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PAPER

An Intelligent Mathematics Problem-Solving Tutoring 
System Framework: A Conceptual of Merging of Fuzzy 
Neural Networks and Neuroscience Mechanistic

ABSTRACT
This study proposed a novel framework for redesigning problem-solving activities in an 
intelligent tutoring system (ITS) called the intelligent neural-mechanistic mathematics prob-
lem-solving tutoring system (IN-MP-STS). This concept paper presents a new approach to ITS 
by incorporating elements of neuroscience mechanisms as a learning strategy that focuses 
on optimizing the brain’s ability through neural mechanisms. It also introduces fuzzy neural 
networks (FNNs) as a tool for modulating assessment and analyzing outcomes. This frame-
work offers an alternative perspective on delivery methods and learning approaches in the 
ITS module. By effectively integrating neuroscience mechanistic elements such as motiva-
tion, activation, regulation, execution, memorization, and interactivities, deep learning can be 
achieved, leading to improved student competence. This framework also proposes an adaptive 
assessment component based on FNNs, which will enhance the measurement and feedback 
modules in the system. It is necessary to modify the way that ITS and soft computing methods, 
such as the study of neural networks (NNs), are combined to make learning measurement and 
assessment more transparent. This innovation has not been fully disclosed, so researchers are 
encouraged to further test the concepts presented to assess their alignment with the existing 
system and ethical considerations. This framework enhances the conceptual research find-
ings of FNNs and incorporates neuroscience-based strategies into architecture and autono-
mous problem-solving skills within an ITS model. It also offers references for the development 
of problem-solving learning. IN-MP-STS has the potential to significantly enhance students’ 
competencies and abilities, thereby fostering the development of more comprehensive, holis-
tic, and sustainable ITS. This approach also has the potential to enrich the existing literature 
on the sustainability of neural networks.
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1	 INTRODUCTION

The latest technological advancements have transformed and minimized various 
challenges in the administration of education and instruction. One technology applica-
tion that enhances the efficiency of learning management is the intelligent tutoring sys-
tem (ITS). ITSs are computerized systems that provide personalized learning by reducing 
the need for direct guidance from the teacher. The use of ITS is more frequent during 
epidemics. ITSs are the preferred choice because they are more suitable for implement-
ing learning without the need for physical meetings. However, issues and annoyances 
arise when discussions about learning outcomes and effectiveness begin. It is more criti-
cal when the ITS system is designed for individualized learning without direct guidance 
from the teacher to monitor progress. The question that is often raised is whether the 
ITS system is designed to help students achieve deep learning. [1] voiced criticism of ITS, 
heralded as “smart” pedagogy. However, what happened was a failure to cultivate deep 
learning in students. Furthermore, [2] suggests that the ITS system should be more user-
friendly and equipped with specific features that are adaptive, multimedia, and, most 
importantly, capable of enhancing students’ abilities. In this context, the development of 
computational neuroscience and soft computing techniques has generated new ideas 
and brought about a transformation in ITS. Among other things, this combination aims 
to strengthen the ITS system, particularly by enhancing the interaction between stu-
dents, the social environment, and the curriculum with the system itself [3].

In essence, deep learning is the outcome of students’ interaction with the learn-
ing environment, materials, and teaching methods, or the delivery medium, which 
influence emotions, behavior, and cognition. According to [4], deep learning can 
occur when there is a shift in cognitive characteristics and behavior, which can be 
clearly recognized and interpreted, and even when students receive feedback on the 
change. In conventional learning, the teacher serves as a monitor and assessor, and 
all learning feedback is based on the teacher’s interpretation. However, in ITS, this 
does not happen because the system is developed based on an individualized learn-
ing environment without guidance. In addition, in ITS, aspects of pedagogy that aim 
to evoke prior learning are challenging to prepare because they are closely linked 
to students’ deep learning [5]. This weakness is attributed to the absence of trans-
lation, evaluation, and interpretation for every action and achievement completed 
by students. There is a gap between the concept and practical application of ITS. In 
theory, this pedagogy is perceived as “smart,” but in reality, it is not very effective in 
fully developing the potential and creativity of students [2]. Therefore, this ITS needs 
modification to ensure that deep learning takes place, with a focus on fostering a 
sense of belonging and honesty in the learning process.

Therefore, this system requires a “facilitator” who can act as a teacher’s assistant 
by tracking, monitoring, and providing learning feedback. With the latest innovation, 
this role has been taken over by intelligent computerized systems, as previously men-
tioned, such as artificial intelligence (AI) or machine learning (ML). One of the primary 
objectives of employing soft computing in ITS is to enhance the capabilities of recog-
nition, monitoring, and evaluation [3, 6]. Some studies demonstrate the positive out-
comes of integrating ITS and computational intelligence (CI), as evidenced by research 
conducted by [7–9]. The application of neural networks (NNs) has a positive impact on 
the development of ITS, particularly in facilitating the teaching and mastery of chal-
lenging and crucial subjects or skills such as engineering, mathematics, language, and 
problem-solving tasks. [10, 11] successfully implemented NNs and developed a more 
advanced learning management system. However, the efficiency of NNs depends 
on the type, source, and orientation of the data. The data entered into the NNs site 
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must consist of accurate parameters or attributes in order to produce clear output and 
achieve the intended objective. The complexity of the data source that describes learn-
ing necessitates the use of an appropriate structure or architecture for the NN algo-
rithm. In this context, fuzzy NNs (FNNs) were chosen because of their adaptability to a 
variety of orientations and data sources, as evidenced by several researchers [12–17].

Problem-solving in mathematics is an example of a complex learning environ-
ment. Problem-solving is inherently challenging and requires specific cognitive and 
behavioral abilities [18, 19]. As a result, the delivery medium must be diverse and not  
limited to traditional methods. ITS can be used to support experimentation and 
improvement in problem-solving teaching in mathematics. Why is problem-solving 
important in mathematics? Why is ITS used? What does this have to do with FNNs? 
These questions will be addressed and will require further discussion. Problem-
solving is both a skill and a measure of one’s competence level. In the context of 
education, problem-solving skills are integrated into the curriculum and must be 
mastered by students. The problem-solving domain is utilized as a benchmark for 
mastery standards and learning trends in international programs such as TIMSS 
and PISA [20, 21]. Numerous researchers have confirmed and explained the signif-
icance of problem-solving in determining the success of the mathematics curricu-
lum [22–24]. Therefore, there is a need to strengthen the learning of mathematical 
problem-solving. One approach is to implement an ideal learning management sys-
tem, such as an ITS. However, the weaknesses and gaps in the development of ITS, as 
discussed earlier, need to be resolved first. Discussions and arguments in previous 
studies indicate that the implemented ITS pedagogy does not fully develop students’ 
potential for perfecting problem-solving [2, 11, 15, 17, 25–27].

Competence in solving mathematical problems is crucial, so their presentation 
needs to be managed efficiently and effectively. All attributes (factors) related to 
competence, whether they demonstrate strengths or weaknesses, need to be ana-
lyzed and interpreted accordingly [19, 28–30]. To describe the attribute, a smart and 
efficient feedback system is required. Therefore, FNNs are the optimal choice for 
recognition, assessment, and feedback. The efficiency of FNNs depends on the fusion 
of data, as mentioned previously. Because learning and the process of solving math-
ematics problems are highly complex, the measurement and assessment of learning 
require specific details. This systematic detail will serve as the input for the FNN 
system, resulting in clear output and the achievement of objectives. The discovery 
and exploration of neuroscience knowledge, particularly in the field of learning, has 
revealed how the learning process occurs. Systematic literature by [31] explains the 
gap in educators’ understanding of the potential of neuroscience-mechanistic strate-
gies in enhancing students’ learning abilities. The previous studies discussed showed 
a positive impact when implementing neuroscience mechanistic strategies, but 
there was a gap between knowledge and practice among educators. Neuroscientific 
mechanistics is the stage of the development of mechanisms or processes that occur 
in the context of neural connections, manifested by the nature of neuroplasticity or 
neurotransmitters in parts of the brain, to form certain knowledge or skills.

As discussed, the effectiveness and impact of the FNN application depend on the 
entered data. Therefore, it is very appropriate to use the elements of neuroscience 
mechanisms as attributes in the identification, assessment, prediction, and feedback 
system of the learning process. Neuroscience delves into the mechanisms of learn-
ing in great detail, exploring the beginning and ending, external and internal fac-
tors, and even cognitive and behavioral development. According to the conceptual 
model introduced by [32], the neuroscience mechanistic attributes that can influ-
ence mathematics learning include motivation, attention, activation, regulation, 
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implementation, and evaluation. These attributes can predict students’ deep learn-
ing. This conceptual model is based on a neuroscience model, namely the AGES 
Model introduced by [33], which is founded on four main constructs: attention, den-
eration, emotion, and spacing. Therefore, this study is particularly suitable for bridg-
ing the gap between neuroscience and the learning environment in the classroom.

In conclusion, based on the problems discussed, the researcher believes that 
there is a need to develop a more ideal framework for modifying ITS indicators 
to enhance problem-solving skills. This modification will involve a combination of 
FNNs and neuroscience mechanistic strategies to enhance the human-centric effects 
of the intelligent engineering system of ITS. Therefore, the objective of this study 
is to propose a new framework for redesigning problem-solving activities in ITS, 
specifically the intelligent neural-mechanistic mathematics problem-solving tutor-
ing system (IN-MP-STS). This paper also offers valuable suggestions, including the 
design of problem-solving learning activities and research methods. The following 
are the main contribution points of this paper:

1. This paper presents a new problem-solving learning framework that is based 
on FNNs and neuroscience mechanistic strategies. First, it gathers and organizes 
neural mechanisms related to the learning process. Secondly, it utilizes FNNs 
to create evaluations of problem-solving learning activities in order to achieve 
personalized teaching and learning resources, which can enhance the quality of 
problem-solving tutoring.

2. This paper integrates FNNs with a neuroscience-based mechanistic approach to 
propose a framework for problem-solving learning activities. The framework 
utilizes FNNs to structure and extract local features from the active learning 
process, and it is based on the mechanistic cognitive and learning behavior of 
the student.

Continuing from this, the next section will discuss the relationship between 
problem-solving theory and educational neuroscience theory, describing their inter-
connection. Next, there is a section that will explain the necessity of the new design 
for the problem-solving activity. This justification involves the development of NNs 
and mechanistic strategies in neuroscience. The following section pertains to the 
methodology and outlines how this study was conducted, including the conceptual 
design of the introduced framework.

2	 NEUROSCIENCE	AND	PROBLEM-SOLVING	VIEWS

Discussions about deep learning need to be based on various theories and per-
spectives, such as constructivist, information processing, and neuroscience views. 
It is the science of studying learning processes and issues over time. This develop-
ment also addressed details and issues related to definitions, theories, and models 
in problem-solving. According to [34], problem-solving theories are strengthened 
through numerous studies that focus on the “internal” aspect, specifically the cogni-
tive processes involved in problem-solving activities. It was first discussed by [35] in 
his theory, which describes how individual mental processes occur during problem- 
solving activities. The emphasized elements include readiness for knowledge, expe-
rience, metacognition, and self-belief [24]. [36] On the other hand, it emphasizes 
that the problem-solving process requires optimal self-motivation along with the 
ability to manage cognitively. According to [37], three models, namely the Newell 
and Simon Model (1972), the Schoenfeld Model (1985), and the Mayer Model (1985), 
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are the initiators and founders of more complex models that involve computer pro-
gramming, such as NNs, simulator programs, and learning-based multimedia. The 
discovery of neuroscience also bolsters the theory of problem-solving, based on an 
understanding of the human brain’s mechanisms involved in learning [38, 39].

The OECD publication in 2004 on problem-solving for tomorrow’s world, dis-
cussed issues related to the definition of problem-solving competence as the ability 
of individuals to use cognitive skills to understand challenging situations and to for-
mulate solutions when there is no easy answer [40]. Among other aspects, solving 
mathematical problems is defined by some researchers as the combination of knowl-
edge, abilities, and mathematical skills [20], as well as cognitive processes, meta-
cognitive skills, and neurocognitive implications for mathematical problem-solving 
[24]. The definition of problem-solving can be summarized as a series of cognitive 
processes that involve repetitive actions, mental processes, and follow-up steps. 
It encompasses specific steps that engage both external and internal actions, utiliz-
ing sensory, nerve, and brain functions. For instance, students encounter challeng-
ing situations (tasks) by reading problems visually, processing information through 
neural and brain mechanisms, and then taking action to solve them, enabling them 
to write and respond to the problems presented.

According to [24], problem-solving is a systematic and planned action, so it is 
related to or requires a certain motivation that drives students’ work. The researcher 
believes that to comprehend how students solve problems, it is preferable to examine 
the mechanisms involved. The researcher described the process of students solving 
problems as a structured and mechanistic one that includes several levels of mecha-
nisms. Starting with the student’s self-regulation, including attitude, motivation, and 
willingness to perform tasks. The second aspect is the operating mechanism, which 
involves understanding problems, selecting strategies, deepening knowledge, mak-
ing decisions, and organizing solutions. This mechanism refers to the processing and 
functionality of the brain, or it can be referred to as neurocognitive. Next, the third 
mechanism is integration, where the operating mechanism is combined with the 
relevant knowledge terms, topics, or concepts to complete problem-solving.

In conclusion, the solution to this problem involves a mechanistic approach 
rooted in neuroscience that considers both the external and internal aspects of the 
student, as discussed in studies by [41–45]. This opinion is based on factors such as 
emotion, motivation, readiness, belief, cognitive and metacognitive processes and 
is related to the constructs of neuroscience. According to researchers in the field of 
educational neuroscience, learning and problem-solving are influenced by the activ-
ity and functionality of specific parts of the brain that have distinct effects. A report 
by [46] shows that the frontal, occipital, temporal, and other areas of the brain will 
be active when students start reading and interpreting numbers. According to [44], 
pleasure and willingness to solve problems are linked to the functionality of the 
amygdala and the prefrontal cortex. Next, to ensure successful problem-solving, the 
activity and strength of neural networks in parts such as the left frontal and parietal 
lobes are crucial. These networks contribute to building working memory, process-
ing speed, execution, insight, and other cognitive functions [19, 47, 48].

3	 NEURAL	NETWORKS	AND	NEUROSCIENCE	MECHANISTIC	STRATEGIES	
TO	PROMOTE	MATHEMATICS	PROBLEM-SOLVING	LEARNING

Biological models of communication systems and neural networks have been 
developed into mathematical models that represent the behavior of neurons as 
they form a chain or a specific relationship, producing a specific pattern known 
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as network architecture. An artificial neuron, known as a perceptron, is a single 
processing unit that forms the basis of NN models, drawing from the fundamental 
properties of biological neurons. Their function is analogous to that of biological 
neurons, processing multiple signals as input. Modification of the input signal can be 
achieved by applying a weight to the receiving synapse. Next, the processor will sum 
the weighted inputs and activate the spread function. The neuron receives meaning-
ful and adequate input and sends it as a single output, typically connecting to many 
other neurons, similar to the axon branch of a biological neuron. This model serves 
as the foundation for developing neural network models in the field of AI or ML, 
such as fuzzy neural networks.

Returning to the architecture of biological neural networks, this concept forms 
the basis of the learning process. This discovery is a study of how deep learning 
and thinking processes occur in the brain and are interpreted, known as cognitive 
science or neuroscience models. Overall, this model describes the mechanistic oper-
ation in learning, which is a strategy or approach that explains the relationship 
between the senses and specific parts of the brain. In learning or solving problems, 
students use their senses to comprehend the situation (task) and assign meaning to 
the problem. Actions such as reading texts, recognizing pictures, diagrams, graphs, 
symbols, and so on, are performed to identify the presented issues [49]. In other 
words, students will derive meaning from the instructions and structure of the task 
[19]. During this stage, parallel processing is a mental or neurocognitive process in 
which information from earlier sources is transmitted through nerves to different 
parts of the brain for translation, involving memory and cognitive control systems 
[50]. [19] explained that the neurocognitive mechanism involved in the activation of 
previous knowledge (memory) is also linked to the formation of emotions towards 
the task (achievement emotions).

García et al. [47] argue that once students are exposed to the problem (task), they 
will develop a system or approach to achieve the final result, beginning with the 
act of reading and researching to gain understanding. [49] describes this process 
as a way of constructing a problem-situation model based on the mathematical or 
non-mathematical elements found in the presented problem. [51] demonstrated a 
direct relationship between reading comprehension and problem-solving abilities. 
A study report by [19] explains that a clear understanding and definition of the prob-
lem (task) will mediate cognitive coordination and evaluation. In this context, stu-
dents need to understand the problem, including linguistic knowledge, facts, and 
schematic knowledge [36, 49, 52].

According to [46], letters and digits are detected in various parts of the brain, 
including the frontal, occipital, and temporal lobes, as well as the left inferior tem-
poral gyrus (ITG). [53] states that this mechanism involves an appreciation of the 
problem situation (task) that enables students to begin building theory and knowl-
edge. According to [54], students will simultaneously develop a hypothesis or initial 
conclusion for the solution by engaging in reflective thinking andrecalling memo-
ries and skills from previous experiences. A study by [48] has reported that academic 
performance in this scenario depends on the strength or weakness of the student’s 
working memory system. The results of his research show that working memory 
has a greater impact on the process of reasoning a solution than on performing a 
solution or mathematical calculations. The results of this study are also supported by 
several other research reports that explain the important role of working memory in 
helping students complete problem-solving tasks, including the processes of visual-
izing, abstracting, hypothesizing, and estimating the solution [55–58]. Students who 
have a positive metacognitive experience will develop a smooth and accurate exe-
cution process. This situation, according to psychological studies and neuroscience 
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mechanisms, is the result of insight into problem-solving. According to [59], the key 
feature of insight is completing the mental representation of problem-solving. The 
speed of calculations and the use of mathematical operations also depend on neural 
connectivity, which shifts, changes, and adapts according to the represented prob-
lem [60]. According to reference [23], when operational characteristics exhibit con-
tinuity and repetition, the circuit of execution and insight will yield faster and more 
accurate results. In addition, as stated in [44], the amygdala and the prefrontal cortex 
will facilitate the development of the regulatory reward circuit when there is prior 
experience in solving similar problems that lead to enjoyable achievements.

According to the analysis by [47], problem-solving models indicate that the process 
of solving problems involves neuroscience and brain function at every stage. Among 
the models discussed are Polya’s model (1981), IDEAL’s model (1993), Montague et al. 
(2000), Pretz et al. (2003), Verschaffel et al. (1999), Zimmerman’s SRL model (2008), and 
Boonen’s model (2015). The unity in the model demonstrates the mechanistic aspects 
of neuroscience that may have either positive or negative effects on students’ mathe-
matics problem-solving ability. According to [61], experiencing perfection and pleasure 
while solving problems generates positive achievement emotions. Neuroscience stud-
ies show that this positive emotional effect is effective in shaping interest, readiness, 
and motivation and reducing anxiety levels for problem-solving and learning [44].

In the context of implementing this neuroscience-based mechanistic strategy, 
identification and assessment necessitate suitable mathematical analysis. This is 
because the description and details of each learning mechanism need to be inter-
preted using an intelligent system so that they can be properly reported. The analysis  
of NNs is rapidly advancing and being fully utilized in the field of engineering. It 
should also be integrated into the field of education, particularly in the classroom, as 
a tool for assessment. [62] Several suggestions have been made for innovating neural 
networks in classroom assessment, including using variations such as fuzzy analysis 
and multi-criteria decision-making methods. The architecture of the algorithm in 
neural networks is highly detailed and sensitive to the orientation of the input data, 
making it well-suited for recognizing, measuring, and providing feedback in the 
learning process. One of the most suitable approaches for analyzing neuroscience 
mechanisms is using FNNs. [14, 15] employ NNs for analysis to evaluate changes and 
receive feedback on the learning process. It can be concluded that problem-solving 
skills should be developed using a computerized strategy that incorporates both bio-
logical and mathematical NNs, along with a combination of neuroscience concepts 
such as motivation, emotion, metacognition, working memory, processing speed, 
execution, and memory, among others.

4	 CONCEPTUAL	FRAMEWORK	OF	INTELLIGENT	NEURAL-MECHANISTIC	
MATHEMATICS	PROBLEM-SOLVING	TUTORING	SYSTEM

4.1	 Fuzzy	neural	networks	

Fuzzy neural networks are systems that utilize learning algorithms based on 
neural network theory to process data from specific parameters, which are deter-
mined from fuzzy sets and fuzzy rules. FNN is a continuation of NN technology, 
incorporating diversity in the input layer and output layer [14], and combined with 
fuzzy logic technology. The combination of these two technologies is so beneficial 
that it creates a system that is more flexible and even more efficient than applying 
only one technology. FNNs have been utilized as computing technology in various 
fields, including the development of control system technology, image recognition, 
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and data mining. Some of the benefits of FNNs include their applicability to both 
structured and unstructured data, their use in pattern recognition, their ability to 
handle inaccurate or incomplete data, and their versatility in various applications. 
The text provides a description of neurons, synapses, weights, biases, and their func-
tionality [14, 16]. This component is an adaptation of the way the human brain pro-
cesses and functions.

Fig. 1. The structure of a fuzzy neural system

In general, the orientation of FNNs depends on the feed-forward data network, 
which in turn produces the output from the input layer as shown in Figure 1. FNNs 
will essentially create a map of neurons and generate random numerical values, or 
“weights.” The weights and inputs are adjusted to produce an output value ranging 
between 0 and 1. In summary, in the workflow for FNNs refer to Figure 2, each neu-
ron in the input layer sends a signal directly to the next layer to generate an output. 
Here, each neuron Xi(i = 1, 2 … N) receives an input after assessing the degree to which 
the input belongs to its set or the magnitude of its weights. For each input variable 
Xi, M fuzzy sets are defined Aim(m = 1, 2 … M) whose membership functions are the 
activation functions of the corresponding neurons. It can be represented as a set of 
fuzzy rules at any point in the learning process, whether it is before, during, or after.

Fig. 2. The architecture of the fuzzy neural network

Then, the neuron combines all the inputs using a fuzzy operation called fuzzifi-
cation in the second layer. The fuzzification layer is utilized to construct the anteced-
ent of the fuzzy logic rule. The output of the fuzzification layer characterizes the 
potential distribution of the antecedent clause “Xi is Ai”. Thus, the outputs of the first 
layer are the membership degrees associated with the input values, i.e., aim = µ Aim 

(i = 1, 2 … N and m = 1, 2 … M), where N is the number of inputs and M is the 
number of fuzzy sets for each input. This layer involves the implication process  

https://online-journals.org/index.php/i-joe


 52 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 5 (2024)

Abu Bakar et al.

(weighted aggregation), where the neurons contain the product of inputs based on 
the neuron parameters’ weights after being composed by L fuzzy unineuron. This 
aggregation is performed using the weights, Wil(i = 1, 2 … N and l = 1, 2 … L), for each 
input variable i, which is only one first-layer output aim is defined as the input of the 
l-th neuron. Next, each neuron is synthesized to produce a single output with the 
defuzzification method in the last layer, with:

 y sign a W

i

L

im i
�

�0
�
�

�
��

�

�
��*  (1)

Where a0 = 1, W0 is the bias, and aim and Wi, (i = 1, 2 … L) are the output of each 
fuzzy neuron of the fuzzification layer and their corresponding weight, respectively. 

Compared to conventional NNs, the connection weights and activations of FNNs 
are significantly different. There are numerous approaches to modeling FNNs [16]. 
Some approaches use five layers, with the fuzzy sets encoded in the units of the 
second and fourth layers, respectively. FNNs are composed of three different types: 
cooperative, concurrent, and hybrid FNNs. In this context, FNNs model more com-
plex non-linear relationships. The FNN architecture generates a compositional 
model based solely on the objective and can define the output as either a concen-
trated or primitive composition [11]. The algorithm will adjust the weights if the net-
work is unable to accurately estimate certain input patterns [15]. Certain parameters 
or manipulations of mathematical algorithms will be established to influence and 
process the provided data.

Various approaches and variations of FNNs are utilized. Among them are four 
main components: input statistics, objective function, learning algorithm, and net-
work architecture, as discussed by [8] and illustrated in Figure 3.

Fig. 3. The components of FNNs

Next, based on these four components, FNNs have been adapted as recognition 
tools, modeling tools, monitoring boards, assessment tools, and also as learning aids. 
It is commonly used as a driver in e-learning management systems, such as ITS. 
The following Table 1 presents a meta-analysis of the modification, method, and 
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manipulation of FNNs as assessment tools for both traditional classroom learning 
and e-learning platforms.

Table 1. Analysis of application, methods and manipulation of FNNs

Application of FNNs Objectives Types/Methods of FNNs References

Recognition/
Translation

Monitoring students’ actions Neural network-based fuzzy diagnostic [7]

To determine the interrelations between LMS evaluation 
criteria and their effects

Hybrid FNNs-DEMATEL [63]

Evaluating the Perceptions of learning statistics among Students FCM [64]

Deciding the factor that ignites student’s creativity in an 
introductory engineering course

Fuzzy Analytic Network 
Process (FANP)

[65]

Human hand gesture recognition Hybrid FNNs-CNN [10]

Recognition and Evaluation of Classroom Teaching Behavior Hybrid FNNs-DNN [11]

Recognition of speech and text in English Flip Classroom Hybrid FNNs-RNN [17]

Modelling Generated the training set for a physical activity assessment Cooperative FNNs [66]

To model and predict the equilibrium adsorption of acids 
at different temperatures

Hybrid FNNs-DNN [16]

Establish the model of attitude towards statistic ANFIS [67]

Develop a decision-making model for student Fuzzy Analytic Network Process (FANP) [68]

Classification/
Clustering

Assess student performance Hybrid FNNs-FANP, DEMATEL [69]

Identifying and analysing the criteria for e-learning 
education systems

Hybrid FNNs-DEMATEL [70]

Determining the weights of criteria and priority values 
of multimedia applications

FAHP [71]

Prediction Prediction of Student academic performance Hybrid FNNs-Genetic Algorithm [72]

ANFIS [73]

Hybrid FNNs-DNN [14]

Analyzing pupils’ knowledge of mathematics ANFIS [74]

Predicting learning styles Hybrid FNNs [75]

Analyze the weight of influencing factors in Flip Classroom Hybrid FNNs-DNN [15]

4.2	 Elements	of	neuroscience	mechanistic

To provide a more specific context for the findings of neuroscience, the discus-
sion focuses on several manifestations that contribute to the development of this 
knowledge. In the context of education and learning, neuroscience focuses on 
the field of cognitive neuroscience. The expression of neuroplasticity and neuro- 
connectivity serves as a catalyst for cognitive processes and learning behaviors. In 
this context, [32] proposed several elements of mechanistic neuroscience that deter-
mine and drive learning, particularly in the creation of deep learning as summa-
rized in Table 2. Each of these attributes will establish dimensions and premises 
that describe cognitive, psychological, and behavioral practices or actions in those 
elements. These can be used as objects and criteria to measure students’ ability to 
solve mathematics problems.
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Table 2. Element of neuroscience mechanistic based on Bakar et al. [32]

Motivation This characteristic reveals how enthusiastic and interested pupils are in mathematics problems or tasks. Can lead 
to motivation for oneself. Positivity and great confidence in one’s ability to manage a solution.

Attention Reflection on behaviour that demonstrate willingness and concentration on finding a solution. Know and understand math 
topics or facts. Be conscious of the brain and memory’s capabilities and accomplishments.

Activation Competently formulates problem objectives and is capable of drawing early decisions regarding a mathematics problem. 
Can create problem/task abstracts and overviews. Understand how to stimulate and the need to think in terms of the level 
of difficulties. Capable of creating math operation statements from task sources. Indicate the equation or mathematics 
formula that will be utilized.

Regulation Plan mathematics operations, solution strategies, and time allocation to create a problem-solving arrangement circuit 
(solution flow). Capable of controlling one’s thought activity. Control the depth of thought concerning the complexity of the 
mathematics task. Create connections between prior mathematics problems or concepts, as well as existing knowledge, 
and the current mathematics task.

Implementation Carry out mathematical procedures with accuracy and effectiveness. Develop a strategy and keep track of the accuracy and 
completeness. If you’re having trouble, find alternate alternatives quickly. Always upbeat about accomplishments, capable 
of controlling emotions, and not easily perplexed.

Evaluation Verify if the solution is correct. Calculations should be evaluated using repetition or looking back. Contrast recent learning 
findings with prior experience. Create solutions that are similar to guarantee correctness.

4.3	 Intelligent	tutoring	system

An ITS is a blended learning system that relies on computerized instruction to 
deliver lessons to individuals without the need for physical support from a teacher 
[7]. In this system, learners will receive feedback on their learning directly. This sys-
tem is modeled with several main components, namely the domain model, the stu-
dent model, and the instructional model as shown in Figure 4. For the instructional 
component, there is also a more detailed breakdown of the tutoring model and user 
interface model [1, 2, 26].

Fig. 4. The basic structure of ITS

The ITS is enhancing learning in a more meaningful and effective way with 
the guidance of computer technology. Regardless of formal education or higher 
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education, ITS has been widely implemented and has demonstrated various capabil-
ities as well as limitations. This circumstance or situation creates a close relationship 
between smart technology and learning theory, including cognitive or behavioral 
aspects, and then produces variations to the design of the system itself [7]. In addi-
tion, ongoing research to enhance the effectiveness of ITS is also actively being pur-
sued. Ultimately, the development of modern ITS aims to improve teaching methods 
and optimize students’ abilities to articulate problems, select solutions, and solve 
problems using a solid knowledge foundation [2].

The model domain is a fundamental component of the ITS system. According 
to references [1, 6, 26], this is also known as the cognitive model or expert knowl-
edge model. This model is constructed based on learning theory, incorporating a 
combination of theoretical elements designed to facilitate learning. Furthermore, 
this component encompasses learning stages, including concepts, rules, and prob-
lem-solving strategies within the domain to be learned [2]. This model also serves as 
a knowledge repository and learning environment and includes a learning assess-
ment mechanism. The follow-up to the domain model is the student model. The 
emphasis on learning is directly related to the composition of this model. This is 
because meaningful and profound learning will occur based on is the components 
available in this model. At this time, the cognitive, behavioral, and affective aspects 
of students will be integrated and synthesized based on the learning strategy in 
place. This happens when students apply their problem-solving methods and steps. 
The arrangement of components typically starts with simple tasks and progresses to 
more complex ones, necessitating a structured guidance and assistance system for 
tracking each activity [1, 17].

Next, the instructional model receives information from the domain model and 
student model, which includes decisions about learning strategies and teaching 
actions. Here, the focus is on the goal and the subsequent effects of the activity, so the 
model is developed with suitable activity and tracking methods. The advancement of 
engineering technology today has highlighted the challenge of accurately translating 
the true intention of this model. With the assistance of AI systems and ML, various 
instructional variations can be generated to achieve more practical and effective 
objectives [2]. However, accurate design is required to achieve specific goals, such as 
targeted skills. In this context, the design and philosophy of ITS development are sub-
jects of discussion. This is either related to the concept or design. The ITS system has 
a very unified design, but the learning concept has less impact. On the other hand, it 
often happens that learning is prioritized, but the design features are not adequate. 
Therefore, to bridge this gap, ITS with a unique design is required, along with the 
integration of effective learning strategies as a component of the combined models.

5	 REDESIGNING	OF	PROBLEM-SOLVING	TUTORING	USING	FUZZY	
NEURAL	NETWORKS	AND	NEURO-SCIENCE	MECHANISTIC	AND	
INSTRUCTIONS	IN-MP-STS

The concept of IN-MP-STS is based on FNNs and mechanistic neuroscience, which 
can facilitate learning processes. Problem-solving skills can be improved through 
effective learning tools, such as the FNNs platform, which includes defining problem- 
solving, challenging types of competition activities, and presentation activities. There 
is no single standard practice for implementing theories in deep learning. In this 
paper, all the theories are listed in Table 3. A conceptual framework of IN-MP-STS is 
proposed by integrating principles of fuzzy neural networks, neuroscience mecha-
nistic strategies for learning, and components of intelligent tutoring systems.
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Table 3. Fuzzy neural networks, neuroscience mechanistic strategy and ITS components

Fuzzy Neural 
Networks (FNNs)

Neuroscience Mechanistic 
Strategy [32]

Intelligent Tutoring 
System (ITS)

1. Input statistics
2. Objective functions
3. Learning algorithm
4. Networks architectures

1. Motivation
2. Attention
3. Activation
4. Regulation
5. Implementation
6. Evaluation

1. Domain model
2. Student model
3. Instructional model

The framework is proposed in response to the growing research interest in FNNs 
and neuroscience practice. At the same time, there is a limited existing framework in 
ITS, especially in problem-solving tutoring. Therefore, Figure 5 illustrates the general 
concept of the conceptual framework. The proposed framework consists of seven 
interconnected mediators. It is believed that integrating these mediators would 
optimize learning, develop motivated interfaces, and enhance students’ problem- 
solving competence.

Fig. 5. A conceptual framework of IN-MP-STS

5.1	 Motivation

Based on the principle of mechanistic development, an initiator mechanism should 
include elements that can act as a driving force. Therefore, motivation is a crucial fac-
tor that will inspire students in this tutoring system. The combination of inputs in the 
NNs model, along with motivational elements, will ensure the initiation of learning 
and can attract students’ attention to problem-solving. Motivation arises when there 
is a clear interest in and understanding of the information. Hence, the fundamental 
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aspect of this tutoring system is to present the elements of problem-solving purposes 
or goals along with an engaging display. Also, the focus should be on the reward when 
students are able to complete the task. The management of ideas and emotions should 
be carefully considered in system development from the outset. In addition, motiva-
tion can also be triggered externally through the ITS dashboard or homepage. The 
combination of design with appropriate colors can attract students as users, eliciting 
positive emotions. When it comes to internal motivation, the approach to assigning 
tasks should consider preparedness and the right mindset.

5.2	 Activation

This component will ensure that the nerves become active and ready to form a 
circuit for the process of thinking. This activity will help ensure that students’ under-
standing of NNs in biology is well-developed. This situation is analogous to the strength 
or orientation of the input available in the system. Therefore, to ensure that this tutoring 
system can activate the neural circuits, the learning instructions should be delivered 
using appropriate and creative methods. Instructions do not need to be overly complex 
in order to ensure that learning coordination does not become stagnant and hinder the 
enjoyment of learning. As a result, the researcher recommends aligning this element 
with the input in the system to encourage the student’s emotions to reach an optimal 
level for continued learning, thus maintaining a high level of positive motivation.

5.3	 Regulation

Regulation of the learning process occurs when students are able to model their 
own learning. Tutoring activities that help students achieve the following points 
indicate a development in learning regulation: staying focused, planning, setting 
objectives, choosing and determining strategies, acting according to the chosen strat-
egy, consistently monitoring progress, being prepared with alternative strategies, 
and re-evaluating each process. This situation will enhance planning skills and criti-
cal thinking abilities. Therefore, regulatory elements must be present in the tutoring 
system as a component that can enhance the effectiveness of learning. Regulation 
is essential because it enables effective learning, ensuring that students are aware 
of available resources, understand their potential, know how to avoid mistakes, and 
can focus on their objectives. This component can help students manage their learn-
ing while engaging in other activities. In addition, this component should also be 
a priority in the development of the tutoring system. This is achieved through the 
ranking of interfaces, activities, and task transfers provided. It requires a systematic 
arrangement, and each level has an effective detection pattern.

5.4	 Execution

Next, the catalyst for this tutoring system needs to be the execution component, 
which involves coordinating cognitive, behavioral, and metacognitive skills based on 
the specific needs of actions and operations that are suitable for the learning situa-
tion. This medium should include elements that encourage awareness and cognitive 
engagement, such as problem-solving tasks, challenges or competitions, presenta-
tion activities, and more. The phases of the learning activity, especially the climax 
phase, require students to think and act according to the correct strategy. Enhancing 
thinking skills can positively impact students’ learning efforts and behaviors.  
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The learning environment should also incorporate real-life experiences, such as 
those found in the natural environment. For instance, a task that includes authen-
tic images or a video can enhance the likelihood of developing intellectual literacy. 
Because learning is an experience that applies to all individuals, there is a mindset 
about the experience, and the process of assimilation becomes easier to occur.

5.5	 Memorization

A critical process in learning is also remembering the entire learning material. 
Therefore, the development of ITS requires memorization components. The learning 
process should incorporate the principle of effort to ensure optimal brain and mind 
function, thereby complementing the principle of memory. Among the factors that 
need to be taken into account are interest, interconnectedness, and existing knowl-
edge. These factors ensure that the brain can coordinate and be prepared to assim-
ilate knowledge. To optimize memorization, the instructional model should include 
features such as volume control and the design of the content. It needs to be selective 
and organized. For example, objectives should be aimed at both general and specific 
goals. In addition, organize the presentation by category or group. In this context, 
the emphasis should also be placed on the strength and functionality of the neural 
connection. This can be achieved through individual presentation elements, visu-
alization, and association. Furthermore, assessment components are necessary at 
every level or stage of the established learning hierarchy.

5.6	 Interactivities

Engaging in a task serves as a catalyst for critical thinking, drawing on students’ 
prior experiences and fostering creativity. Activities are transformed into a framework 
for organizing existing knowledge and experience by modifying them to generate new 
knowledge or skills. Previous research has demonstrated that multimedia-based learn-
ing, carefully structured with supplementary activities, can promote deep learning. 
Like ITSs, it is a web-based, multimedia learning platform. However, this system will 
turn students into “grinding machines,” only dealing with whatever comes their way 
and hindering creativity. It arises when problems are solved strictly according to the 
given instructions and organized requirements. However, if the system is updated with 
activities such as creating solution infographics, modifying formulas, and conducting 
forecasting activities. Alternatively, students can explore preliminary results by apply-
ing the concept of “if-then” logic, which will help develop their decision-making skills. 
In addition, activity is a relevant factor in shaping the implementation of knowledge 
schemes. Critical reflection on action after the completion of simple activities is viewed 
as a restructuring of a specific scheme or learning concept. This activity should also pro-
vide opportunities for all parties involved to equally assess and reflect on their own con-
tributions. Through activities, they not only stimulate the mind, increasing awareness of 
cognitive structures, but also promote cognitive regulation to enhance understanding of 
facts, concepts, and computational skills, ultimately improving problem-solving abilities.

5.7	 Adaptive	assessment

The most critical aspect of ITS is establishing a calibration system that can offer 
immediate and accurate feedback. The optimal solution would be to develop a cali-
bration system that can function as a “facilitator.” It will be a helpful companion for 
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students when using ITS, providing appropriate feedback, and serving as an effective 
monitor. Therefore, this component should involve multimodal data fusion. FNN is 
the right choice because it does not have any issues with the orientation of the input 
data. Furthermore, FNN can be configured with sensors to serve as a recognition 
system and to receive data inputs. FNNs have flexible properties and can be modi-
fied according to data and measurement purposes. The issue with current conven-
tional ITS is that they only offer feedback at the conclusion of the learning process. 
The assessment does not provide a comprehensive overview of the entire learning 
process. It lacks an initial assessment at the beginning of the learning process and 
does not assess the relationship between all the learning processes. Therefore, the 
ideal system is equipped with learning style and knowledge mastery analysis, learn-
ing situation assessment, learner state assessment, and, most importantly, can also 
accurately predict outcomes as a result of integrating all the previous assessments.

The fundamental principle of learning is to impart new knowledge or skills to stu-
dents and to assess the effectiveness and suitability of instructional content. The pri-
mary focus of this framework’s growth remains the delivery and evaluation aspects of 
each learning session, which are being modified and strengthened. The delivery aspect 
is enhanced through neuroscience-based mechanistic strategies, while the evaluation 
aspect is modified by implementing FNNs. The seven elements of motivation, activa-
tion, regulation, execution, memorization, interactivity, and adaptive assessment that 
were introduced will ensure the delivery of mathematics problem-solving skills. Their 
effectiveness is achieved through the ITS system. The transformation of the delivery 
system through the neuroscience mechanistic strategy involves six elements: motiva-
tion, activation, regulation, execution, memorization, and interactivity. This approach 
ensures that the true potential of students is taken into account and promotes deep 
learning. In contrast to the existing conventional strategy, the elements are separated. 
For example, in the current ITS system, students only follow the available instruc-
tions, but they do not take advantage of the students’ potential, and their thinking 
processes are neglected. There is also an ITS module that focuses solely on creating an  
attractive interface, but it neglects to coordinate students’ thinking, thus hindering 
their ability to customize their learning based on their needs. By prioritizing the six 
elements mentioned earlier, the interconnectedness between students, their minds, 
and the system will improve. This goes beyond students simply navigating the system 
and following all the instructions to complete the task. The assessment aspect is also a 
key point in learning, not only in ITS applications. Therefore, this aspect necessitates 
an adaptable and flexible platform. Therefore, it is recommended that FNNs enhance 
the measurement of certain constructs in ITS, as the system is capable of develop-
ing this evaluation component. The adaptive nature of FNNs allows them to be used 
based on the orientation of the data and the purpose of measurement. The ability 
to receive input through sensors or data input is very useful for evaluating various 
aspects, such as the cognitive trajectory and behavioral performance of students. For 
instance, implementing a sensor on the front camera of the screen enables the ITS 
system to recognize the gestures and facial expressions of students, thereby assess-
ing their levels of interest, enjoyment, and motivation. Furthermore, the capability of 
FNNs to process data instantly and solely utilize feed data makes this system safer and 
less susceptible to vulnerabilities. Then, students will continue to receive immediate 
and timely feedback, which can be used as support for intervention if necessary.

In practice, enhancements and adjustments to the ITS system make it poten-
tially more widely applicable and less reliant on specific expertise or abilities. Six 
elements of neuroscience mechanisms and one element of intelligence analysis can 
be adjusted based on usage and objectives. For instance, if this ITS is used to teach 
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experimental skills or practical work in vocational training, interactive elements in 
the instructional model within the ITS must be combined with suitable evaluation 
components. In short, this framework is ready for application and highly adaptable. 
Several constraints exist, such as the need for specialized research to translate all 
aspects of the neuroscience-mechanistic strategy. For instance ensuring appropriate 
levels of activity is necessary to implement these elements. Consequently, a signif-
icant amount of time is required to develop the system’s content. In this context, 
there may also be variations in the weighting of elements depending on the skills 
being presented. Unequal conditions may also arise if it is applied to other subjects. 
However, the assessment component will continue to be relevant and appropriate 
through the implementation of fuzzy neural networks.

6	 CONCLUSION

To provide guidance for designing and developing ITS or e-learning systems 
for competence development, this paper initially explores the evolution of learn-
ing theory in conjunction with advancements in computer technology and AI. This 
paper discusses the concepts and design models of ML, ITS, and other technologies, 
including NNs and their modifications. Here, the development of the methodology 
required to design a learning system that is adaptive for individuals is discussed. 
Second, drawing on common elements from previous frameworks, this conceptual 
framework has been developed to establish a more comprehensive learning system 
by emphasizing seven key elements: motivation, activation, regulation, execution, 
memorization, interactivity, and adaptive assessment. These seven elements are 
important as catalysts for other expertise related to learning and student interac-
tion, aiming to make the ITS learning system more intelligent, ideal, and responsive 
to students. Finally, this conceptual framework can serve as a guide for designing 
intelligent adaptive learning systems. Advances in technology, sensors, and data 
analytics now enable the new generation to develop more capable intelligent learn-
ing systems. The neuroscience approach, with the conceptual framework outlined 
above, is beginning to demonstrate the utility and effectiveness of intelligent learn-
ing systems in various fields of use, particularly for critical subjects and complex 
skills. With a comprehensive understanding of system design and development, it is 
highly effective and applicable in today’s digital learning environment. In addition 
to being able to adapt the way we learn and train to meet the diverse educational 
and training needs of society.
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