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PAPER

Enhanced Water Quality Prediction in the Yellow River 
Basin: The Application of the HHO-LSTM Model

ABSTRACT
In the pivotal water resource region of the Yellow River Basin in China, precise prediction 
of water resources is essential for their effective and rational management. This study 
introduces a novel approach to water resource prediction by employing the Harris Hawks 
Optimization-Long Short-Term Memory (HHO-LSTM) model. This method overcomes the con-
straints faced by traditional techniques in processing time series data and various variable 
factors. It encompasses a comprehensive description of the multi-source hydrological data 
collection process within the Yellow River Basin, followed by meticulous data preprocessing. 
The data set for this study includes estimates of four critical water quality parameters, and the 
efficacy of the model is gauged through the mean squared error (MSE) and root mean squared 
error (RMSE) metrics. This facilitates the projection of future water quality trends in specific 
areas by leveraging historical water quality data. The HHO-LSTM model has demonstrated 
outstanding accuracy and robustness in predicting water quality across diverse temporal 
scales and water resource variables, marking a significant advancement in water resource 
management within the Yellow River Basin. This approach not only enhances current man-
agement strategies but also contributes valuable insights for ongoing water resource research 
and decision-making processes.

KEYWORDS
water quality, prediction model, Harris Hawks optimization, long short-term memory, Yellow 
River Basin

1	 INTRODUCTION

The Yellow River Basin, a vital water resource region in China, plays a pivotal role 
in supporting the livelihoods and economic activities of its populace [1–5]. Recent 
rapid economic growth and urbanization in China have intensified water pollution 
in the Yellow River, posing significant risks to the ecological environment and the 
sustainability of the basin’s water resources, thereby impacting resident lives [6, 7]. 
This situation highlights the critical need for precise water quality prediction in the 
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Yellow River Basin as a cornerstone for the development of effective water resource 
management strategies and the ability to meet future challenges.

Historically, water quality prediction methodologies largely depended on statisti-
cal models, including the autoregressive integrated moving average model (ARIMA), 
regression analysis, grey systems, and least squares support vector machines. These 
approaches are known for their strong interpretability and high computational effi-
ciency, yet they demonstrate inherent limitations in processing complex non-linear 
and temporal relationships [8–14]. Additionally, the effectiveness of traditional meth-
ods is often diminished due to the geographical complexity and climatic variability 
characteristic of the Yellow River Basin [15]. With the evolution of artificial intel-
ligence, machine learning techniques have increasingly been recognized for their 
potential in water quality prediction. This includes the use of neural networks, deci-
sion trees, random forests, and support vector machines [16]. These advanced meth-
ods are aptly suited for intricate non-linear systems and are applicable for medium- to 
long-term water resource predictions. However, they require substantial training 
data and are susceptible to overfitting in instances of high model complexity [17, 18].

The inherent geographical complexity and climatic variability of the Yellow River 
Basin present substantial challenges to the efficacy of traditional methods in fore-
casting future water resource variations. This scenario has escalated the emphasis 
on and research into neural network technology for water quality prediction, as 
these technologies demonstrate a heightened capacity for processing complex data 
sets [19]. Neural network models, particularly when fed with historical water quality 
data, have been recognized for their potential in accurately predicting water quality 
scenarios [20]. However, conventional neural network models frequently encoun-
ter issues such as gradients vanishing or exploding, particularly when dealing with 
extended data sequences. In this context, LSTM networks, equipped with memory 
units, are adept at capturing long-term dependencies. LSTM has a wide range of 
applications in predicting water resources by analyzing and discerning potential 
long-term trends and cyclic variations in water quality data [21, 22].

Despite LSTM’s achievements across various domains, its limitations become pro-
nounced when addressing complex hydrological systems, such as those exemplified 
by the Yellow River Basin. To mitigate these limitations, the present study integrates 
HHO with LSTM, formulating the innovative HHO-LSTM water resource prediction 
model. We use the HHO algorithm to globally search and optimize LSTM parameters. 
This is crucial for finding the best parameter settings and improving the effective-
ness of the water quality prediction model [23]. The HHO-LSTM model combines 
the benefits of managing temporal and non-linear relationships with global opti-
mization, which improves both the accuracy and generalizability of water quality 
predictions. The model’s versatility and adaptability further empower it to deliver 
more precise forecasts of water resource fluctuations in the Yellow River Basin.

2	 WATER	QUALITY	PREDICTION	MODEL	UTILIZING	HHO-LSTM

2.1	 LSTM	model

The LSTM model, a variant of recurrent neural networks, is specifically engi-
neered to overcome the challenge of long-term dependencies inherent in traditional 
recurrent neural networks (RNNs). This model is structured with four distinct neural 
network layers, each functioning interactively in a complex manner rather than as 
isolated, simplistic layers. LSTM processes information from preceding moments, 
involving two key types: the cell state and the hidden layer state. The model employs 

https://online-journals.org/index.php/i-joe


 6 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 5 (2024)

Wu et al.

a triad of gate mechanisms, namely, a forget gate, an input gate, and an output gate. 
These gates are instrumental in regulating both the transmission and updating pro-
cesses of the cell state and hidden layer state information [24]. Figure 1 delineates 
the LSTM hidden layer structure, where Ct−1 and Ct signify the cell state information 
at times t − 1 and t, respectively, and C

t
 is the candidate update information at 

time t. Similarly, ht−1 and ht represent the hidden layer state information at times 
t − 1 and t, respectively, with X indicating the input value at time t. The sigmoid func-
tion σ is applied here, with ft, it, and ot functioning as the control coefficients for the 
respective gates.

Fig. 1. Hidden layer structure of LSTM

The role of the forget gate is primarily to ascertain the degree to which cell state 
information Ct−1 from time t − 1 is retained, which is contingent upon the value of ft. 
This value, ranging between 0 and 1, is computed using the inputs Xt and ht−1. A value 
of ft closer to 0 implies a greater exclusion of information from Ct−1, whereas a value 
nearing 1 suggests a higher retention of information [25]. The operations of control 
coefficients it and ot are analogous to that of ft. The input gate is tasked with deter-
mining the information to be incorporated into Ct, while the output gate governs the 
release of hidden layer state information h at time t. The mathematical representation 
of LSTM involves parameters such as weights (Wf, Wi, Wt, Wo) and biases (bf, bi, bt, bo).

 ft = σ (Wf, [ht−1, Xt], bf) (1)

 it = σ (Wi, [ht−1, Xi], bi) (2)

 C W h X b
t C t t C
�

�
tanh ( ,[ , ], )�

1
 (3)

 C f C i C
t t t t t
� � � �

�1
  (4)

 ot = σ (Wo, [ht−1, Xt], bo) (5)

 ht = ot ⋅ tanh(Ct) (6)

2.2	 Principle	of	the	HHO	algorithm

Researchers designed the HHO algorithm as a metaheuristic approach for opti-
mizing function values, inspired by the distinctive group hunting behavior of Harris’s 
Hawks [26]. It stands out for its operational simplicity, minimal need for parameter 
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adjustment, and robust convergence capabilities [27]. The HHO algorithm operates 
through three sequential stages.

In the first stage, referred to as the global search phase, a notable dispersion is 
observed among the Harris Hawks within their group. During this phase, individ-
ual hawks engage in prolonged periods of waiting and observation, employing dual 
strategies for prey detection [28].

 X t
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The computational formula for this stage incorporates a randomly selected indi-
vidual Xrand from the group, the optimal individual Xr, and the mean position Xm of the 
population, utilizing random values q, r1, r2, r3, r4 within the [0, 1] range. The parameters 
ub and lb represent the upper and lower bounds of the population size, denoted by N.

The second stage marks the transition from global search to localized exploita-
tion. This phase is governed by the formula (9), where E0, a random number within 
the range of [−1, 1], signifies the prey’s escape energy. The variable t represents the 
current iteration, while T indicates the maximum number of iterations.

 E = 2E0 (1 − t/T) (9)

The third stage, known as the local exploitation phase, sees the Harris Hawks adopt 
four distinct attack strategies. These strategies are formulated based on the prey’s escape 
maneuvers and the Hawks’ pursuit tactics. They encompass soft besiege, hard besiege, 
progressive rapid dive soft besiege, and progressive rapid dive hard besiege [29].

2.3	 Development	of	the	HHO-LSTM	water	quality	prediction	model

The HHO-LSTM model represents a sophisticated enhancement and optimization of 
the conventional LSTM model. We use the HHO algorithm, inspired by biomimetics and 
emulating the hunting behavior of Harris’s Hawks, to optimize parameters within the 
LSTM framework [30]. The application of the HHO algorithm in the HHO-LSTM model 
notably augments the training speed and overall performance of the LSTM model.

Comprising three integral components—the HHO algorithm, the construction of 
the LSTM network, and the amalgamation of these elements—the HHO-LSTM model 
for water quality prediction adheres to a structured framework. Figure 2 delineates 
this framework, outlining the subsequent steps:

Step 1: Data acquisition stage. In this initial stage, datasets pertinent to water 
quality prediction are amassed. These datasets typically include historical 
data related to water quality monitoring, along with additional data concern-
ing variables that may influence water quality.

Step 2: Data preprocessing stage. Subsequently, the acquired data undergoes a 
comprehensive preprocessing phase. This phase encompasses data cleaning, 
addressing missing and outlier values, and executing feature engineering. The 
primary objective of this stage is to refine the data to conform to the input 
requirements of the model and to optimize its predictive accuracy.
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Step 3: Feature engineering stage. The final stage involves the extraction 
and selection of relevant features for water quality prediction. This process 
is meticulously tailored to align with the specific requirements of the task at 
hand and the unique characteristics of the data.

Step 4: Construction of the HHO-LSTM model.
a) Initialization of HHO algorithm parameters, including population size, num-

ber of iterations, and exploration rate, is systematically conducted.
b) The structure of the LSTM neural network is established, encompassing the 

specification of input, hidden, and output layers. Key LSTM hyperparameters, 
such as the number of neurons in the hidden layers, learning rate, iteration 
count, batch size, and the number of LSTM layers, are precisely defined.

c) Integration of the model is achieved by amalgamating the HHO-optimized 
LSTM with the specific requirements of water quality prediction.

d) Data segmentation into training and test sets is carried out, typically utilizing 
a time-series split approach for this purpose.

e) The training phase involves using the training set to iteratively refine the 
model parameters.

f) Monitoring of the training process is conducted, with particular focus on the 
changes in the loss function, ensuring the model’s gradual convergence on 
the training data.

g) Evaluation of the model’s effectiveness is performed on the test set, providing 
insights into its performance on previously unseen data.

h) Quantitative analysis of performance metrics, including RMSE and mean 
absolute error (MAE), is undertaken.

i) Comparative visualization analysis is executed, juxtaposing predicted results 
against actual observations to elucidate the model’s predictive capabilities.

j) Optimization of model parameters is performed based on the outcomes of 
these assessments to enhance overall performance.

k) The application of techniques such as cross-validation is employed to thor-
oughly assess the model’s generalizability.

l) Finally, the fully trained HHO-LSTM model is applied to real-world water 
quality prediction tasks, with subsequent generation and analysis of the 
prediction results.

Fig. 2. HHO-LSTM water quality prediction modeling
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3	 PERFORMANCE	ANALYSIS	OF	PREDICTIONS

3.1	 Data	source	and	processing

For this investigation, real-time data obtained from the national surface water 
quality automatic monitoring system of the China Environmental Monitoring 
Station was utilized as the primary data source. The methodology employed for data 
processing comprised the following steps:

Step 1: Acquisition of data. Data for daily water quality monitoring, specif-
ically from the Yuxi River Monitoring Station in Yulin, Shaanxi, within the 
Yellow River Basin, were collected for the period between June 18, 2021, and 
December 31, 2023. This dataset, which was pivotal for model testing, included 
various indicators such as water monitoring data, pH, temperature, and dis-
solved oxygen levels. Table 1 presents an exhaustive analysis of this dataset.

Table 1. Analysis of Yuxi River water quality dataset

Temperature pH Dissolved Oxygen

Count 426.000000 426.000000 426.000000

Mean 11.456338 8.333756 8.997653

Std 8.003415 0.150905 1.966463

Min 0.600000 7.810000 4.290000

25% 3.200000 8.250000 7.255000

50% 11.050000 8.350000 9.280000

75% 19.000000 8.460000 10.762500

Max 30.800000 8.720000 12.010000

Step 2: Selection of research focus. Upon comparison with the Surface Water 
Environmental Quality Standards, it was determined that the dissolved oxygen 
content significantly influenced the water quality classification of the Yuxi 
River. Consequently, the dissolved oxygen content was identified as the pri-
mary parameter for assessing the water quality of the Yuxi River. The dissolved 
oxygen content of the water quality of the Yuxi River is related to the season, 
temperature, and climatic factors, and the general trend is that dissolved oxygen 
is low when the temperature is high and high when the temperature is low, and 
the change of its dissolved oxygen in the last three years is shown in Figure 3.

Fig. 3. Changes in dissolved oxygen content in Yuxi River
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Step 3: Normalization of data. Normalization of the dissolved oxygen data from 
the Yuxi River was performed. This step was crucial in mitigating the impact 
of outliers on model convergence and facilitating both the speed and stability 
of the HHO-LSTM model’s convergence. The normalization adjusted the input 
values for the HHO-LSTM model to range between [−1, 1]. The employed nor-
malization formula, depicted as Equation (10), is formulated as follows:

 X
X X

X X
n
�

�

�
min

max min

 (10)

where, X denotes the original data, Xn the normalized data, Xmax the maximum 
value within the original data, and Xmin the minimum value of the original data.

Step 4: Segmentation of data into training and validation sets. The divi-
sion of the sample data into training and validation sets was undertaken at a 
ratio of 6:4. Explicitly, 60% of the sample data was allocated for the purpose of 
training the model. The remaining 40% of the data was utilized for validation, 
serving to assess the model’s performance.

3.2	 Experimental	implementation	of	predictive	models

Predictive experiments were conducted using both the LSTM and HHO-
LSTM models, which were implemented in Python, to analyze the water 
quality data of the Yuxi River. Training of these models on the dataset was per-
formed using the Adam optimizer, with a specified learning rate of 0.001 and 
an epoch setting of 100. This process culminated in the derivation of the final  
experimental outcomes.

3.3	 Fit	results	of	the	training	set

The performance of both HHO-LSTM and LSTM models was quantitatively 
assessed using MAE and RMSE as evaluation metrics, with the results detailed in 
Table 2. It was observed that both models demonstrated relatively low error rates in 
fitting the training set. Notably, the HHO-LSTM model exhibited superior predictive 
performance compared to the LSTM model, reflected in a reduction of RMSE by 
0.002 and MAE by 0.001.

Table 2. Evaluation of model loss values

Model RMSE MAE Evaluation Value

LSTM 0.183 0.033 0.881621

HHO-LSTM 0.182 0.031 0.882438

3.4	 Prediction	results	of	the	validation	set

In order to elucidate the disparities in the predictive capabilities of the HHO-
LSTM and LSTM models for water quality, a comparative analysis was conducted. 
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Figure 4 presents this comparison, showcasing the alignment of the predictions from 
both the HHO-LSTM and LSTM models with the actual water quality data. It was 
observed that both models proficiently forecasted the periodic fluctuations in water 
quality. However, a higher degree of accuracy in predictions was noted in the case of 
the HHO-LSTM model, as evidenced by its prediction curve more closely mirroring 
the actual data trends.

Fig. 4. Comparative analysis of HHO-LSTM and LSTM water quality prediction models

4	 CONCLUSION

Combining the HHO algorithm with the LSTM model to create the HHO-LSTM 
water quality prediction model significantly improves how we optimize the LSTM 
model’s parameters. This advancement has effectively addressed the previously 
identified limitations in accurately predicting water quality, particularly in terms of 
precision. The results show that the HHO-LSTM model is very accurate in predicting 
the dissolved oxygen content of the Yuxi River. It’s better at fitting function curves 
than the traditional LSTM model. Also, compared to the LSTM model, the HHO-LSTM 
model performs better, with lower MAE and RMSE. In practical scenarios, factors 
such as outliers, missing values, or inconsistencies in data quality may influence 
the model’s efficacy. Future research endeavors might focus on the development of 
more sophisticated data cleaning and preprocessing techniques aimed at enhanc-
ing data quality and consistency. Furthermore, addressing the constraints associated 
with small sample datasets is essential. In this context, the exploration of data aug-
mentation methods to broaden the dataset and bolster the model’s generalizability 
is suggested as a viable research direction.
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