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PAPER

Diabetes Prediction: Optimization of Machine Learning 
through Feature Selection and Dimensionality Reduction

ABSTRACT
Diabetes, a pervasive global health concern, presents diagnostic challenges due to its 
nuanced onset and far-reaching implications. Traditional diagnostic approaches, reliant on 
time-consuming assessments, necessitate a paradigm shift towards more efficient methodol-
ogies. In response, this study introduces a diagnostic support system leveraging the power of 
optimized machine learning algorithms. Addressing class imbalance within a dataset compris-
ing 768 records, our methodology intricately weaves together feature selection, dimension-
ality reduction techniques, and grid search optimization. Specifically, the Extra Trees model, 
fine-tuned via grid search, emerges as the most potent, showcasing remarkable performance 
metrics: an accuracy score of 92.5%, an F1-score of 93.7%, and an AUC-ROC of 92.47%. These 
findings underscore the pivotal role of machine learning in reshaping diabetes diagnosis, 
offering transformative possibilities for global healthcare enhancement.
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1	 INTRODUCTION

Diabetes is a persistent health disorder that manifests when there is deficient 
insulin secretion from the pancreas or when the body faces challenges in utilizing 
the insulin it generates efficiently. Insulin plays a crucial role in managing blood 
sugar levels. Uncontrolled diabetes often leads to hyperglycemia, which is marked 
by high blood glucose levels [1, 2].

According to the latest statistics released by the World Health Organization 
(WHO), diabetes has become a serious metabolic challenge, spreading on a global 
scale and generating growing public awareness [2]. The proportion of people 
affected by this disease has climbed dramatically, from 108 million in 1980 to an 
alarming 422 million in 2014 [2]. 

The nuanced manifestations of diabetes, including heightened thirst, recur-
rent urination, enduring fatigue, and unexplained weight loss, are indicative of 
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underlying disruptions in carbohydrate metabolism [1, 2]. Despite being frequently 
overlooked, these initial warning signs serve as harbingers of potential severe com-
plications. In certain instances, they may escalate into cardiovascular diseases, renal 
impairments, ocular complications and in more extreme cases, necessitate lower-limb 
amputations [2]. It is crucial to recognize and address these early indicators promptly, 
as they offer valuable insights into the potential trajectory of the disease and provide 
opportunities for preventive interventions [1, 2]. In addition to the consequences for 
individual health, diabetes also causes considerable financial pressure on the world’s 
healthcare systems because of its high treatment and management costs [3]. In this 
context, the necessity of an early diagnosis tool becomes imperative to mitigate these 
consequences. However, the diagnosis of diabetes presents inherent challenges, 
requiring extensive laboratory analyses and rigorous clinical assessments encom-
passing blood glucose levels, insulin functionality, and overall metabolic health [4]. 
Given the intricate nature of the disease and the potential individual variations in 
response, a nuanced and multifaceted diagnostic approach becomes imperative [4]. 
This complexity underscores the importance for researchers and healthcare profes-
sionals to employ new diagnostic methodologies, ensuring a comprehensive and pre-
cise evaluation for the effective identification and management of diabetes [4, 5].

Machine learning (ML), a significant technological leap, has become a driving force 
in the field of medicine. This formidable branch of artificial intelligence (AI), harness-
ing intricate algorithms to scrutinize vast datasets, has unveiled unprecedented ave-
nues for understanding and addressing diseases [6]. When applied to the domain of 
diabetes, machine learning becomes a catalyst with the capability to enhance early 
detection accuracy and optimize healthcare management. By leveraging complex 
algorithms to analyze extensive datasets, machine learning not only facilitates more 
nuanced insights into the dynamics of diabetes but also paves the way for more tai-
lored and effective healthcare strategies [6, 7]. In our study, we explored this conver-
gence between artificial intelligence and medicine using machine learning algorithms 
on an unbalanced dataset of diabetic patients. This innovative approach, in conjunc-
tion with other techniques such as data balancing, feature selection, dimensionality 
reduction, and hyperparameter optimization, has produced very promising results. 
The achievements of our research demonstrate the revolutionary power of machine 
learning to improve diagnostics and enhance healthcare on a large scale. The pri-
mary contributions of this study can be encapsulated in the points listed below:

•	 Integrating machine learning into diabetes diagnosis 
•	 Handling unbalanced dataset
•	 Optimizing feature selection and dimensionality reduction
•	 Optimizing hyperparameters to achieve high-performance
•	 Compared with the state-of-the-art, the suggested system attains exceptional 

performance levels

2	 RELATED	WORK

In recent years, there has been a constant evolution and exponential growth in 
medical research employing machine learning. Researchers harness machine learn-
ing tools to process vast and intricate datasets from diverse sources, such as elec-
tronic medical records, laboratory test results, and clinical reports. This extensive 
data fuels the training of machine learning algorithms, facilitating the discovery 
of concealed patterns and relationships [8, 9]. This innovative approach holds the 
promise for scientists to construct forecasting models of diabetes, devise tailored 
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treatments, and advance the frontiers of medical research [10]. In this context, dia-
betes has emerged as a focal point, contributing a crucial dimension to the dynamic 
intersection between machine learning and medical insight.

In this context, Chaki et al. [11] carried out a comprehensive systematic review, ana-
lyzing 107 publications. Their study underscores the influence of progress in machine 
learning and artificial intelligence, showcasing superior performance in early iden-
tification and automated diagnosis of diabetes compared to conventional manual 
methods. The review offers a detailed examination of techniques for diabetes detec-
tion, diagnosis, and self-management, encompassing approaches to preprocessing 
data, extracting features, conducting machine learning determination, and assessing 
performance metrics. Alanazi et al. [12] conducted a thorough literature review to offer 
a detailed analysis of artificial intelligence and machine learning techniques employed 
in diabetes management. Their analysis delves into the advantages and limitations of 
utilizing these techniques in diabetes management, identifying areas that necessitate 
future research. The review illustrates the groundbreaking capacity of AI and ML in 
revolutionizing diabetes management, facilitating more precise and efficient diagnosis 
and treatment. It also underscores the importance of addressing challenges like data 
quality, system transparency, and ethical considerations through further research.

Al-Zebari et al. [13] carried out an exhaustive comparative analysis of machine 
learning techniques for diabetes detection. The study investigates various methods, 
including techniques like logistic regression, decision trees, support vector machines, 
discriminant analysis, k-nearest neighbors, and ensemble methods, employing the 
MATLAB classification learner tool. A total of 24 classifiers were assessed through 
10-fold cross-validation, registering an average classification accuracy varying from 
65.5% to 77.9%. Logistic regression yielded the highest accuracy at 77.9%; on the other 
hand, the coarse Gaussian SVM technique exhibited the lowest performance at 65.5%. 
Sonar et al. [14] devised a sophisticated machine learning-based system focused on 
data processing to predict the onset of diabetes in patients, enabling timely inter-
vention. They constructed classification models, including artificial neural networks, 
decision trees, support vector machines, and naïve Bayes. Their findings demonstrate 
substantial accuracy, with the decision tree achieving 85%, naïve Bayes at 77%, and 
SVM at 77.3%, underscoring the efficacy of their approach in forecasting diabetes 
risk. Kopitar et al. [15] investigated contemporary methods for detecting type 2 diabe-
tes, predominantly relying on multivariate regression. Their analysis compares the 
efficiency of machine learning prediction techniques (LightGBM, Glmnet, XGBoost, 
and RF) with that of conventional regression models commonly applied in forecast-
ing undetected diabetes cases. In terms of mean RMSE, the basic regression model 
outperformed others, with the lowest value of 0.838. RF, LightGBM, Glmnet, and 
XGBoost achieved the subsequent values: 0.842, 0.846, 0.859, and 0.881, respectively. 
García-Ordás et al. [16] addressed the growing challenge of diabetes as a chronic dis-
ease and the crucial need for early diagnosis. Their study focused on a pipeline that 
employs deep learning techniques for predicting diabetes in individuals. Applying 
data augmentation through a variational autoencoder (VAE), enhancing features 
with a sparse autoencoder (SAE), and conducting classification using a convolutional 
neural network (CNN), the approach demonstrated an impressive accuracy rate of 
92.31% on the Pima Indians Diabetes database, signifying a noteworthy improve-
ment over existing methods. Khanam et al. [17] studied diabetes prognosis, leveraging 
the Pima Indian diabetes dataset. Their research, employing various methodologies, 
including data analysis and machine learning techniques, found that a hybrid model 
incorporating support vector machines and logistic regression outperformed others. 
Neural networks with a structure of two hidden layers achieved a notable 88.6% accu-
racy, highlighting the critical role of machine learning advancements in enhancing 
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diagnostic techniques for early diabetes detection. Ashraf Uddin et al. [18] developed 
a machine learning model incorporating decision trees, k-nearest neighbors, logis-
tic regression, random forest, naïve Bayes, and support vector machine methods. 
Utilizing data preprocessing and the SMOTE technique for dataset balancing, the ran-
dom forest algorithm achieved notable accuracy of 97% and 80% on the 2019 and 
Pima Indian datasets, respectively, emphasizing the significance of balanced datasets 
in minimizing false negatives. Febrian et al. [19] conducted an in-depth investiga-
tion using machine learning methods to analyze and evaluate the efficiency of the 
naïve Bayes and k-nearest neighbors techniques in predicting diabetes. Utilizing the 
Pima Indians Diabetes Database dataset, their results unequivocally demonstrated 
the superiority of the naïve Bayes model, achieving a noteworthy accuracy of 78.57%. 
Sihlangu et al. [20] investigated diverse machine learning approaches, such as logis-
tic regression, stochastic gradient descent, CN2 rule, and support vector machines, 
employing the Orange data science tool. Their primary aim was to forecast diabe-
tes using the PIMA Indian Diabetes dataset. The CN2 rule induction approach was 
demonstrated to be the most efficient, attaining an accuracy of 80.7%. Mousa et al. [21]  
assessed three models: Convolutional Neural Network (CNN), Random Forest (RF), 
and Long Short-Term Memory (LSTM) for diabetes recognition using the Pima Indian 
database. The LSTM demonstrated superior performance with a maximum accuracy 
of 85%, while the RF and CNN, though promising, exhibited slightly lower perfor-
mance. Building on prior research, it is clear that machine learning represents an 
innovative approach in the realm of medical predictive modeling, specifically for 
the identification and diagnosis of diabetes. Researchers have investigated a diverse 
array of machine learning techniques to anticipate this complex disease, recognizing 
that no single universal method is applicable to all cases. In our study, five machine 
learning algorithms were utilized for diabetes prediction.

3	 MATERIALS	AND	METHODS

3.1	 Dataset

In the realm of machine learning, datasets play a critical role, serving as the foun-
dation for algorithm learning and performance improvement. Our study opted for 
the well-established Pima Indians Diabetes Database [22], sourced from the Pima 
Native American community in the southwestern United States. This dataset encom-
passes vital diabetes-related information, including attributes like glucose concentra-
tion, tricipital skinfold thickness, blood pressure, and body mass index (BMI), among 
others. Comprising 768 entries, each corresponding to a patient record, this dataset 
serves as a fundamental resource for evaluating diabetes indicators. The detailed 
structure of the dataset is delineated in Table 1.

Table 1. Dataset features

Num Attribute Description

1 Pregnancies Count of pregnancies

2 Glucose Plasma glucose levels

3 BloodPressure Diastolic blood pressure (mm Hg)

4 SkinThickness Triceps skin fold thickness (mm)

(Continued)
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Num Attribute Description

5 Insulin 2-Hour serum insulin (mu U/ml)

6 BMI Body mass index

7 DiabetesPedigreeFunction Diabetes pedigree function

8 Age Age (years)

9 Outcome Target: 1 = diabetic, 0 = non diabetic

The dataset comprised 65.1% (500 cases) of non-diabetic and 34.9% (268 cases) 
of diabetic instances. Imbalances in machine learning models may lead to subopti-
mal predictions, reduced minority class recall, and overfitting for the majority class. 
To overcome these challenges, employing dataset balancing techniques is essential 
for the accurate evaluation of diabetes prediction models.

3.2	 Data	preprocessing

Data preprocessing is the first critical phase in the development of machine learn-
ing algorithms, and it is extremely vital for guaranteeing the quality, reliability, and 
performance of prediction algorithms [23]. For our Pima Indians Diabetes Database 
dataset, we performed the following techniques during this preliminary phase:

– Outlier Handling: To bolster the robustness of our model, we applied the “Replace 
with Thresholds IQR” method for handling outliers. This approach involves 
replacing extreme values with thresholds based on the Interquartile Range (IQR), 
contributing to a more resilient and reliable model.

– Normalization: Ensuring that certain features do not disproportionately influence the 
model due to differing scales, we employed the RobustScaler for normalization. This 
technique enhances the convergence of the model by standardizing feature scales.

– Handling Imbalanced Data: Prevent bias and ensure that the model is not 
influenced by the prevalence of a particular class. As part of our study, we rig-
orously evaluated different class imbalance handling strategies, including res-
ampling (RESAMPLE), SMOTE (Synthetic Minority Over-sampling Technique), 
and ADASYN (Adaptive Synthetic Sampling) [24]. After thorough analysis, it was 
found that the RESAMPLE method outperformed the others, providing the best 
results. Consequently, this approach was chosen to effectively overcome the class 
imbalance present in the dataset.

3.3	 Feature	selection

Feature selection is a crucial phase in machine learning projects, involving the care-
ful selection of informative attributes to improve model efficiency. This step aims to 
reduce data dimensionality while retaining feature relevance for better model general-
ization [25, 26]. In our study, we utilized two techniques, k-best and variance threshold, 
chosen for their adaptability and effectiveness in enhancing machine learning models.

– KBest, or k-best feature method, utilizes a univariate approach to evaluate each 
feature independently. It calculates a correlation measure between each attribute 
and the target variable, often employing the χ2 (chi-square) test for categorical 

Table 1. Dataset features (Continued)
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target variables. This statistical measure assesses the independence of variable 
distributions, with a high score indicating strong feature-dependence for predic-
tion. The KBest method with the χ2 test excels in identifying informative features 
[25, 26]. In our study, it selected the five most informative features.

– The variance threshold technique assesses each feature’s variance, removing those 
below a preset threshold. Features with low variance, indicating little variation 
among samples, are deemed less informative for prediction. This method effectively 
eliminates constant or quasi-constant features, simplifying models and reducing 
overfitting risk. By enhancing computational efficiency through feature reduction, 
it improves machine learning model effectiveness [25, 26]. In our study, a threshold 
of 0.40 was applied for feature selection using the variance threshold method.

3.4	 Dimensionality	reduction

– Dimensionality reduction simplifies complex models by decreasing dataset vari-
ables while retaining essential information and trends. This is vital for datasets 
with many dimensions to prevent computational inefficiencies, overfitting, and 
visualization challenges. In our study, we applied t-SNE (t-distributed Stochastic 
Neighbor Embedding) and MDS (Multidimensional Scaling) techniques to 
uncover underlying structures in the Pima Indians Diabetes Database and aid 
result interpretation [25, 27].

– t-SNE (t-distributed Stochastic Neighbor Embedding) is a dimensionality reduction 
technique known for its effectiveness in representing complex, high-dimensional 
data in a reduced space. It focuses on preserving local similarities and non-linear 
relationships between samples by creating joint probability distributions and 
adjusting them to minimize divergence [25, 27]. In our study, applying t-SNE with 
five dimensions aims to reveal intricate relationships in the Pima Indians Diabetes 
Database, offering a meaningful representation of underlying structures.

– MDS (Multidimensional Scaling) is a technique used for dimensionality reduc-
tion, aiming to visually represent the structure of similarities or dissimilarities 
between observations. It works by creating an initial distance matrix based on 
similarity measures like correlations or Euclidean distances, then assigning posi-
tions in a reduced-dimensional space to each observation to best reflect the initial 
distances. MDS excels at capturing complex structures in the data, offering an 
intuitive visualization [27]. In our study, MDS with five dimensions was chosen to 
explore the underlying structure of the data following various preprocessing steps.

3.5	 Machine	learning	algorithms

In our study, we employed five well-established machine learning (ML) algo-
rithms: K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest, 
Extra Trees, and Gradient Boosting. These algorithms were chosen based on exten-
sive research indicating their strong performance in datasets similar to ours [27, 28]. 
They have demonstrated effectiveness in diagnosing health disorders and excel in 
handling classification tasks, especially in scenarios with complex relationships 
between variables. The widespread recognition of these algorithms in the machine 
learning community underscores their suitability for our study [27, 28].

– K-Nearest Neighbors (KNN) is a simple and adaptable supervised learning algo-
rithm that evaluates data point proximity in feature space. It classifies new 
observations based on their k-nearest neighbors in the training set, usually using 
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Euclidean distance. Despite its simplicity and ability to handle complex data 
structures without distribution assumptions, KNN may be sensitive to noise or 
high-dimensional feature spaces, which can affect its performance [27, 28].

– Support Vector Machines (SVM) is a powerful supervised learning method for 
complex classification tasks. SVM seeks the best hyperplane to separate classes in 
feature space, maximizing the margin between the nearest points and the hyper-
plane. It excels with high-dimensional data and can handle non-linear datasets 
using kernel functions, enabling classification in complex feature spaces [27, 28].

– Random Forest is an ensemble learning method that constructs multiple decision 
trees during training. Each tree is trained on a random subset of the data, and 
their predictions are aggregated to make a final forecast. This technique utilizes 
tree diversity to mitigate overfitting and enhance model generalization. Each tree 
contributes to the decision process by voting for a class, with the majority class 
determining the final prediction [27, 28].

– Extra Trees is a variant of Random Forest that utilizes a group of decision trees, 
similar to Random Forest but with a different construction process. Unlike 
Random Forest, which selects the best threshold for node division from a ran-
dom subset of features, Extra Trees employs entirely random thresholds for each 
feature. This approach aims to maximize ensemble tree diversity by introducing 
more randomness into the tree-building process, enhancing the model’s ability to 
generalize on unseen data [25, 29].

– Gradient Boosting is an ensemble learning method that improves predictive 
model efficiency by integrating multiple weaker models’ predictions. Unlike 
Random Forest, it focuses on correcting model errors iteratively, refining accu-
racy by reducing residual errors [27, 28].

3.6	 Grid	search	and	K-fold	cross	validation

Hyperparameter optimization and cross-validation are crucial techniques for 
improving machine learning model performance. In our study, we utilized Grid Search 
and k-fold cross-validation to achieve more accurate and generalizable models. Grid 
Search systematically explores different combinations of predefined hyperparameters 
to identify the optimal set, particularly beneficial when model performance depends 
heavily on specific hyperparameter values [25, 30]. Additionally, k-fold cross-validation 
is a robust evaluation strategy that divides the dataset into k-folds, using k-1 folds for 
training and one-fold for validation in each iteration. This process provides a reliable 
assessment of model performance across the entire dataset, reducing the risk of overfit-
ting or underfitting specific dataset characteristics [25, 30]. We chose to implement k-fold 
cross-validation with k = 10 in our study. This choice balanced the need for a robust 
assessment of model performance with computational resource limitations. Moreover, 
k = 10 is commonly considered a standard choice in the machine learning research 
community, offering a good balance between accuracy and computational efficiency.

4	 METHODOLOGY	AND	EVALUATION	METRICS	OVERVIEW

4.1	 Global	overview

In this study on diabetes prediction using machine learning, we followed a systematic 
methodology, starting with the retrieval of the Pima Indians Diabetes Database dataset. 
After initial data preprocessing, including tasks like splitting and normalization, we 
addressed the data imbalance using the Resample technique. To identify significant 
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attributes, we compared KBest (chi2 test) and variance threshold for feature selection 
and t-SNE and MDS for dimensionality reduction. Diverse machine learning techniques 
were evaluated, with hyperparameter optimization through grid search. Our meth-
odology also employed k-fold cross-validation (k = 10) for robust model evaluation, 
reducing the risk of overfitting. Figure 1 visually outlines our study’s design approach.

For our project’s hardware and software setup, we selected a computer featuring 
an AMD Ryzen 7 5700G processor and a Radeon graphics card, providing robust 
computing capabilities for machine learning assignments. Jupyter was our cho-
sen development environment, allowing us to generate interactive notebooks for 
visualizing model outcomes. We utilized the Python programming language along 
with the Matplotlib, Pandas, and Scikit-Learn libraries due to their versatility, user-
friendly nature, and extensive ecosystem dedicated to machine learning.

Fig. 1. Suggested methodology

4.2	 Evaluation	metrics

Evaluating the efficacy of machine learning algorithms is usually carried out 
through the confusion matrix, an essential tool for understanding the quality of 
model predictions [31]. This matrix divides the results into four main components: 
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). 
From the confusion matrix generated by our machine learning models, we have cal-
culated a set of metrics crucial to assessing their performance. These metrics include:

•	 Accuracy: the fraction of correct forecasts out of the total predictions [31].
•	 Precision: the fraction of true positive forecasts among the total positive predic-

tions [31].
•	 Recall: measures the proportion of true positive instances identified by the model 

relative to the total number of actual positive instances [31].
•	 F1-score: integrates precision and recall into one single value. It provides a bal-

ance between these two measures [31].
•	 AUC-ROC: Area Under the Receiver Operating Characteristic Curve, measures 

the area under the curve when plotting the True Positive Rate against the False 
Positive Rate [31].

5	 RESULTS	AND	DISCUSSION

This part describes and discusses the findings achieved in our study of diabetes 
prediction utilizing the aforementioned machine learning algorithms. The overall 
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efficiency of each algorithm, including the optimization of hyperparameters using 
grid search and cross-validation, is detailed in Tables 2–6 in terms of accuracy, recall, 
precision, F1-score, and area under the ROC curve (AUC-ROC). Abbreviations used 
in the tables include KNN (K-Nearest Neighbors), SVM (Support Vector Machines), 
RF (Random Forest), ET (Extra Trees), GB (Gradient Boosting), and GS (Grid Search).

The diverse findings reveal the substantial influence of the approaches we advo-
cate on improving the performance of all classification algorithms. For the initial 
dataset, whose results are presented in Table 2, Extra Trees recorded the best accu-
racy with a value of 78.36%. Regarding precision, the best value was recorded by 
SVM with a score of 84.62%. On the other hand, Gradient Boosting dominated the 
following best values: a recall of 71.59%, an F1-score of 71.19%, and an AUC-ROC 
of 76.70%. After data balancing and t-SNE application, Table 3 reveals that the opti-
mized SVM {‘C’: 1, ‘gamma’: 1, ‘kernel’: ‘rbf’} dominated the following best met-
rics: accuracy of 90.50%, precision of 93.62%, F1-score of 90.26%, and AUC-ROC 
of 90.53%. The best recall was recorded by the optimized KNN {‘algorithm’: ‘auto’, 
‘metric’: ‘manhattan’, ‘n_neighbors’: 7, ‘weights’: ‘distance’} with a value of 95.05%. 
As a result of applying the Multidimensional Scaling (MDS) after balancing, Table 4 
reveals that the optimized Extra Trees {‘n_estimators’: 100, ‘min_samples_split’: 4, 
‘criterion’: ‘gini’, ‘min_samples_leaf’: 1} stands out with the following best scores: 
an accuracy of 92.00%, a precision of 89.72%, a recall of 95.05%, an F1-score of 
92.31%, and an AUC-ROC of 91.97%. After applying data balancing in conjunction 
with the KBest method, Table 5 reveals the predominance of optimized Extra Trees 
{‘n_estimators’: 200, ‘min_samples_split’: 4, ‘criterion’: ‘gini’, ‘min_samples_leaf’: 1}, 
demonstrating exceptional performance, including accuracy of 92.50%, precision of 
90.57%, recall of 97.05%, F1-score of 93.70%, and AUC-ROC of 92.47%. Furthermore, 
the combination of data balancing with variance threshold, as illustrated in Table 6,  
highlights the superior performance of the optimized Random Forest {‘n_estima-
tors’: 500, ‘min_samples_split’: 2, ‘criterion’: ‘entropy’, ‘min_samples_leaf’: 1}. Results 
achieved include an accuracy of 91.50%, a precision of 87.61%, a recall of 97.04%, 
an F1-score of 92.08%, and an AUC-ROC of 90.64%.

These results underscore a significant enhancement across all assessed metrics, 
illustrating the positive influence of various optimization phases on algorithmic per-
formance, resulting in an improvement of up to 14.27%. Notably, the top-performing  
model emerged from utilizing the balanced dataset with the KBEST approach. 
Through meticulous optimization, conducted via grid search and cross-validation, 
Extra Trees achieved remarkable results, boasting an accuracy of 92.50% and an 
F1-score of 93.70%. These findings surpass the performance of other techniques, 
including the balanced dataset with t-SNE, which achieved an accuracy of 90.50% 
and an F1-score of 90.26%, MDS with an accuracy of 92.00% and an F1-score of 
92.31%, and variance threshold with an accuracy of 91.50% and an F1-score of 
92.08%. Figure 2 shows a graphical representation of each of these metrics.

Table 2. Original dataset without balancing and optimization

Accuracy Precision Recall F1-score AUC-ROC

KNN 72.73% 66.67% 56.82% 61.35% 69.67%

SVM 77.49% 84.62% 50.00% 62.86% 72.20%

RF 77.35% 71.95% 67.05% 69.41% 75.48%

ET 78.36% 75.68% 63.64% 69.14% 75.52%

GB 77.92% 70.79% 71.59% 71.19% 76.70%
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Table 3. Balanced dataset + t-SNE

Accuracy Precision Recall F1-score AUC-ROC

KNN 77.50% 75.93% 81.19% 78.47% 77.46%

KNN+GS 84.50% 78.69% 95.05% 86.10% 84.39%

SVM 72.50% 71.70% 75.25% 73.43% 72.47%

SVM+GS 90.50% 93.62% 87.13% 90.26% 90.53%

RF 85.31% 82.14% 91.09% 86.38% 85.44%

RF+GS 85.50% 81.58% 92.08% 86.51% 85.63%

ET 87.50% 83.33% 94.06% 88.37% 87.43%

ET+GS 88.50% 84.82% 94.06% 89.20% 88.44%

GB 78.50% 76.85% 82.18% 79.43% 78.46%

GB+GS 82.00% 79.82% 86.14% 82.86% 81.96%

Table 4. Balanced dataset + MDS

Accuracy Precision Recall F1-score AUC-ROC

KNN 76.00% 73.87% 81.19% 77.36% 75.95%

KNN+GS 87.00% 80.49% 98.02% 88.39% 86.89%

SVM 77.00% 77.23% 77.23% 77.23% 77.00%

SVM+GS 84.00% 82.86% 86.14% 84.47% 83.98%

RF 89.50% 85.09% 94.87% 89.71% 89.43%

RF+GS 90.50% 86.61% 94.93% 90.58% 90.44%

ET 91.50% 88.89% 94.17% 91.45% 91.46%

ET+GS 92.00% 89.72% 95.05% 92.31% 91.97%

GB 82.50% 81.73% 84.16% 82.93% 82.48%

GB+GS 90.00% 85.84% 93.87% 89.68% 89.94%

Table 5. Balanced dataset + KBEST

Accuracy Precision Recall F1-score AUC-ROC

KNN 78.50% 77.36% 81.19% 79.23% 78.47%

KNN+GS 86.50% 80.33% 97.03% 87.89% 86.39%

SVM 80.50% 78.18% 85.15% 81.52% 80.45%

SVM+GS 85.00% 84.47% 86.14% 85.30% 84.99%

RF 90.50% 86.61% 96.04% 91.08% 90.44%

RF+GS 91.00% 86.73% 96.03% 91.14% 90.94%

ET 91.50% 89.62% 94.06% 91.79% 91.47%

ET+GS 92.50% 90.57% 97.05% 93.70% 92.47%

GB 87.00% 83.78% 92.08% 87.73% 86.95%

GB+GS 90.00% 85.22% 97.03% 90.74% 89.93%
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Table 6. Balanced dataset + Variance threshold

Accuracy Precision Recall F1-score AUC-ROC

KNN 75.50% 74.53% 78.22% 76.33% 75.47%

KNN+GS 86.00% 79.67% 97.03% 87.50% 85.89%

SVM 79.00% 76.58% 84.16% 80.19% 78.95%

SVM+GS 81.50% 79.09% 86.14% 82.46% 81.45%

RF 90.50% 85.96% 96.03% 90.72% 90.43%

RF+GS 91.50% 87.61% 97.04% 92.08% 90.64%

ET 90.00% 87.16% 94.06% 90.48% 89.96%

ET+GS 90.50% 86.61% 96.04% 91.08% 90.44%

GB 86.00% 84.11% 89.11% 86.54% 85.97%

GB+GS 88.50% 84.21% 95.05% 89.30% 88.43%
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Fig. 2. Metrics of different algorithms

6	 COMPARISON	WITH	RELATED	WORK

Our approach emphasizes handling class imbalances and selecting relevant 
features, in agreement with previous research. The comparative analysis reveals 
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the superiority of our methodology for processing complex datasets and achieving 
high-quality predictive results. Numerous techniques have been employed in the 
existing literature for patient classification and diabetes prediction. Researchers fre-
quently evaluate and compare the efficacy of various methods on a common dataset 
to identify optimal ones. The method choice depends on the dataset’s specific charac-
teristics and the research question. Key considerations include the model’s interpret-
ability and its practical applicability for clinical decision-making. Thus, the outcomes 
of our approach have been evaluated with those obtained by current approaches 
tailored for the same database, and the findings are summarized in Table 7.

Table 7. Related work comparison

Authors Methods Best Algorithm Metrics

Al-Zebari et al. [13] Logistic regression, decision trees, 
discriminant analysis, SVM, and KNN

Accuracy = 77.9%

Sonar et al. [14] Decision Tree, ANN, Naive Bayes, and SVM Precision = 85%

Kopitar et al. [15] Glmnet, RF, XGBoost, LightGBM, 
and regression model

RMSE = 0.838

García-Ordás et al. [16] DNN, VAE, SAE, and CNN Accuracy = 92.31%

Khanam et al. [17] KNN, DT, AB, RF, SVM, NB, LR, and ANN Accuracy = 88.6%

Ashraf Uddin et al. [18] DT, RF, LR, and SVM Accuracy = 80%

Febrian et al. [19] KNN and Naive Bayes Accuracy = 76.07%,  
Recall = 71.37%, 
Precision = 73.37%

Sihlangu et al. [20] SGD, SVM, LR, and CN2 Rule Accuracy = 80.7%

Mousa et al. [21] LSTM, RF, and CNN Accuracy = 85%, 
Precision = 82%, 
Recall = 78%, 
F1-score = 80%, 
AUC-ROC = 89% 

This work KNN, SVM, RF, ET, GB Accuracy = 92.50%, 
Precision = 90.57%, 
Recall = 97.05%, 
F1-score = 93.70%, 
AUC-ROC = 92.47%

7	 CONCLUSION

Our study demonstrates the effectiveness of advanced machine learning tech-
niques in diabetes prediction. Through meticulous optimization phases encom-
passing class imbalance handling, feature selection, dimensionality reduction, and 
hyperparameter tuning, we significantly improved the performance of classifica-
tion algorithms. The top-performing model was obtained by employing the balanced 
dataset with the KBEST approach. Through optimization, Extra Trees achieved an 
accuracy of 92.50% and an F1-score of 93.70%, outperforming other techniques such 
as the balanced dataset with t-SNE (90.50%), MDS (92.00%), and variance threshold 
(91.50%). This underscores the superiority of Extra Trees in our experimental frame-
work. Our methodology also outperformed several existing methods, showcasing its 
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potential for real-world applications and early patient management. Future research 
will focus on integrating metaheuristic techniques for hyperparameter optimization 
and validating our methodology with diverse datasets to enhance its generalizability 
and applicability in clinical settings.
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