance between both models.

The synthetic reconstruction of the signals indicated a displacement compared 
with their respective firing patterns. This error could be detected during the com-
parison with the real signal, where the synthetic signal exhibited certain waveforms 
that were displaced compared with the original ones and also compared with the 
firing trains. After the designed algorithm was reviewed, it was concluded that the 
error could stem from the generation of waveforms based on the McSharry model 
or the previous representation established in a waveform group. Therefore, future 
work could entail a substitution of the model, depending on whether it mitigates or 
eliminates the exposed error.
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