
REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY

Remote Instrument Control with CIMA Web
Services and Web 2.0 Technology

Douglas du Boulay,1 Sandor Brockhauser,2 Clinton Chee,1 Kenneth Chiu,3 Tharaka Devadithya,4 Richard
Leow,1 Donald F. McMullen,4 Romain Quilici,1 Peter Turner1

1Department of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
2 Instrumentation Group, European Molecular Biology Laboratory,Grenoble, France.

3Computer Science Department, SUNY Binghamton, Binghamton, NY, USA.
4The Pervasive Technology Labs at Indiana University, Bloomington, IN 47404 USA.

Abstract—The Common Instrument Middleware
Architecture (CIMA) model for Web services based
monitoring of remote scientific instruments is being
extended and enhanced to provide a capability for remote
instrument control. X-ray diffraction has been selected as an
ideal domain for prototype development, with the goal being
a comprehensive and feature rich portal system for access to
remote instruments and their data. The system has two
principle components, one of which serves the instrument
and data, and the second serves the client user. Plugin
modules are used to provide flexibility and re-use, and the
notion of plugin control is being developed. The architecture
supports remote access to multiple instruments from a
single portal. The use of Web 2.0 Pushlet and AJAX
technologies has been introduced for push based portlet
refresh and updating. An X3D based 3D virtual
representation of the instrument provides data collection
simulation and (pseudo) real time instrument representation

Index Terms—remote instrument control, Web services,
Web 2.0, middleware, CIMA, virtual instrument.

I. INTRODUCTION
There are obvious financial, functional and educational

returns in developing collaborative access services,
including instrument control, for remote scientific
instrumentation. State of the art high performance
laboratory instrumentation, such as high flux X-ray
diffraction systems and powerful electron microscopes, is
increasingly expensive and too costly to replicate in
multiple locations. Not only is there the high initial capital
cost, there is the on-going burden of technical staffing and
specialised maintenance costs. Remote access services
would maximise returns on the high construction and
operating costs of landmark national research facilities,
such as synchrotrons and neutron sources.

The remote desktop approach to remote instrument
access, such as typified by the use of Virtual Network
Computing [1] and its many variants, CITRIX [2], Sun
Secure Global Desktop [3] and NX NoMachine [4], has
the significant advantages of ease of set-up and
familiarity. While convenient, these approaches are not
ideal and can afford remote instrument users with
excessive control over expensive and potentially
dangerous instruments.

A significant disincentive to building custom-built
remote access systems, is that there is a high coding

overhead that may well reproduce functionality already
provided by an instrument manufacturer. A significant
advantage of the custom built interface approach however,
is that the actions of the remote instrument user can be
tightly controlled, while at the same time services outside
the desktop environment can be provided to offer a richer
operating environment.

The use of portal-portlet technology has a number of
incentives, including the provision of rich functionality
and global accessibility, and no need for any client
software other than a suitable Web browser. The
performance distinction between stand alone interfaces
and browser based interfaces is being eroded by Web 2.0
technologies, such as AJAX [5] and DOJO [6].

Web services offers several compelling benefits:
• Location, platform and language independent.

Facilitates legacy code re-use.
• Facilitates integration of the instrument into the

Web (and Grid).
• Robust underlying security model (WS-Security

supports security tokens and certificates).
• Use of HTTP as the underlying Web transport

protocol facilitates firewall passage.
• Supports Service Orientated Architectures

(SOAs). Can integrate distributed and
heterogeneous services.

• Facilitates the linkage of multiple users and
resources for collaborative interactions across the
Web.

The use and performance of Web services for the
remote control of relatively simple laboratory devices,
such as a waveform generator, has been described by Yan
et al. [7]. At the other end of the spectrum, the GridCC
project to Grid enable large scale facilities, such particle
accelerators, is underpinned by Web services [8].

The Common Instrument Middleware Architecture [9-
11] started as a NSF Middleware Initiative project
researching a consistent and re-usable middleware
framework to enable and embed instruments as
addressable Web and Grid resources using Web services.
The CIMA model is intended to be scalable across the
domain of scientific instruments. Thus far CIMA has been
developed solely for remote instrument and sensor
monitoring, although CIMA mediated instrument control
has been outlined [12].

iJOE – Volume 4, Issue 1, February 2008 5

REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY

Herein we describe extensions and enhancements to the
CIMA model, being undertaken as part of the
development of a comprehensive and feature rich remote
access portal system that includes remote instrument
operation and control [13]. In part two of the paper we
present the overall system architecture and the rationale
behind that architecture. The two component architecture
is explained, and examples are given of XML parcel types
that have been introduced to support instrument control.
The notion of plug-in control is introduced. The
implementation and application of the system is then
described in part three, and this includes the nature of the
supporting technologies used in the implementation.
Finally, a summary is presented in part four.

II. ARCHITECTURE AND PRINCIPLES
A modular service oriented architecture (SOA) model

using Web services has been adopted to provide
maximum flexibility and capability. The principle
components of the portal system are shown in Fig. 1.

As the figure suggests, the use of browsers to provide
the user interface is inherently collaborative. While only
one person can be authorised to control the instrument,
multiple collaborators may access the portal, subject to
authorisation, and hence monitor a data collection and
inspect the data being generated. The users may thus
collaboratively determine the best way to undertake a data
collection.

The system architecture is comprised of two primary
containers; one located at the instrument site (Source, or
Producer) and providing instrument services, and a second
that provides user access interface components (Sink, or
Consumer) and need not be co-located with the
instrument. For instance, several institutions under a
common project may want to provide remote access to a
shared instrument or set of instruments. In that case a user
interface portlet container may be beneficially located at
each of the user institutions. Alternatively, container A
could be shared between multiple institutions to provide
remote access to multiple shared instruments (not
necessarily located at one site). The second model may be
desirable for large facilities such as a synchrotron, for
which a single Container B could serve multiple
instruments or beamlines. A third model would have both
containers located at the instrument site or facility, but
with Container A residing in a DMZ.

Both Source and Sink containers have Web services
components that receive SOAP calls from the
corresponding partner container. Complementary Web
services stubs (not shown in Fig 1) are responsible for
assembling and sending the SOAP messages. The CIMA
components assemble and provide the XML parcels
delivered in the SOAP messages. Communication
between the complementary Source and Sink CIMA
components is formally described in terms of channels
that are, in effect, defined by XML parcel exchange
endpoints.

Flexibility and a capability for re-use is provided
through the use of plugins to the CIMA components of
each container. The relationship of the plugins to the
CIMA framework is schematically illustrated in Fig. 2.
Channel and plugin access requires a registration or
subscription process, and registration depends on client

authentication and authorization. Registration thus
determines which services are made available to the client.

Figure 1. Remote instrument control elements. Only one person at a

time can control any given instrument.

The introduction and development of instrument control
services has been undertaken in accord with the CIMA
channels and plug-in model [12]. Plugins may serve
individual sensors and/or actuators, or may serve the
aggregation of sensors and actuators that defines an
instrument. Instrument control has been implemented
through the introduction of an Instrument Instruction
Module and its partner plugin, the Instrument Monitor
Module. The Instrument Instruction Module serves as an
instruction interface to specific instrument software (or
device drivers). That is, the module translates CIMA
parcels (see below) into instrument specific instructions to
be sent to the instrument interface. The instructions may
be to get instrument status information, change the state of
the instrument or operate the instrument (e.g. collect data).

As Fig. 2 suggests, plugins may also be used for
individual sensors and actuators. Utility plugins may also
be used and we have, for instance, introduced a plugin
type for the conversion of an instrument data image into
an image format suitable for display in the client browser
interface.

Figure 2. CIMA based components: Source components reside in

Container B and the Sink components are located in Container A (see
also Fig 1).

6 http://www.i-joe.org

REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY

Data management may also be provided through an
additional plugin or via Web services access to a separate
management service [13].

Plugin selection and configuration is currently static, in
the sense that the specification is provided in an XML
configuration file loaded on container start-up. The same
process provides for service registration and hence
channel definition. Registration details are persistent in
that they are stored in a file that can be read if Container B
needs to be re-started.

There are two primary modes of communication
between the two containers. One mode is synchronous and
involves a request/response pair in which a request is sent
from container A to container B, and for which a response
is then expected in return. The CIMA component in
Container B extracts data from the XML parcel included
in the request from A, builds instrument-specific
instructions and finally returns a response from the
instrument as an XML parcel. The response may simply
be an acknowledgement, or data/metadata associated with
the instruction. New parcel types have been introduced to
support the request/response mode (see below).

Requests are of two kinds; those that affect the
instrument state (e.g. SET and OPERATE requests for
instrument control) and those that retrieve instrument
information (e.g. GET for instrument status data).

The second type of interaction occurs when an
instrument pushes information. The push may be the result
of an earlier asynchronous request, state changes in the
instrument, or because the instrument otherwise sends
data on a regular basis. In this case the CIMA component
of Container B (Source) sends an XML parcel via SOAP
to the CIMA component of Container A (Sink). The
parcel content is then extracted and relevant data is
transferred into a temporary store, or Data Cache, and the
portlet content is updated.

The parcel structure is simple and flexible, and has an
associated schema. The following example illustrates a
GET request to retrieve an instrument parameter (a
goniometer angle in this case):

<Parcel>
 <Type>http://www.cima.usyd.edu.au/2006/Get</Type>
 <Body>
 <Source>BIS</Source>
 <Variable>OMEGA</Variable>
 </Body>
</Parcel>
The parcel returned by the Source has a similar

structure:
<Parcel>
 <Type>http://www.cima.usyd.edu.au/2006/Command_Response<

/Type>
 <Body>
 <Value>-295.41</Value>
 <TimeStamp>2006-10-23 06:03:58 UTC</TimeStamp>
 </Body>
</Parcel>
A further example illustrates the simple nature of an

OPERATE instruction parcel
<Parcel>
 <Type>http://www.cima.usyd.edu.au/2006/Operate</Type>
 <Body>
 <Source>BISControl</Source>

 <Command>DRIVE</Command>
 <Parameters> … </Parameters>
 </Body>
</Parcel>
Although the skeletal parcel structure is simple, quite

complex parcels can nonetheless be assembled, and this
inherent parcel flexibility facilitates the introduction of
new parcel content and new control and monitoring
system modules. Currently for instance, we are developing
a plugin module for TANGO device servers [14] (Fig. 3).
TANGO is an object oriented and distributed control
system using CORBA [15], and is being developed as an
open source collaboration between the Alba, Elettra,
ESRF and Soleil synchrotron facilities.

Figure 3. TANGO instrument control system as a CIMA plugin.

The flexibility of the parcel schema means that only
formal Web services method required for the Source and
for the Sink, and is a method for the receipt of parcels.

The Data Cache contains status information about the
instrument as well as temporary files (such as data frame
images for portlet display and review), and is populated
when data pushed from the instrument arrives, or when a
response containing instrument information is received.
The Cache is used to minimise SOAP calls to Container
B, when a GET request is issued and the desired data is
already available in the cache. The cache has the same
lifecycle as Container A, and might not be applicable for
all instruments.

X-ray diffraction instruments are typically equipped
with CCD based detectors that return data as binary
images, with ASCII headers. The size of these images, or
frames, depends on the nature of the detector and may
vary from less than a Mb to several Mb. Several thousand
such images will be accumulated during a data collection.
The use of Web services to transport data images may
then be problematic. In addition to the default push of
base64 encoded images via SOAP, we have introduced an
optional push/pull mode to avoid bottlenecks arising form
the accumulation of images in transport and out of
memory exceptions. In the push/pull mode a Binary
Ready parcel containing the URL of the image is sent to
the registered Sink; the image itself is not sent. The Sink
can then retrieve the file when ready, using what ever
means appropriate (SCP, FTP, gridFTP). Recent
evaluations suggest that the use of SOAP with
attachments provides better performance than the direct
incorporation of base64 encoded images in XML parcels.

Recently we have introduced a capability for plugin
control by the on-site administrator and, to a lesser extent,

iJOE – Volume 4, Issue 1, February 2008 7

REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY

by the remote user. The currently rudimentary capability
(Fig. 4) provides a basis for exploring the potential utility
and benefit of such control. The START instruction starts
the plugin, and cannot be called remotely. STOP stops the
plugin, but keeps the plugin registered and remotely
accessible. RESTART stops the plugin and then starts it
again, and it remains remotely callable. TERMINATE
removes or cleans the plugin from the application. After a
TERMINATE instruction, the plugin cannot be accessed
remotely. Further plugin handling instructions planned but
not yet implemented include SUSPEND and RESUME
for thread control.

Figure 4. Schematic depiction of current capability for the plugin

‘state machine’.

III. IMPLEMENTATION AND TECHNOLOGIES
Crystallographic molecular structure determination

instrumentation has been selected as a particularly
attractive system application development domain, with
well defined work-flows and data structures, and
relatively common (if not standardised) instrument types.
Crystallographic data collections are accordingly well
suited to remote control.

The two primary system components (Source and Sink)
are deployed in a Servlet container, and currently we use
either Tomcat [16] or Jetty [17]. Tomcat may used for
both containers, however there is also the option of using
Jetty for Container B. The use of Jetty allows multiple
instruments to be served through multiple ‘stand-alone’
instances of the Instrument Representative (IR) of
Container B (see Fig 2). Perhaps a drawback in some
contexts, if each instance resides on the same machine
then each must be assigned a distinct port number. The
location of a Container A in a DMZ would mitigate this
drawback.

Multiple Tomcat instances could be used, however we
find Jetty has the advantage of being relatively
lightweight. While suitable for development, we have yet
to determine if Jetty would be suitable in a production
setting.

Alternatively, and perhaps more attractive, the
introduction of plugin control facilitates multiple
instrument access through the loading of multiple
instrument modules in the Instrument Representative
within a single Tomcat instance of Container B.

We have used both Axis [18] and CXF [19] for the
provision of Web services and currently use embedded
CXF as this allows programmatic initiation. Any JSR 168

compliant portlet container may be used for Container A,
and we currently use GridSphere [20].

The goal of real-time updating of instrument status and
data displays for effective and safe instrument control has
driven our introduction of Pushlet [21] and AJAX Web
2.0 technologies to enable (pseudo) real-time data push
from the instrument to the client. It is then possible for
instance to view CCD based X-ray detector images, along
with metadata, without polling. The utilization of these
technologies has in turn improved the functionality of our
instrument monitoring portlets. AJAX is attractive in
allowing the updating of the content of a particular portlet,
without the need to reload all of the other portlets. DWR
[22] was used to facilitate the use of AJAX.

The current form of the instrument access portal system
provides an instrument control pane (Fig. 5) allowing the
user to define and initiate simple data collections. Options
for the provision of more complex data collections are
currently being evaluated. The pane provides for data
collection parameter input, webcam monitoring of the
instrument and crystal sample, and a display of the current
CCD detector data image. As mentioned, images and data
are dynamically updated through the use of AJAX and
Pushlet technologies.

Another tabbed pane augments the browser interface
with instrument status information and, for example,
displays the X-ray generator voltage and current settings,
the cooling water temperature, the CCD based X-ray
camera temperature, and laboratory temperature and
humidity (Fig. 6). There are also tabbed panes for
diffraction image inspection. An individual image may be
selected for display in the portlet, or a range of images
may be selected and viewed at a user selected display rate
(image set animation). In this manner the quality of the
data may be quickly assessed, and a decision may then be
made to continue or to abort the data collection. A Web
services driven tool for multi-user collaborative image
inspection is also being developed to enhance the
collaborative capabilities of the portal system. Students or
less experiences researchers may thus consult with remote
experts, and jointly determine the merits of a sample.

Figure 5. GridSphere portlet for X-ray diffraction instrument control.

The current diffraction data image is shown in the top left portlet.

8 http://www.i-joe.org

REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY

Figure 6. Portlet providing instrument status information.

An important element of the control portlet is an X3D
[23] based virtual representation of the instrument. This
provides an easy to assess visual representation of the
current state of the instrument and has low bandwidth
requirements, as only a small number of (pushed)
instrument parameters are required to update the model in
the client browser. The virtual representation at least
partially solves the ‘dark laboratory’ problem that arises
when laboratory lights are turned off, or when a webcams
fails.

The use of X3D has several attractions, including being
ISO standards compliant, independent of the source of the
XML and extensible such that the component architecture
is easily extended and use can be made of XML schema
and, conceivably, an instrument ontology. The XML for
an X3D model can be read or written using standard XML
tools, and can be integrated seamlessly into any XML
enabled application or Web service.

The following is a listing of the main X3D code used
for the model shown in Figs. 5, 6 and 7:

<Transform rotation="0 0 1 0" scale="1.0 1.0 1.0"
 translation="0.0 0.0 0.0">
 <ProtoInstance name="Machine_axes"/>
 <ProtoInstance name="BL19b-baseplate"/>
 <ProtoInstance name="ColdStream"/>
 <ProtoInstance name="Telescope"/>
 <Group DEF="Omega">
 <Transform DEF="omega_angle" rotation="0 0 1 0.00">
 <ProtoInstance name="Omega_Block"/>
 <Group DEF="Kappa">
 <Transform DEF="alpha_plus" rotation="0 1 0 -0.872665">
 <Transform DEF="kappa_angle" rotation="0 0 1 0.0">
 <Transform DEF="alpha_minus" rotation="0 1 0 0.872665">
 <Group DEF="Kappa-circle">
 <ProtoInstance name="Kappa_Base"/>
 <Transform DEF="phi_angle">
 <ProtoInstance name="Phi_Block"/>
 <ProtoInstance name="Crystal"/>
 </Transform>
 </Group>
 </Transform>
 </Transform>
 </Transform>

 </Group>
 </Transform>
 </Group>
 <ProtoInstance name="Collimator"/>
 <Group DEF="detector_block">
 <Transform DEF="twotheta_angle" rotation="0 0 1 0.0">
 <Group>
 <Transform DEF="detector_distance" translation=".170 0 0">
 <ProtoInstance name="Detector"/>
 </Transform>
 <ProtoInstance name="KBtn-TThetaCircle"/>
 </Group>
 </Transform>
 </Group>
</Transform>
X3D scenes can be dynamically updated using

Javascript and the X3D Scene Authoring Interface (SAI).
Currently we use FluxPlayer [24] as an SAI capable
browser plug-in to display our virtual instruments. The
user can ‘zoom in’ on the virtual instrument and adopt any
viewing position around the instrument, including preset
positions.

 A strong disincentive to providing remote client
control of a physical device is that unskilled operators, or
simple data entry errors, may lead to costly damage to the
instrument. Ideally the instrument control software
installed at the remote site would include a collision map
to prevent accidental damage. In practice however
collision map software is not always provided, and when
such software is available it may have weaknesses or
bugs. The risk of collision damage can be reduced by
limiting the functionality of the remote instrument access
interface. The risk of damage can also be mitigated
through the use of the virtual instrument as a simulator to
test the viability of a data collection strategy (see Fig. 7).
We are also exploring the use of the virtual model to
automatically generate a collision map by exhaustively
iterating through the range of possible component
movements.

Figure 7. Portlet to operate a X3D based diffraction instrument

simulator.

Given sufficient preliminary scanning information
(sufficient to provide the crystallographic orientation

iJOE – Volume 4, Issue 1, February 2008 9

REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY

matrix), the simulator now has a capability to display the
expected location of all of the diffraction data for the
sample. The viability and efficiency of the data collection
strategy can then be assessed.

Figure 8. Portlet to simulate a synchrotron beamline X-ray diffraction

instrument .

The virtual instrument offers a visual test-bed for
developing further instrument control plug-ins. As
mentioned above, the simulator is currently being linked
to a TANGO device server, and the same could be done
for the EPICS [25] control system. The development of a
TANGO plugin for CIMA is being undertaken in
conjunction of a virtual model for a synchrotron beamline
X-ray diffraction system (Fig. 8). Synchrotron instruments
are complex and pose a considerable modelling and
remote access challenge.

The virtual instrument may also serve as an
indestructible training tool that can be accessed via the
internet from anywhere. Major facilities such as
synchrotrons are expensive to operate and use, and the use
of a virtual instrument for user training has obvious
attraction.

Figure 9. A crude browser based interface for instrument control

generated with XSLT from an XML description file.

Recently we have begun to explore the possibility of
using XML instrument and component plugin descriptions
as a means of automatically generating browser interfaces
via XSLT (see Fig. 9). This possibility has the attraction
of facilitating the introduction of new plugins with
minimal associated portlet development. The XML
instrument description could further include an X3D
representation of the instrument. There is then the
intriguing prospect of a comprehensive and visualisable
instrument description that could be used in developing an
ontology for instruments. Preliminary work has been
undertaken to investigate the potential of OWL and RDF
representations of an instrument ontology.

IV. CONCLUSION
The Source and Sink components of the CIMA model

have been augmented with components providing
instrument and plugin control. These components form the
core of a portal system for collaborative remote
instrument control and monitoring, and which includes
portlets for data inspection and experiment simulation.
Multiple users may access the portal services, but only
one user may control the instrument. Data collection can
be simulated with an X3D based virtual instrument
representation that also provides at least a partial solution
for the dark laboratory problem. The virtual instrument
may also be used to asses the viability of a data collection
strategy, and can be used for instrument user training
purposes. A TANGO device server client plugin module is
being developed to provide a capability for remote
monitoring and operation of synchrotron beamline
instrumentation.

ACKNOWLEDGEMENTS
The support of the ARC e-Research SRI, GrangeNet

and the ARC Molecular and Materials Structure Network
(mmsn.net.au) is gratefully acknowledged. CIMA is
supported by National Science Foundation cooperative
agreements and grants SCI 0330568 and MRI CDA-
0116050. The assistance of Kia L Huffman (IU) and
Alexandre Grobbo (EMBL) is gratefully acknowledged.

REFERENCES
[1] VNC: Virtual Network Computing; http://www.realvnc.com/.

Accessed 27 January 2008. Variants include TightVNC,
RealVNC, UltraVNC, and TridiaVNC.

[2] CITRIX: http://www.citrix.com/. Accessed 27 January 2008.
[3] SSGD: Sun Secure Global Desktop:

http://www.sun.com/software/products/sgd. Accessed 27 January
2008. Formerly Tarantella.

[4] NX NoMachine; http://www.nomachine.com/. Accessed 27
January 2008.

[5] AJAX: Asynchronous JavaScript Technology and XML
http://java.sun.com/developer/technicalArticles/J2EE/AJAX.
Accessed 27 January 2008.

[6] DOJO: http://dojotoolkit.org/. Accessed 27 January 2008.
[7] Y. Yan, Y. Liang, X. Du, “Controlling remote instruments using

Web services for online experiment systems. “, Proceedings. 2005
IEEE International Conference on Web Services, 2005 (ICWS
2005).

[8] GridCC: www.gridcc.org. Accessed 27 January 2008.
[9] R. Bramley, K. Chiu, J.C. Huffman, K.L. Huffman, and D.F>

McMullen, “Instruments and Sensors as Network Services:
Making Instruments First Class Members of the Grid.” Indiana
University Computer Science Department Technical Report 588,
December 2003.

10 http://www.i-joe.org

http://www.realvnc.com/�
http://www.citrix.com/�
http://www.sun.com/software/products/sgd�
http://www.nomachine.com/�
http://java.sun.com/developer/technicalArticles/J2EE/AJAX�
http://dojotoolkit.org/�

REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY

[10] T. Devadithya, K. Chiu, K.L. Huffman, D.F. McMullen, “The
Common Instrument Middleware Architecture: Overview of Goals
and Implementation.” Proceedings of the First IEEE International
Conference on e-Science and Grid Computing (e-Science 2005),
Melbourne, Australia, Dec. 5-8, 2005: 578-585, IEEE Computer
Society.

[11] R. Bramley, K. Chiu, T. Devadithya, N. Gupta, C. Hart, J.C.
Huffman, K.L. Huffman, Y. Ma, D.F. McMullen, “Instrument
Monitoring, Data Sharing and Archiving Using Common
Instrument Middleware Architecture (CIMA).” Journal of
Chemical Information and Modeling, 46(3):1017-25, 2006.

[12] D.F. McMullen, T. Devadithya, K. Chiu, “Integrating Instruments
and Sensors into the Grid with CIMA Web Services.” Proceedings
of the Third APAC Conference on Advanced Computing, Grid
Applications and e-Research (APAC05). Gold Coast, Australia,
September 25-30, 2005. http://grid.cs.binghamton.edu/projects/
publications/integrate-APAC05/

[13] I.M. Atkinson, D.J. du Boulay, C. Chee, K. Chiu, T. King, D.F.
McMullen, R. Quilici, N.G.D. Sim, P. Turner, M. Wyatt, “CIMA
Based Remote Instrument and Data Access: An Extension into the
Australian e-Science Environment.” Proceedings of IEEE
International Conference on e-Science and Grid Computing (e-
Science 2006). December 2006. Amsterdam, The Netherlands.

[14] TANGO: http://www.tango-controls.org/. Accessed 27 January
2008.

[15] CORBA: http:/www.omg.org/. Accessed 27 January 2008.
[16] Tomcat: http://tomcat.apache.org/.Accessed 27 January 2008.
[17] Jetty: http://www.mortbay.org/. Accessed 27 January 2008.
[18] Axis: http://ws.apache.org/axis/. Accessed 27 January 2008.
[19] CXF: http://incubator.apache.org/cxf/. Accessed 27 January 2008.
[20] GridSphere: www.gridsphere.org/gridsphere/gridsphere. Accessed

27 January 2008.

[21] Pushlets: http://www.pushlets.com/. Accessed 27 January 2008.
[22] DWR, Dynamic Web Remoting: http:/dwr.dev.java.net/. Accessed

27 January 2008.
[23] X3D: http://www.web3d.org/about/overview/. Accessed 27

January 2008.
[24] Flux Player: http://www.mediamachines.com/. Accessed 27

January 2008.
[25] EPICS: http://www.aps.anl.gov/epics/about.php/. Accessed 27

January 2008.

AUTHORS
Douglas du Boulay, Clinton Chee, Richard Leow,

Romain Quilici and Peter Turner are with the
Department of Chemistry, University of Sydney, Sydney,
NSW 2006, Australia.

Sandor Brockhauser is with the Instrumentation
Group, European Molecular Biology Laboratory,
Grenoble, France.

Kenneth Chiu is with the Computer Science
Department, SUNY Binghamton, Binghamton, NY, USA.

Tharaka Devadithya and Donald F. McMullen are
with the the Pervasive Technology Labs at Indiana
University, Bloomington, IN 47404 USA.

Manuscript received 28 January 2008. Published as submitted by the
authors.

iJOE – Volume 4, Issue 1, February 2008 11

http://grid.cs.binghamton.edu/projects/�publications/integrate-APAC05/�
http://grid.cs.binghamton.edu/projects/�publications/integrate-APAC05/�
http://www.tango-controls.org/�
http://www.omg.org/�
http://tomcat.apache.org/�
http://www.mortbay.org/�
http://ws.apache.org/axis/�
http://incubator.apache.org/cxf/�
http://www.pushlets.com/�
http://dwr.dev.java.net/�
http://www.web3d.org/about/overview/�
http://www.mediamachines.com/�
http://www.aps.anl.gov/epics/about.php/�

