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Abstract—This paper studies with the design of hybrid 
metaheuristics and their implementations. Hybrid  
metaheuristics involve some major issues that could be 
classified as design and implementation. Combining 
different kinds of methods is a ordinary strategy to solve 
optimization problems. As we have developed a unified view 
of metaheuristics, that is based on their key search 
components, one can say that designing a multi-objective 
metaheuristic can be reduced to select the most suited 
search components and combining them. Each of these 
metaheuristics has been proven successful on a variety of 
applications. Although there have been attempts to compare 
their performance, the results are contradicting and 
inconclusive. A difference is made between the design issues 
used to introduce hybridization and implementation issues 
that depend on the execution model of the algorithms. 

Index Terms—hybrid metaheuristics, model, design, 
implementation. 

I. INTRODUCTION 
In the past decades, a multitude of new search heuristics, 

often called “metaheuristics” have been proposed, many 
of them inspired by principles observed in nature. 
Common representatives include evolutionary algorithms 
(EAs) [1], ant colony optimization (ACO) [2], simulated 
annealing [3], tabu search [4], or estimation of distribution 
algorithms [5]. Each of these metaheuristics has been 
proven successful on a variety of applications. Although 
there have been attempts to compare their performance, 
the results are contradicting and inconclusive. There does 
not seem to be a superior candidate that should generally 
be preferred over the others. Thus, it is not surprising that 
recently, there has been a growing interest in hybridization 
of these metaheuristics. 

Hybridization of metaheuristics involves a few major 
issues that may be classified as design and implementation. 
The former category is concerned with the hybrid 
algorithm itself, involving issues such as functionality and 
architecture of the algorithm. The implementation 
consideration includes the hardware platform, 
programming, model, and environment on which the 
algorithm is to be run. In this paper, a difference is made 
between the design issues used to introduce hybridization 
and implementation issues that depend on the execution 
model of the algorithms. 

II. DESIGN PRINCIPLES 
Given a description of the different metaheuristics in 

general form has many benefits. First, it creates a common 
language, which allows researchers from different fields 
to understand each other’s approaches easily. Second, it 
moves the focus from the complete algorithms to the 
components. Third, it provides the interfaces for the 
different components to work together. Based on the 
presented unified framework, it is almost straightforward 
to combine different components from different 
algorithmic paradigms: an algorithm designer can easily 
select a combination of memorization features, choose a 
suitable set of construction operators or create new ones 
that make use of the combined set of selected 
memorization features, and then decide how the memory 
is updated with the newly generated information. The 
framework allows for a lot of freedom: new solutions may 
be constructed in different ways, using different 
information from the memory, the solutions thus 
constructed using one part of the memory may be used to 
update another part of the memory, and so on. 

The taxonomy will be kept as small as possible by 
proceeding in a hierarchical way as long as possible, but 
some choices of characteristics may be made independent 
of previous design choices, and thus will be specified as a 
set of descriptors from which a subset may be chosen. The 
taxonomy proposed here is a combination of these two 
schemes: hierarchical as long as possible to reduce the 
total number of classes and flat when the descriptors of 
the algorithms may be chosen in an arbitrary order. 

 

III. HIERARCHICAL CLASSIFICATION 
A discussion about the hierarchical portion then follows. 

At the first level, one may distinguish between low-level 
and high-level hybridizations. The low-level hybridization 
addresses the functional composition of a single-
optimization method. In this hybrid class, a given function 
of a metaheuristic is replaced by another metaheuristic. In 
high-level hybrid algorithms, the different metaheuristics 
are self-contained. There is no direct relationship to the 
internal workings of a metaheuristic. In relay 
hybridization, a set of metaheuristics is applied one after 
another, each using the output of the previous as its input, 
acting in a pipeline fashion. Teamwork hybridization 
represents cooperative optimization models in which 
many cooperating agents evolve in parallel; each agent 
carries out a search in a solution space. Three classes are 
derived from this hierarchical taxonomy. 
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A. LRH (low-level relay hybrid) 
This class of hybrids represents algorithms in which a 

given metaheuristic is embedded into a S-metaheuristic. 
Few examples of hybrid metaheuristics belong to this 
class. 

B. LTH (low-level teamwork hybrid) 
As mentioned in Chapter 1, two competing goals 

govern the design of a metaheuristic: exploration and 
exploitation. Exploration is needed to ensure that every 
part of the space is searched enough to provide a reliable 
estimate of the global optimum. Exploitation is important 
since the refinement of the current solution will often 
produce a better solution. P-metaheuristics (e.g., 
evolutionary algorithms, scatter search, particle swarm, 
ant colonies (AC)) are powerful in the exploration of the 
search space and weak in the exploitation of the solutions 
found. 

Therefore, most efficient P-metaheuristics have been 
coupled with S-metaheuristics such as local search, 
simulated annealing, and tabu search, which are powerful 
optimization methods in terms of exploitation. The two 
classes of algorithms have complementary strengths and 
weaknesses. The S-metaheuristics will try to optimize 
locally, while the P-metaheuristics will try to optimize 
globally. In LTH hybrid, a metaheuristic is embedded into 
a P-metaheuristics. This class of hybrid algorithms is very 
popular and has been applied successfully to many 
optimization problems. Most of the state-of-the-art P-
metaheuristics integrate into S-metaheuristics. 

C. HRH (high-level relay hybrid) 
In HRH hybrids, the self-contained metaheuristics are 

executed in a sequence. For example, the initial solution 
of a given S-metaheuristic may be generated by another 
optimization algorithm. Indeed, the initial solution in S-
metaheuristics has a great impact on their performances. A 
well-known combination scheme is to generate the initial 
solution by greedy heuristics, which are in general of less 
computing complexity than iterative heuristics. 

This scheme may also be applied to P-metaheuristics, 
but a randomized greedy heuristic must be applied to 
generate a diverse population. Greedy heuristics are in 
general deterministic algorithms and then they generate 
always the same solution. On the other hand, the diversity 
of the initial population has a great impact on the 
performance of P-metaheuristics. This hybrid scheme is 
carried out explicitly in the scatter search metaheuristic. 

Combining P-metaheuristics with S-metaheuristic in the 
HRH scheme is also largely applied. It is well known that 
P-metaheuristics are not well suited for fine-tuning 
structures, which are very close to optimal solutions. 
Indeed, the strength of P-metaheuristics is in quickly 
locating the high-performance regions of vast and 
complex search spaces. Once those regions are located, it 
may be useful to apply S-metaheuristics to the high-
performance structures evolved by the P-metaheuristics. A 
fundamental practical remark is that after a certain amount 
of time, the population is quite uniform and the fitness of 
the population is no longer decreasing. The odds to 
produce fitter individuals are very low. That is, the 
process has fallen into a basin of attraction from which it 
has a low probability to escape. 

The exploitation of the already found basin of attraction 
to find as efficiently as possible the optimal point in the 
basin is recommended. It is experimentally clear that the 
exploitation of the basin of attraction that has been found 
may be more efficiently performed by another algorithm 
than by a P-metaheuristics. Hence, it is much more 
efficient to use a S-metaheuristic such as a hill-climbing 
or tabu search. The HRH hybridization may use a greedy 
heuristic to generate a good initial population for the P-
metaheuristics. At the end of a simulated annealing search, 
it makes sense to apply local search on the best found 
solution to ensure that it is a local optimum.  

 

IV. COMBINING EVOLUTIONARY ALGORITHMS AND ANT 
COLONY OPTIMIZATION 

In this section, we propose a number of EA/ACO 
hybrids, which attempt to combine the two memorization 
schemes. Before that, however, let us briefly present the 
pure EAs [1] and ACO [2] we built on. The application 
considered is the traveling salesperson problem (TSP) [6]. 

Maybe the most straightforward combination of EAs 
and ACO is to simply use both basic algorithms to 
generate a portion of the new solutions each. More 
specifically, in every cycle, we generate 50% of the k  
new solutions on the basis of the pheromone matrix, while 
the remaining 50% are generated using the edge 
recombination operator. The complete set of k  new 
solutions is then used in the standard way to update the 
pheromone matrix as well as the population.  

Pheromone Completion (PC) crossover: This operator 
at the same time uses pheromone matrix and population to 
create a new individual. First, an individual is selected 
from the population by rank-based selection. A random 
connected part of that individual is then chosen, and this 
partial permutation is completed using the standard ACO 
construction operator, that is probabilistically according to 
the pheromone matrix. After k  individuals have been 
created that way, the new individuals are used to update 
the pheromone matrix as well as the population. Note that 
this operator is somewhat similar to the approach 
suggested by Punch. However, while we are proposing to 
use separate memory structures for the population and the 
pheromone matrix, they propose to use a population of 
agents, each agent consisting of a solution and an 
individual pheromone matrix. It is difficult to reason 
whether using a global pheromone matrix or individual 
pheromone matrices is more promising. A global 
pheromone matrix collects more information and will, 
therefore, perhaps be a better guide in particular in short 
runs. Individual pheromone matrices, on the other hand, 
allow for different solutions to be encoded simultaneously, 
which may be more beneficial for long optimization runs, 
when diversity is a major issue. 

Pheromone-supported Edge Recombination (PsER) 
crossover: It may happen that all the four edges used by 
the edge recombination operator to select the next city 
lead to cities that have already been visited. In these cases, 
edge recombination selects a city randomly. The 
pheromone-supported edge recombination operator 
suggested here instead uses the probabilistic selection 
based on the pheromone matrix. Again, the resulting 
individual is subject to mutation, and after k  individuals 
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have been created, all of them are used to update both the 
pheromone matrix as well as the population. 

Mutating Ants (MutA): ACO maintains diversity by 
choosing cities probabilistically in every step, and thus 
does not seem to require additional mutations. However, a 
simple change, like swapping two cities is very unlikely to 
be produced by the probabilistic construction procedure. 
Therefore, we here suggest to mutate the solutions created 
by the ACO, adding a different kind of change. 

Ant-based crossover (ABX): The idea of this hybrid is 
to combine ACO’s sequential construction and elegant 
integration of heuristic knowledge with the population-
based memory of EAs. ABX selects parents from the 
population just as an ordinary EA. These parents are used 
to construct a temporary pheromone matrix, by initializing 
all pheromones to the same small value, and allowing the 
parents to place additional pheromone on the solutions 
(paths) they represent. New solutions are then constructed 
in an ACO way, based on the temporary pheromone 
matrix and possible heuristic knowledge. Only the best of 
the generated solutions is returned as child and used to 
update the population (memory). It is straightforward to 
extend this idea by running an ACO on the temporary 
pheromone matrix for a few iterations (allowing the 
generated solutions to update the temporary pheromone 
matrix before generating some more solutions). We 
simply used the same parameter settings that had shown to 
be successful in that paper: two parents are selected, and 
the ACO is run on the temporary matrix for 5 iterations 
with 12 ants each. Only the best solution found is returned 
as a child. 

 

V. EXPERIMENTAL RESULTS 
Since ACO is primarily designed for permutation 

problems, we chose a simple symmetric Euclidean TSP 
with 100 cities to compare the different algorithms. Three 
problem instances of varying difficulty have been created: 
in problem P1, all cities are located equally spaced on a 
unit circle. To generate problem instances P2 and P3, the 
location of each of P1’s city has been moved in a random 
direction by a distance of 0.2 or 0.5, respectively. 
Independent of the problem instance, each algorithm was 
allowed to create and evaluate 200,000 solutions. 

As expected, heuristic domain knowledge is able to 
drastically improve performance. The ACO with heuristic 
knowledge as well as ABX generate equally good 
(presumably optimal) results on all problem instances, 
outperforming all methods without heuristic knowledge. 
Note that besides the idea of ABX, incorporation of 
domain knowledge into the EA is not as straightforward, 
and we have not been able to produce similar results, for 
example, by seeding the population with a heuristic. As 
the results show, the problem instances examined are too 
simple if heuristic knowledge is incorporated.  

 

VI. CONCLUSIONS 
The main drawback of hybridization is the introduction 

of new parameters that define the hybrid scheme. The 
setting of these parameters is nontrivial. A crucial 
question that has to be addressed in the future is an aid for 
the efficient design of hybrid metaheuristics in which the 
automatic setting of parameters must be investigated. 

Indeed, it will be interesting to guide the user to define the 
suitable hybrid scheme to solve a given problem. It will 
also be interesting to define adaptive cooperation 
mechanisms that allow to select dynamically the 
optimization methods according to convergence or other 
criteria such as diversity. Some approaches such as hyper 
heuristics have been proposed to deal with this problem. 
These approaches are dedicated to choose the right 
heuristic for the right operation at the right time during the 
search. It must be noted that these hybrid approaches 
operate in the heuristic space, as opposed to most 
implementations of metaheuristics that operate in the 
solution space. This principle is relatively new, although 
the concept of optimizing heuristics is not a recent one. 

For the algorithm designer, of course, it would be 
invaluable to know which operators and memory schemes 
are most promising depending on the application at hand. 
However, that assumes a useful categorization of 
problems, and is thus several steps in the future. Overall, 
we hope that this paper helps to gain a general 
understanding of different metaheuristics and of the way 
they interact. 
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