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Abstract—The Common Instrument Middleware 
Architecture (CIMA) model for Web services based 
monitoring of remote scientific instruments is being 
extended and enhanced to provide a capability for remote 
instrument control. X-ray diffraction has been selected as an 
ideal domain for prototype development, with the goal being 
a comprehensive and feature rich portal system for access to 
remote instruments and their data. The system has two 
principle components, one of which serves the instrument 
and data, and the second serves the client user. Plugin 
modules are used to provide flexibility and re-use, and the 
notion of plugin control is being developed. The architecture 
supports remote access to multiple instruments from a 
single portal. The use of Web 2.0 Pushlet and AJAX 
technologies has been introduced for push based portlet 
refresh and updating. An X3D based 3D virtual 
representation of the instrument provides data collection 
simulation and (pseudo) real time instrument representation 

Index Terms—remote instrument control, Web services, 
Web 2.0, middleware, CIMA, virtual instrument. 

I. INTRODUCTION 
There are obvious financial, functional and educational 

returns in developing collaborative access services, 
including instrument control, for remote scientific 
instrumentation. State of the art high performance 
laboratory instrumentation, such as high flux X-ray 
diffraction systems and powerful electron microscopes, is 
increasingly expensive and too costly to replicate in 
multiple locations. Not only is there the high initial capital 
cost, there is the on-going burden of technical staffing and 
specialised maintenance costs. Remote access services 
would maximise returns on the high construction and 
operating costs of landmark national research facilities, 
such as synchrotrons and neutron sources. 

The remote desktop approach to remote instrument 
access, such as typified by the use of Virtual Network 
Computing [1] and its many variants, CITRIX [2], Sun 
Secure Global Desktop [3] and NX NoMachine [4], has 
the significant advantages of ease of set-up and 
familiarity. While convenient, these approaches are not 
ideal and can afford remote instrument users with 
excessive control over expensive and potentially 
dangerous instruments.  

A significant disincentive to building custom-built 
remote access systems, is that there is a high coding 

overhead that may well reproduce functionality already 
provided by an instrument manufacturer. A significant 
advantage of the custom built interface approach however, 
is that the actions of the remote instrument user can be 
tightly controlled, while at the same time services outside 
the desktop environment can be provided to offer a richer 
operating environment.  

The use of portal-portlet technology has a number of 
incentives, including the provision of rich functionality 
and global accessibility, and no need for any client 
software other than a suitable Web browser. The 
performance distinction between stand alone interfaces 
and browser based interfaces is being eroded by Web 2.0 
technologies, such as AJAX [5] and DOJO [6]. 

Web services offers several compelling benefits: 
• Location, platform and language independent. 

Facilitates legacy code re-use. 
• Facilitates integration of the instrument into the 

Web (and Grid). 
• Robust underlying security model (WS-Security 

supports security tokens and certificates).  
• Use of HTTP as the underlying Web transport 

protocol facilitates firewall passage. 
• Supports Service Orientated Architectures 

(SOAs). Can integrate distributed and 
heterogeneous services.  

• Facilitates the linkage of multiple users and 
resources for collaborative interactions across the 
Web. 

The use and performance of Web services for the 
remote control of relatively simple laboratory devices, 
such as a waveform generator, has been described by Yan 
et al. [7]. At the other end of the spectrum, the GridCC 
project to Grid enable large scale facilities, such particle 
accelerators, is underpinned by Web services [8]. 

The Common Instrument Middleware Architecture [9-
11] started as a NSF Middleware Initiative project 
researching a consistent and re-usable middleware 
framework to enable and embed instruments as 
addressable Web and Grid resources using Web services. 
The CIMA model is intended to be scalable across the 
domain of scientific instruments. Thus far CIMA has been 
developed solely for remote instrument and sensor 
monitoring, although CIMA mediated instrument control 
has been outlined [12]. 
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Herein we describe extensions and enhancements to the 
CIMA model, being undertaken as part of the 
development of a comprehensive and feature rich remote 
access portal system that includes remote instrument 
operation and control [13]. In part two of the paper we 
present the overall system architecture and the rationale 
behind that architecture. The two component architecture 
is explained, and examples are given of XML parcel types 
that have been introduced to support instrument control. 
The notion of plug-in control is introduced. The 
implementation and application of the system is then 
described in part three, and this includes the nature of the 
supporting technologies used in the implementation. 
Finally, a summary is presented in part four. 

II. ARCHITECTURE AND PRINCIPLES 
A modular service oriented architecture (SOA) model 

using Web services has been adopted to provide 
maximum flexibility and capability. The principle 
components of the portal system are shown in Fig. 1. 

As the figure suggests, the use of browsers to provide 
the user interface is inherently collaborative. While only 
one person can be authorised to control the instrument, 
multiple collaborators may access the portal, subject to 
authorisation, and hence monitor a data collection and 
inspect the data being generated. The users may thus 
collaboratively determine the best way to undertake a data 
collection. 

The system architecture is comprised of two primary 
containers; one located at the instrument site (Source, or 
Producer) and providing instrument services, and a second 
that provides user access interface components (Sink, or 
Consumer) and need not be co-located with the 
instrument. For instance, several institutions under a 
common project may want to provide remote access to a 
shared instrument or set of instruments. In that case a user 
interface portlet container may be beneficially located at 
each of the user institutions. Alternatively, container A 
could be shared between multiple institutions to provide 
remote access to multiple shared instruments (not 
necessarily located at one site). The second model may be 
desirable for large facilities such as a synchrotron, for 
which a single Container B could serve multiple 
instruments or beamlines. A third model would have both 
containers located at the instrument site or facility, but 
with Container A residing in a DMZ.  

Both Source and Sink containers have Web services 
components that receive SOAP calls from the 
corresponding partner container. Complementary Web 
services stubs (not shown in Fig 1) are responsible for 
assembling and sending the SOAP messages. The CIMA 
components assemble and provide the XML parcels 
delivered in the SOAP messages. Communication 
between the complementary Source and Sink CIMA 
components is formally described in terms of channels 
that are, in effect, defined by XML parcel exchange 
endpoints.  

Flexibility and a capability for re-use is provided 
through the use of plugins to the CIMA components of 
each container. The relationship of the plugins to the 
CIMA framework is schematically illustrated in Fig. 2. 
Channel and plugin access requires a registration or 
subscription process, and registration depends on client 

authentication and authorization. Registration thus 
determines which services are made available to the client.  

 

 
Figure 1.  Remote instrument control elements. Only one person at a 

time can control any given instrument. 

The introduction and development of instrument control 
services has been undertaken in accord with the CIMA 
channels and plug-in model [12]. Plugins may serve 
individual sensors and/or actuators, or may serve the 
aggregation of sensors and actuators that defines an 
instrument. Instrument control has been implemented 
through the introduction of an Instrument Instruction 
Module and its partner plugin, the Instrument Monitor 
Module. The Instrument Instruction Module serves as an 
instruction interface to specific instrument software (or 
device drivers). That is, the module translates CIMA 
parcels (see below) into instrument specific instructions to 
be sent to the instrument interface. The instructions may 
be to get instrument status information, change the state of 
the instrument or operate the instrument (e.g. collect data).  

As Fig. 2 suggests, plugins may also be used for 
individual sensors and actuators. Utility plugins may also 
be used and we have, for instance, introduced a plugin 
type for the conversion of an instrument data image into 
an image format suitable for display in the client browser 
interface.  

 
Figure 2.  CIMA based components: Source components reside in 

Container B and the Sink components are located in Container A (see 
also  Fig 1). 
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Data management may also be provided through an 
additional plugin or via Web services access to a separate 
management service [13]. 

Plugin selection and configuration is currently static, in 
the sense that the specification is provided in an XML 
configuration file loaded on container start-up. The same 
process provides for service registration and hence 
channel definition. Registration details are persistent in 
that they are stored in a file that can be read if Container B 
needs to be re-started. 

There are two primary modes of communication 
between the two containers. One mode is synchronous and 
involves a request/response pair in which a request is sent 
from container A to container B, and for which a response 
is then expected in return. The CIMA component in 
Container B extracts data from the XML parcel included 
in the request from A, builds instrument-specific 
instructions and finally returns a response from the 
instrument as an XML parcel. The response may simply 
be an acknowledgement, or data/metadata associated with 
the instruction. New parcel types have been introduced to 
support the request/response mode (see below). 

Requests are of two kinds; those that affect the 
instrument state (e.g. SET and OPERATE requests for 
instrument control) and those that retrieve instrument 
information (e.g. GET for instrument status data).  

The second type of interaction occurs when an 
instrument pushes information. The push may be the result 
of an earlier asynchronous request, state changes in the 
instrument, or because the instrument otherwise sends 
data on a regular basis. In this case the CIMA component 
of Container B (Source) sends an XML parcel via SOAP 
to the CIMA component of Container A (Sink). The 
parcel content is then extracted and relevant data is 
transferred into a temporary store, or Data Cache, and the 
portlet content is updated.  

The parcel structure is simple and flexible, and has an 
associated schema. The following example illustrates a 
GET request to retrieve an instrument parameter (a 
goniometer  angle in this case): 

<Parcel> 
 <Type>http://www.cima.usyd.edu.au/2006/Get</Type> 
 <Body> 
  <Source>BIS</Source> 
  <Variable>OMEGA</Variable> 
 </Body> 
</Parcel> 
The parcel returned by the Source has a similar 

structure: 
<Parcel> 
 <Type>http://www.cima.usyd.edu.au/2006/Command_Response<

/Type> 
 <Body> 
  <Value>-295.41</Value> 
  <TimeStamp>2006-10-23 06:03:58 UTC</TimeStamp> 
 </Body> 
</Parcel> 
A further example illustrates the simple nature of an 

OPERATE instruction parcel 
<Parcel> 
 <Type>http://www.cima.usyd.edu.au/2006/Operate</Type> 
 <Body> 
  <Source>BISControl</Source> 

  <Command>DRIVE</Command> 
  <Parameters> … </Parameters> 
 </Body> 
</Parcel> 
Although the skeletal parcel structure is simple, quite 

complex parcels can nonetheless be assembled, and this 
inherent parcel flexibility facilitates the introduction of 
new parcel content and new control and monitoring 
system modules. Currently for instance, we are developing 
a plugin module for TANGO device servers [14] (Fig. 3). 
TANGO is an object oriented and distributed control 
system using CORBA [15], and is being developed as an 
open source collaboration between the Alba, Elettra, 
ESRF and Soleil synchrotron facilities.  

 
Figure 3.  TANGO instrument control system as a CIMA plugin. 

The flexibility of the parcel schema means that only 
formal Web services method required for the Source and 
for the Sink, and is a method for the receipt of parcels.  

The Data Cache contains status information about the 
instrument as well as temporary files (such as data frame 
images for portlet display and review), and is populated 
when data pushed from the instrument arrives, or when a 
response containing instrument information is received. 
The Cache is used to minimise SOAP calls to Container 
B, when a GET request is issued and the desired data is 
already available in the cache. The cache has the same 
lifecycle as Container A, and might not be applicable for 
all instruments. 

X-ray diffraction instruments are typically equipped 
with CCD based detectors that return data as binary 
images, with ASCII headers. The size of these images, or 
frames, depends on the nature of the detector and may 
vary from less than a Mb to several Mb. Several thousand 
such images will be accumulated during a data collection. 
The use of Web services to transport data images may 
then be problematic. In addition to the default push of 
base64 encoded images via SOAP, we have introduced an 
optional push/pull mode to avoid bottlenecks arising form 
the accumulation of images in transport and out of 
memory exceptions. In the push/pull mode a Binary 
Ready parcel containing the URL of the image is sent to 
the registered Sink; the image itself is not sent. The Sink 
can then retrieve the file when ready, using what ever 
means appropriate (SCP, FTP, gridFTP). Recent 
evaluations suggest that the use of SOAP with 
attachments provides better performance than the direct 
incorporation of base64 encoded images in XML parcels. 

Recently we have introduced a capability for plugin 
control by the on-site administrator and, to a lesser extent, 

iJOE – Volume 4, Issue 1, February 2008 7



REMOTE INSTRUMENT CONTROL WITH CIMA WEB SERVICES AND WEB 2.0 TECHNOLOGY 

 

by the remote user. The currently rudimentary capability 
(Fig. 4) provides a basis for exploring the potential utility 
and benefit of such control. The START instruction starts 
the plugin, and cannot be called remotely. STOP stops the 
plugin, but keeps the plugin registered and remotely 
accessible. RESTART stops the plugin and then starts it 
again, and it remains remotely callable. TERMINATE 
removes or cleans the plugin from the application. After a 
TERMINATE instruction, the plugin cannot be accessed 
remotely. Further plugin handling instructions planned but 
not yet implemented include SUSPEND and RESUME 
for thread control. 

 
Figure 4.  Schematic depiction of current capability for the plugin 

‘state machine’. 

III. IMPLEMENTATION AND TECHNOLOGIES 
Crystallographic molecular structure determination 

instrumentation has been selected as a particularly 
attractive system application development domain, with 
well defined work-flows and data structures, and 
relatively common (if not standardised) instrument types. 
Crystallographic data collections are accordingly well 
suited to remote control. 

The two primary system components (Source and Sink) 
are deployed in a Servlet container, and currently we use 
either Tomcat [16] or Jetty [17]. Tomcat may used for 
both containers, however there is also the option of using 
Jetty for Container B. The use of Jetty allows multiple 
instruments to be served through multiple ‘stand-alone’ 
instances of the Instrument Representative (IR) of 
Container B (see Fig 2). Perhaps a drawback in some 
contexts, if each instance resides on the same machine 
then each must be assigned a distinct port number. The 
location of a Container A in a DMZ would mitigate this 
drawback. 

Multiple Tomcat instances could be used, however we 
find Jetty has the advantage of being relatively 
lightweight. While suitable for development, we have yet 
to determine if Jetty would be suitable in a production 
setting. 

Alternatively, and perhaps more attractive, the 
introduction of plugin control facilitates multiple 
instrument access through the loading of multiple 
instrument modules in the Instrument Representative 
within a single Tomcat instance of Container B. 

We have used both Axis [18] and CXF [19] for the 
provision of Web services and currently use embedded 
CXF as this allows programmatic initiation. Any JSR 168 

compliant portlet container may be used for Container A, 
and we currently use GridSphere [20]. 

The goal of real-time updating of instrument status and 
data displays for effective and safe instrument control has 
driven our introduction of Pushlet [21] and AJAX Web 
2.0 technologies to enable (pseudo) real-time data push 
from the instrument to the client. It is then possible for 
instance to view CCD based X-ray detector images, along 
with metadata, without polling. The utilization of these 
technologies has in turn improved the functionality of our 
instrument monitoring portlets. AJAX is attractive in 
allowing the updating of the content of a particular portlet, 
without the need to reload all of the other portlets. DWR 
[22] was used to facilitate the use of AJAX. 

The current form of the instrument access portal system 
provides an instrument control pane (Fig. 5) allowing the 
user to define and initiate simple data collections. Options 
for the provision of more complex data collections are 
currently being evaluated. The pane provides for data 
collection parameter input, webcam monitoring of the 
instrument and crystal sample, and a display of the current 
CCD detector data image. As mentioned, images and data 
are dynamically updated through the use of AJAX and 
Pushlet technologies. 

Another tabbed pane augments the browser interface 
with instrument status information and, for example, 
displays the X-ray generator voltage and current settings, 
the cooling water temperature, the CCD based X-ray 
camera temperature, and laboratory temperature and 
humidity (Fig. 6). There are also tabbed panes for 
diffraction image inspection. An individual image may be 
selected for display in the portlet, or a range of images 
may be selected and viewed at a user selected display rate 
(image set animation). In this manner the quality of the 
data may be quickly assessed, and a decision may then be 
made to continue or to abort the data collection. A Web 
services driven tool for multi-user collaborative image 
inspection is also being developed to enhance the 
collaborative capabilities of the portal system. Students or 
less experiences researchers may thus consult with remote 
experts, and jointly determine the merits of a sample. 

 

 
Figure 5.  GridSphere portlet for X-ray diffraction instrument control. 

The current diffraction data image is shown in the top left portlet. 
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Figure 6.  Portlet providing instrument status information. 

An important element of the control portlet is an X3D 
[23] based virtual representation of the instrument. This 
provides an easy to assess visual representation of the 
current state of the instrument and has low bandwidth 
requirements, as only a small number of (pushed) 
instrument parameters are required to update the model in 
the client browser. The virtual representation at least 
partially solves the ‘dark laboratory’ problem that arises 
when laboratory lights are turned off, or when a webcams 
fails.  

The use of X3D has several attractions, including being 
ISO standards compliant, independent of the source of the 
XML and extensible such that the component architecture 
is easily extended and use can be made of XML schema 
and, conceivably, an instrument ontology. The XML for 
an X3D model can be read or written using standard XML 
tools, and can be integrated seamlessly into any XML 
enabled application or Web service.  

The following is a listing of the main X3D code used 
for the model shown in Figs. 5, 6 and 7: 

<Transform rotation="0 0 1 0" scale="1.0 1.0 1.0" 
                                    translation="0.0 0.0 0.0"> 
  <ProtoInstance name="Machine_axes"/> 
  <ProtoInstance name="BL19b-baseplate"/> 
  <ProtoInstance name="ColdStream"/> 
  <ProtoInstance name="Telescope"/> 
  <Group DEF="Omega"> 
     <Transform DEF="omega_angle" rotation="0 0 1   0.00"> 
      <ProtoInstance name="Omega_Block"/> 
      <Group DEF="Kappa"> 
        <Transform DEF="alpha_plus" rotation="0 1 0  -0.872665"> 
          <Transform DEF="kappa_angle" rotation="0 0 1 0.0"> 
            <Transform DEF="alpha_minus" rotation="0 1 0 0.872665"> 
              <Group DEF="Kappa-circle"> 
                <ProtoInstance name="Kappa_Base"/> 
                <Transform DEF="phi_angle"> 
                  <ProtoInstance name="Phi_Block"/> 
                  <ProtoInstance name="Crystal"/> 
                </Transform> 
              </Group> 
            </Transform> 
          </Transform> 
        </Transform> 

      </Group> 
    </Transform> 
  </Group> 
  <ProtoInstance name="Collimator"/> 
  <Group DEF="detector_block"> 
    <Transform DEF="twotheta_angle" rotation="0 0 1 0.0"> 
      <Group> 
        <Transform DEF="detector_distance" translation=".170 0 0"> 
          <ProtoInstance name="Detector"/> 
        </Transform> 
        <ProtoInstance name="KBtn-TThetaCircle"/> 
      </Group> 
    </Transform> 
  </Group> 
</Transform> 
X3D scenes can be dynamically updated using 

Javascript and the X3D Scene Authoring Interface (SAI). 
Currently we use FluxPlayer [24] as an SAI capable 
browser plug-in to display our virtual instruments. The 
user can ‘zoom in’ on the virtual instrument and adopt any 
viewing position around the instrument, including preset 
positions. 

 A strong disincentive to providing remote client 
control of a physical device is that unskilled operators, or 
simple data entry errors, may lead to costly damage to the 
instrument. Ideally the instrument control software 
installed at the remote site would include a collision map 
to prevent accidental damage. In practice however 
collision map software is not always provided, and when 
such software is available it may have weaknesses or 
bugs. The risk of collision damage can be reduced by 
limiting the functionality of the remote instrument access 
interface. The risk of damage can also be mitigated 
through the use of the virtual instrument as a simulator to 
test the viability of a data collection strategy (see Fig. 7). 
We are also exploring the use of the virtual model to 
automatically generate a collision map by exhaustively 
iterating through the range of possible component 
movements. 

 

 
Figure 7.  Portlet to operate a X3D based diffraction instrument 

simulator. 

Given sufficient preliminary scanning information 
(sufficient to provide the crystallographic orientation 
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matrix), the simulator now has a capability to display the 
expected location of all of the diffraction data for the 
sample. The viability and efficiency of the data collection 
strategy can then be assessed. 

 

 
Figure 8.  Portlet to simulate a synchrotron beamline X-ray diffraction 

instrument . 

The virtual instrument offers a visual test-bed for 
developing further instrument control plug-ins. As 
mentioned above, the simulator is currently being linked 
to a TANGO device server, and the same could be done 
for the EPICS [25] control system. The development of a 
TANGO plugin for CIMA is being undertaken in 
conjunction of a virtual model for a synchrotron beamline 
X-ray diffraction system (Fig. 8). Synchrotron instruments 
are complex and pose a considerable modelling and 
remote access challenge. 

The virtual instrument may also serve as an 
indestructible training tool that can be accessed via the 
internet from anywhere. Major facilities such as 
synchrotrons are expensive to operate and use, and the use 
of a virtual instrument for user training has obvious 
attraction. 

 

 
Figure 9.  A crude browser based interface for instrument control 

generated with XSLT from an XML description file. 

Recently we have begun to explore the possibility of 
using XML instrument and component plugin descriptions 
as a means of automatically generating browser interfaces 
via XSLT (see Fig. 9). This possibility has the attraction 
of facilitating the introduction of new plugins with 
minimal associated portlet development. The XML 
instrument description could further include an X3D 
representation of the instrument. There is then the 
intriguing prospect of a comprehensive and visualisable 
instrument description that could be used in developing an 
ontology for instruments. Preliminary work has been 
undertaken to investigate the potential of OWL and RDF 
representations of an instrument ontology. 

IV. CONCLUSION 
The Source and Sink components of the CIMA model 

have been augmented with components providing 
instrument and plugin control. These components form the 
core of a portal system for collaborative remote 
instrument control and monitoring, and which includes 
portlets for data inspection and experiment simulation. 
Multiple users may access the portal services, but only 
one user may control the instrument. Data collection can 
be simulated with an X3D based virtual instrument 
representation that also provides at least a partial solution 
for the dark laboratory problem. The virtual instrument 
may also be used to asses the viability of a data collection 
strategy, and can be used for instrument user training 
purposes. A TANGO device server client plugin module is 
being developed to provide a capability for remote 
monitoring and operation of synchrotron beamline 
instrumentation. 
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