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PAPER

Deep Reinforcement Learning Approach 
for Cyberattack Detection

ABSTRACT
Recently, there has been a growing concern regarding the detrimental effects of cyberattacks 
on both infrastructure and users. Conventional safety measures, such as encryption, firewalls, 
and intrusion detection, are inadequate to safeguard cyber systems against emerging and 
evolving threats. To address this issue, researchers have turned to reinforcement learning 
(RL) as a potential solution for complex decision-making problems in cybersecurity. However, 
the application of RL faces various obstacles, including a lack of suitable training data, 
dynamic attack scenarios, and challenges in modeling real-world complexities. This paper 
suggests applying deep reinforcement learning (DRL), a deep framework, to simulate mali-
cious cyberattacks and enhance cybersecurity. Our framework utilizes an agent-based model 
that is capable of continuous learning and adaptation within a dynamic network security 
environment. The agent determines the most optimal course of action based on the network’s 
state and the corresponding rewards received for its decisions. We present the outcomes of 
our experimentation with the application of DRL on a specific model, double deep Q-network 
(DDQN), utilizing policy gradient (PG) on three distinct datasets: NSL-KDD, CIC-IDS-2018, and 
AWID. Our research demonstrates that DRL can effectively improve cyberattack detection 
outcomes through our model and specific parameter adjustments.

KEYWORDS
network security, deep reinforcement learning (DRL), cyberattacks, cyber defense, double 
deep Q-network (DDQN), policy gradient (PG)

1	 INTRODUCTION

With recent breakthroughs in artificial intelligence (AI), both defensive and 
offensive parties have started to utilize AI techniques, especially machine learn-
ing (ML) methodologies. As technology advances and the complexity of systems 
increases, cybersecurity defenders must constantly adapt their strategies and tactics. 
Sophisticated attackers use ML approaches to identify vulnerabilities, evade detec-
tion, and amplify the impact of their attacks. Defenders use adaptive ML approaches 
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to prevent and minimize the impact of threats or damages. Defenders have widely 
employed supervised and unsupervised learning approaches for intrusion detec-
tion, spam filtering, zero-day vulnerability forecasts, and malware detection 
[1, 2]. Nevertheless, typical ML approaches cannot provide sequential and dynamic 
responses to cyberattacks with unidentified patterns and rapidly changing behav-
iors. In the real world, creating autonomous cyber system protection plans and 
recommending actions is a challenging task. Providing decision support for cyber 
system security mechanisms requires integrating the dynamics between attackers 
and defenders and characterizing the uncertainty in the system state dynamically. 
To discover a solution to this issue, reinforcement learning (RL), a branch of ML, is 
a learning model that can learn from past experiences by exploring and exploiting 
changing and unfamiliar environments. RL provides ample resources for defend-
ers to execute optimal sequential actions with minimal prior information about the 
environment or the attacker. RL techniques enable the defender to capture vari-
ous protective and defensive activities, whether discrete or in high-dimensional 
continuous state space, and diverse system states. RL fits cyberspace well, where 
cyberattacks are becoming complex and rapidly spreading [3, 4]. In the last few 
years, the advancement of deep learning (DL) has spurred the effective integration 
of DRL. DRL aims to utilize a neural network to estimate complex functions from 
high-dimensional inputs. Integrating DL improves traditional RL approaches for 
capturing the vast scale of various network-connected systems, such as wireless 
networks and Internet of Things devices [5]. We utilized the DRL techniques, dou-
ble deep Q-network (DDQN), and policy gradient (PG) to detect intrusions on the 
CIC-IDS-2018, AWID, and NSL-KDD datasets. We compare the results with previous 
studies, considering various standard criteria such as precision, accuracy, F1 score, 
and recall. The comparison findings reveal that our proposed framework, which 
leverages the DDQN technique, outperforms modern and comparable models. The 
major contributions of this study are to highlight these benefits and present them 
as a viable alternative to traditional ML models. Among the perks are: (1) the neural 
networks used for constructing the classifier: value, policy, and Q-functions are sim-
ple and fast, making them ideal for new high-demand networks; (2) the reward func-
tion used for detection is highly flexible and does not need to be differentiable; (3) 
the developed neural network (NN) can be deployed on modern high-performance 
distributed systems; and (4) we provide intrinsic insights into the optimal methods 
for adjusting various hyperparameters of deep reinforcement learning techniques 
(e.g., decay rate, learning rates, discount factor, etc.) to enhance network cyberattack 
detection tasks; (5) the model’s design facilitates easy parameter updates. The paper 
is structured as follows: Section 2 discusses related works. Section 3 describes the 
dataset used in the tests. Section 4 provides a detailed description of the suggested 
model. Section 5 presents the gathered results, while Section 6 provides conclusions.

2	 RELATED WORK

Q-learning is a model-free technique that has received acclaim as a viable solu-
tion, particularly in complex decision-making processes. The benefits of Q-learning 
encompass its ability to achieve favorable outcomes, its aptitude for learning, and 
the possibility of interaction with other models. Numerous research endeavors 
have delved into the application of machine learning, including deep reinforcement 
learning (DRL), in cybersecurity. The researchers in [6] examined the application 
of multiple DRL algorithms, such as DDQN, deep Q-network, actor-critic, and PG, 
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in intrusion detection using the AWID and NSL-KDD datasets. [7] The researchers 
proposed an approach for network intrusion detection that blends RL with a deep 
feed-forward neural network. The model can autonomously learn in a network 
environment and identify various intrusions using an automated trial-and-error 
technique. The empirical findings presented in this paper are based on the NSL-
KDD dataset. In [8], the authors introduce a GAN framework augmented with DRL 
to investigate the generation of semantically coherent samples. A DRL agent is used 
to challenge the GAN’s discriminator, which functions as a botnet detector. The dis-
criminator is trained on the perturbations intentionally created by the agent during 
the GAN training process. Utilizes the GAN generator to achieve convergence faster 
than in scenarios where DRL is not employed. In order to conduct experiments, three 
distinct botnet datasets, namely CIC-2017, ISCX-2014, and CIC-2018, are utilized. In 
[9], the authors compare neural episodic control to double-deep Q-networks (DQNs) 
and DQNs for cyber security in software-defined networks. The results suggest that 
both algorithms are effective network defense methods. Given the lack of significant 
differences between the two techniques, DDQN is preferred due to its simplicity. The 
authors of [10] focus on applying DRL to enhance cybersecurity defense strategies 
against strategic multiple-stage attackers. A DRL defense agent aims to compute con-
text-aware defensive strategies by learning network and multi-stage attack patterns 
while minimizing effects on benign system operations. The Dragon DRL method 
developed by the authors in [11] aims to enhance autonomous grid operation and 
attack detection capabilities by effectively managing power operations and auto-
matically recognizing cyberattacks. To evaluate the performance of DRAGON, the 
researchers conducted simulations of various attack scenarios on the IEEE 14-bus 
power transmission system paradigm.

3	 DATASET DESCRIPTIONS

3.1	 NSL_KDD datasets

The standard KDD99 network traffic dataset contains duplicated data that can 
negatively impact the effectiveness of the training model. To tackle this challenge, 
Tavallaee et al. introduced the NSL-KDD dataset in 2009 [12]. The dataset eliminates 
superfluous information from the original dataset and adjusts the data quantity in 
the testing and training sets compared to the authentic dataset, improving the ratio-
nality of the KDD dataset and enhancing model training performance. The training 
dataset consists of 125973 records, while the test dataset contains 22544 records and 
41 features that can be classified as either attacks or normal. The dataset contains 
four categories of attacks: U2R, R2L, DOS, and probe attacks. In this paper, we employ 
DDQN models on the NSL-KDD dataset to acquire essential performance metrics, 
including accuracy, recall, precision, and F1, for attack detection. All the findings are 
based on the training dataset, which consists of 122550 records, and the test dataset, 
which consists of 22544 records [13].

3.2	 AWID datasets

The Aegean wi-fi intrusion dataset (AWID) is freely available, containing normal 
network traffic and three attacks on IEEE 802.11 networks. Among the various data-
sets offered by AWID [14], we have selected the AWID-CLS-R dataset, which provides 
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distinct training and test datasets. This dataset includes four labels for classification: 
normal, injection, flooding, and impersonation. It contains 154 features, 1795574 
samples for training, and 575642 samples for testing. We have reduced the number 
of features to 24 by removing those with null or constant values, as well as features 
with sample-specific network addresses that do not apply to the test data. The con-
tinuous features have been standardized to a range of 0 to 1, and the categorical 
features have been encoded. It is vital to note that this dataset is highly imbalanced, 
with 91% of the samples being normal and only 9% associated with anomalies, such 
as 2.7% flooding, 2.7% impersonation, and 3.6% injection. The level of imbalance 
in the AWID dataset is even greater than that of the NSL-KDD dataset, although the 
label distribution in the dataset is similar for both the testing and training datasets. 
Hence, the AWID and NSL-KDD datasets present distinct challenges for classification 
algorithms. In this paper, we have applied the DDQN model to the AWID dataset and 
evaluated its effectiveness based on key measures such as F1 score, accuracy, preci-
sion, and recall, specifically for detecting attacks. All the findings presented in this 
study are based on the training dataset, which includes 1339406 samples, and the 
test dataset, which includes 389185 samples.

3.3	 CSE-CIC-IDS2018 datasets

The University of New Brunswick compiled a dataset for analyzing DDoS data, 
covering seven distinct assault scenarios: Web attacks, DDoS, Heartbleed, brute-
force attacks, DoS, penetration, and botnet attacks. To simulate these assaults using 
50 machines, the target organization comprised five departments, 420 workstations, 
and 30 servers. The dataset itself encompasses 16000,000 instances collected over ten 
days. In terms of content, it includes 80 characteristics derived from captured traffic 
using CICFlowMeter-V3 and the system logs of each computer and network traffic 
[15]. In this study, DDQN models are applied to the CSE-CIC-IDS dataset to assess key 
performance measures such as accuracy, F1, recall, and precision for detecting two 
label values: normal and anomalous. The results are based on a training dataset com-
prising 6311436 samples and a test dataset comprising 1577859 samples.

4	 MODEL DESCRIPTION

This section offers an overview of the DRL model examined in this study. Deep 
learning models, such as neural networks, use approximators to represent the value 
functions and policies in reinforcement learning. The foundation of reinforcement 
learning lies in the Markov decision process (MDP) theory, which includes various 
components: a collection of states (s), a collection of possible actions (A) that the agent 
can take in the environment, a transition function (T) that governs the movement 
from one state to another, and a reward function (R) that assigns a value to every 
state-action pair. The transition function (T) represents the probability distribution 
of transitioning to a new state (s0) from the current state (s). The reward function (R) 
provides an absolute value for every state-action pair, and (g) is the discount factor 
value between 0 and 1 that indicates the significance of future rewards. The transi-
tion function (T) satisfies the Markov property in an MDP, indicating that the prob-
ability of transitioning to a new state is solely determined by the action and current 
state, regardless of past events. Once an MDP is specified, a policy is established to 
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map every state to an action in order to discover the optimal policy that maximizes 
the expected total rewards. The optimality requirement can be measured by simply 
summing the rewards, taking an average, or applying a discount factor to priori-
tize immediate rewards. An MDP provides a theoretical framework for an agent 
to interact with its environment and make sequential decisions. The environment 
carries out the transition and reward functions while the agent executes the policy. 
The interaction between the environment and the agent is typically divided into 
discrete time steps. The agent takes an action, which leads to a change in state and 
potentially receiving a reward. The connection between policy and optimality crite-
ria is established by creating a value function, which estimates the value associated 
with each state. The value function represents the advantages of being in a partic-
ular state, assuming that the current policies will be followed. Two types of value 
functions can be employed: the V-function, which assigns a value to every state, 
and the Q-function, which assigns a value to each state-action pair. The Q-function 
is calculated by adding the total reward for a specific state-action combination and  
the value of the V-function for the subsequent state generated by the environment. 
In this scenario, we acquire knowledge of the most efficient policy directly. We 
can determine the transition probabilities from one state to another using policy 
gradient-based strategies. Policy gradient techniques utilize descent to maximize the 
predicted total of discounted rewards for a given policy, thereby enabling the direct 
learning of a policy function. To achieve an optimal policy, thoroughly exploring 
as much of the state action space as possible is crucial. We use the epsilon-greedy 
approach to select an optimal action with a probability of p and a random action 
with a probability of 1 – p. On the other hand, action probability exploration involves 
the policy providing a probability for each action, enabling sampling based on this 
distribution. It can be inferred that policy functions or learning values involve 
numerous iterative processes, with each iteration resulting in a modification of the 
function. DRL approaches utilize function approximators based on various types of 
neural networks.

4.1	 Proposed models

In the realm of RL, DDQN outperforms DQN. It addresses a critical issue with 
DQN: overestimating action values, which can lead to poor decisions. The issue with 
DQN is that it estimates the Q-values (anticipated future rewards) for each action 
and state using a single neural network. This network determines the next action 
and updates the Q-values based on previous experiences. This connection can result 
in an overestimation bias, where the network overestimates Q-values, especially for 
infrequently selected actions. This may cause the agent to exhibit poor behavior 
more frequently. DDQN employs two distinct networks: The main network calcu-
lates the Q-values for all actions in a state. The target network gradually updates its 
settings from the main network and functions as a “frozen” version. Action selection 
and estimation are separate processes. The main network selects the action with 
the greatest Q-value in the current state as the next action. However, the action is 
decided using the target network to update the Q-values of the main network. This 
removes the update process’s direct effect on potentially inflated Q-values. Decreased 
overestimation bias: This results in a more accurate Q-value estimate and perhaps 
greater performance, reducing the risk of “catastrophic forgetting,” where the agent 
might forget previously learned optimal actions.
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4.2	 Models detail

This section comprehensively explains the DRL model used for this investigation. 
The agent interacts with its surroundings by taking actions, monitoring rewards, 
and predicting future states. A replay buffer stores these experiences (state, action, 
reward, and future state). The buffer enables us to randomly select batches of expe-
riences for learning, ensuring that recent events do not unduly influence the agent. 
A Q-function identifies the predicted highest reward based on a given action and 
state. Consequently, Q(s, a) depends on both the state and action combinations. Once 
the Q-function is established, we can deduce the policy function, which defines what 
action to perform in every state. The policy function relies on the state and is gener-
ated from the Q-function in the following way:

	 Policy(s) = arga max (Q(s, a))	 (1)

An epsilon-greedy policy is a training technique that enables the agent to explore 
potential actions and determine the best policy as the number of explorations grows. 
It involves selecting an action at random with a probability of ε or predicting it 
with a probability of (1 − e). The policy π establishes a probability distribution for 
selecting different actions based on every states. Once the fixed policy is chosen, the 
distribution of the reward sequence is determined. The policy is evaluated using the 
action value function, which computes the potential cumulative adversarial reward 
obtained by acting in a specific state and following the policy. An MDP solution is 
employed to derive the optimal policy (π*), maximizing the potential lower reward 
across all states. The following equation elucidates the unique characteristics and 
existence of the fixed-point solution to the ideal Bellman equation.

	 Q*(a, s) + R (a, s) + g ∫s′ T (S′/s, a) maxQ* (a′, s′)	 (2)

The action effectively optimizes the Q-value, thereby enhancing its performance. 
The method begins with a standard sample that includes the current state (st), the 
correct label for that state (at), and the subsequent state (st + 1). This n sample is just 
one of the many samples in a mini-batch, which is a subset of randomly chosen 
samples from the dataset. Every training iteration uses a different mini-batch, ran-
domly sampled from the dataset. Before starting the procedure, every mini-batch 
is created by randomly rearranging the dataset and picking (n + 1) using a random 
index (t). During each training iteration, the samples will be processed in a mini-
batch and a new mini-batch will be created. The Q-function is approximated using 
a neural network (NN) as a function approximator. We utilized three hidden layers. 
Each layer contains Dense (neurons = 124, activation = “ReLU”), Dense (filters = 124, 
activation = “ReLU”), and Dense D (filters = 124, activation = “ReLU”). The activation 
function of the output layer is designed to be linear to achieve a positive Q-value. The 
NN is trained using a Huber loss function, which calculates the difference between 
the Q-value predicted by the NN for the current state ( ˆ )q

t
 and a reference value, qref . 

This reference value is calculated by adding the current reward (rt) to the Q-value for 
the following state ( ˆ )q

t+1
, which is then multiplied by a discount factor (λ). A reward 

of 1 or 0 is associated with a correct or incorrect prediction, respectively. The label 
value for the current state is ( *)a

t
, while the anticipated value is represented as ( )â

t
. 

If the values are equal, the reward is 1; otherwise, it is 0. To determine the expected 
value for the current state ( )â

t
, the Q-function is iterated with the current state (st), 
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and all possible label values ({a}). This iterative process is denoted as Q(st, {a}), a 
vector of values visually depicted as a bold arrow in Figure 1.

	 Q(st, {a}) = [Q(st, {a}0), Q(st, {a}1), … Q(st, {a}p)]	 (3)

The set {a} represents all potential actions, and its cardinality is indicated 
by p. The action Q-value with the best result is chosen from the iteration argamax 
(Q (st, {a})). This selected action is then inputted into the e-greedy algorithm, which 
determines whether to choose that value with a certain probability p or a random 
action with another probability 1 − p. The result of the final stage is the expected 
action ( )â

t
. Similarly, the projected action for the following state ( )

+1
â
t

 is determined 
without considering the ε-greedy selection. The predicted action and the subsequent 
state st+1 are used to calculate qref by obtaining the Q-value for the next state ( ˆ )q

t+1
. 

The stated forecast of the Q-value for the following state ( ˆ )q
t+1

 can be reduced to a 
certain extent ( ˆ ) ( , { })q Q s a

t t� �
�

1 1
maxa .

Once the model is trained, the two neural networks in DDQN are utilized: one for 
implementing a current Q-function and the other for constructing a goal Q-function. 
The target Q-function is a replica of the current Q-function with synchronization 
delays, indicating that the copy is created after a specific number of training rep-
etitions. The Q-value for the following state ( ˆ )q

t+1
 is calculated using the target 

Q-function. This additional Q-function, known as the target Q-function, aims to 
prevent the shifting target effect while performing gradient descent. ( ˆ )q q

t ref�
�

1

2 
Consequently, it eliminates the recursive reliance of qref on the training network 
(Q-current). Aside from including the target Q-function, the model was trained for 
100 epochs, where each epoch corresponds to the repetitions required to cover the 
entire dataset.

Fig. 1. The DDQN model [16]

The DDQN agent controls the environment where the datasets are utilized. The 
initial phase involves initializing the algorithm and the parameters of the models. 
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The values of the dataset features (F1–Fm) represent the DDQN state variables (s). It 
is worth noting that the batch size (bs) for the DDQN procedure is 100. This implies 
that for each state, 100 dataset records are acquired from memory and fed into a 
single state (s). Nevertheless, numerous state variables exist, each of which may pos-
sess a distinct value. As the number of state-value pairs increases, it becomes chal-
lenging to maintain them in a Q-table. Consequently, the DDQN agent uses a neural 
network as a function approximator to calculate Q values based on actions and 
states. The training sample (Batch n) provides the state (sn) at every discrete state, as 
depicted in Figure 2. In the concluding state, a comprehensive sequence of actions, 
states, and rewards is obtained at the end of each episode. The agents receive the 
initial batch (100 data points) throughout the training process, corresponding to the 
environment’s initial state (s1). To ensure a positive Q-value, we utilize a deep neural 
network consisting of three layers, as depicted in Figure 2, with ReLU activation for 
all layers, including the final one.

Fig. 2. The double deep Q-network (DDQN) model, which produces predictions from a deep neural network 
and states. The model produces Q-values, generating actions using the argmax of the current state’s Q-values

5	 EXPERIMENTAL RESULTS

In our tests, the proposed model based on DRL: DDNQ was applied to three data-
sets: NSL-KDD, CIC-IDS-2018, and AWID. It is important to highlight that we utilized 
the model with both two and three layers and conducted a comparison between 
them. We present the following performance measures to examine the prediction 
performance of the different models: F1 score, accuracy, precision, and recall. We 
base our definitions of these performance measures on widely acknowledged 
standards. We will give greater significance to the accuracy and F1 score due to 
the imbalanced nature of the datasets. To present the findings for the three data-
sets, we will begin with the NSL-KDD and AWID datasets and then proceed to the 
CIC-IDS-2018 dataset.

5.1	 Performance metrics

We evaluate the efficacy of the DDQN model used to detect network attacks 
by employing various metrics such as accuracy, F1 score, recall, and precision.  
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However, since it assesses the proportions of accurately identified samples, the model’s 
performance cannot be solely determined by the accuracy values. It disregards the 
misclassified samples. These metrics were established using true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) data [17]. The misidentified 
valid and attack vectors were classified as FP and FN, respectively. The TN and TP 
represent the number of genuine attack vectors that were accurately classified.

Table 1. Neural Network parameters and DDQN agent

Parameters Values Parameters Values

Number – episode 100 Minimum epsilon 0.01

Hidden_layers 3 or 2 gamma 0.001

Number – iteration 100 Decoy rate 0.99

Number_units 3 × 124 Learning_rate 0.001

Activation function ReLU Batch–size 100

Initial weight value Normal Optimizer Adam

epsilon 1

Accuracy: The metric of accuracy assesses the total count of accurate predictions 
generated by the model with respect to the overall number of predictions made. 
Accuracy metric can be calculated as shown in Equation (4).

	 Accuracy� �
� �

� � � � � �
� ��

�
� � �

�
TN TP

TN FN TP FP

�
100 	 (4)

Precision is the measure of the percentage of positive cases in relation to the 
overall projected positive cases. It indicates the model’s accuracy by determining its 
accuracy, as defined in Equation (5).

	 Precision� �
� �

� �
� ��

�
�

�
TP TN

TP FP
100 	 (5)

Recall: Ratio overall number of positive instances. This metric represents the num-
ber of correct examples the model disregarded when presenting correct instances, 
as illustrated in Equation (6).

	 Recall� �
�
� ��

�
�

TP

TP FN
100 	 (6)

F1 score: The performance metric is calculated by averaging the accuracy and 
recall scores. It considers the contributions of both values. Equation (7) illustrates 
that the F1 score is derived from recall and precision values.

	 F Score
Precision Recall

Recall Precision
1 2� � �

�
�

� � � � �
� �

�	 (7)

5.2	 Results for NSL-KDD datasets

Demonstrating the suitability of DRL models for cyberattack detection in net-
working is a significant contribution to this work. Figure 3 presents the outcomes 
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obtained from the investigation of DRL models using the NSL-KDD dataset. To 
ensure consistent percentages across all classes, we divided the dataset into 20% 
for testing and 80% for training, with the option of stratifying. 122550 samples 
were included in the training set, while 22544 samples were allocated to the test 
set. These samples were classified into five categories, encompassing 162 features. 
The findings of this study revealed that the 3-layer model produced favorable 
results. Specifically, Figure 3 displays an accuracy rate of 82.40%, an F1 score of 
81.26%, a precision rate of 81.35%, and a recall rate of 82.40%. Conversely, the 
2-layer model achieved an accuracy rate of 81.87%, an F1 score of 81.29%, a preci-
sion rate of 81.34%, and a recall rate of 81.87%. These findings confirm the model’s 
effectiveness in predicting attacks across the five classes of the confusion matrix 
depicted in Figure 7.

Accuracy F1 score precision recall

DDQN
2 Layers

3 Layers

81.87

82.4

81.29

81.26

81.34

81.35

81.87

82.4

81.87

81.29 81.34

81.87

82.4

81.26
81.35

82.4

80.6
80.8

81
81.2
81.4
81.6
81.8

82
82.2
82.4
82.6

2 Layers 3 Layers

Fig. 3. The NSL-KDD dataset’s DDQN model outcomes

The NSL-KDD dataset presents various challenges to classifiers, particularly due 
to the composition of the training and test sets. The metrics serve as the primary per-
formance indicators for an attack detection system that aims to accurately identify 
as many attacks as possible.

Table 2. Evaluation metrics of the DDQN model using the NSL-KDD dataset, broken down by class

Metric
Attack Categories

Normal DoS R2L Probe U2R

Accuracy 87.61 94.77 87.94 95.63 98.81

F1-score 86.85 91.77 39.12 79.28 21.17

Precision 80.02 95.88 51.05 80.93 25.71

Recall 94.96 87.99 31.71 77.69 20.33

5.3	 Results for AWID database

The current investigation aimed to assess the efficacy of the RL model in detecting 
cyberattacks by utilizing the AWID database. The database comprises 1339406 train-
ing data, 389,185 test data, and 67 features, ensuring the reliability of the assessment. 
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The dataset was divided into 20% for testing and 80% for training, with stratifica-
tion applied to ensure consistent percentages across all classes. Multiple classifica-
tion measures were utilized, including accuracy, F1-score, precision, and recall. The 
3-layer model achieved a top accuracy of 94.64%, a precision of 96.20%, an F1-score 
of 95.11%, and a recall of 94.64%. The 2-layer model, on the other hand, achieved 
an accuracy of 89.99%, an F1-score of 89.73%, a precision of 89.53%, and a recall 
of 89.99%. The performance of the models is depicted in Figure 4, which shows the 
accurate prediction percentages for the four classes of the confusion matrix pre-
sented in Figure 7.

Accuracy F1 score precision recall

DDQN
2 Layers 89.99 89.73 89.53 89.99

3 Layers 94.64 95.11 96.2 94.64

89.99 89.73 89.53 89.99

94.64 95.11
96.2

94.64

86
88
90
92
94
96
98

2 Layers 3 Layers

Fig. 4. Displays the AWID dataset’s DDQN model outcomes

Table 3. Presents the evaluation metrics of the DDQN model using the AWID dataset, broken down by class

Metric
Attack Categories

Normal Impersonation Injection Flooding 

Accuracy 94.67 95.84 99.29 99.46

F1-score 96.94 69.69 92.36 82.67

Precision 99.26 55.84 85.81 83.83

Recall 94.72 92.66 99.99 81.54

5.4	 Results for CIC_IDS database

The investigation explored the outcomes of the DRL model when applied to the 
CIC_IDS dataset on the fourth day of the dataset, which occurred on February 20, 
2018. This dataset was partitioned into a testing set, which comprised 20% of the 
data, and a training set, which comprised 80% of the data. The option of stratify-
ing the dataset was available to ensure consistent percentages across all classes. 
The dataset consisted of 6311436 samples for the training set and 1577859 samples 
for the test set, encompassing 37 features categorized into two groups: Benign and 
DDoS. The findings of the investigation demonstrated that the model produced pos-
itive results. As depicted in Figure 5, accuracy results revealed a 3-layer model with 
an accuracy of 98.79%, a precision of 98.96%, an F1 score of 98.83%, and a recall 
of 98.79%. Furthermore, the highest accuracy achieved with a 2-layer model was 
99.87%, along with an F1 score of 99.87%, a precision of 99.87%, and a recall of 
99.87%. These results represent the percentage of correctly predicted attacks for the 
two classes of the confusion matrix, as illustrated in Figure 7.
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2 Layers 3 Layers

Accuracy F1 score precision recall

DDQN

2 Layers 99.87 99.87 99.87 99.87

3 Layers 98.79 98.83 98.96 98.79

99.87 99.87 99.87 99.87

98.79 98.83
98.96

98.79

98

98.5

99

99.5

100

Fig. 5. CIC_IDS dataset’s DDQN model outcome

Table 4. The evaluation metrics of the DDQN model using the CIC_IDS dataset, broken down by class

Metric
Attack Categories

Benign DDoS 
Accuracy 98.78 98.78

F1-score 99.34 92.34

Precision 99.99 85.79

Recall 98.69 99.97

(NSL-KDD Datasets) (CIC-IDS-2018 Datasets)

(AWID Datasets)

Fig. 6. Environment training to reward and loss values achieved during DDQN training
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The RL consists of states, actions, and rewards in the environment during train-
ing. In other words, rewards are obtained when moving from state S1 to state S2 
with an action. When the defender counters against the attacker, the action is cor-
rect, and the reward result is high.

a) b) c)

Fig. 7. The confusion matrix in the DDQN model using the (a) NSL-KDD dataset validation of five classes: normal, R2L, DOS, U2R, 
and probe attacks, all values between 0.95 and 0.18. (b) AWID dataset validation of four classes: normal, flooding, impersonation, and injection, 

all values between 0.95 and 0.82. (c) CIC_IDS dataset validation of two classes: Benign and DDoS, all values between 0.99 and 100

Table 5 provides a comparison between the RL models and the earlier research 
in identifying and categorizing various attacks across the CIC-IDS-2018, NSL-KDD, 
and AWID databases.

Table 5. Comparison of the results with the prior studies utilizing the three datasets 
(CIC-IDS-2018, NSL-KDD, and AWID)

Research Method Datasets Acc F1 Pre Rec Features

Lopez-Martin [5] DDQN
NSL-KDD 89.78 91.20 89.44 93.03 122

AWID 95.70 93.94 92.35 95.70 24

Alavizadeh, H [6] DQL NSL-KDD 78.07 81.41 77.84 76.76 41

Caminero, G [18] AE-RL
NSL-KDD 80.16 79.40 79.74 80.16 41

AWID 95.90 96.26 97.20 95.90 24

Dong, S [19] DDQN
AWID 96.47 96.73 97.40 49

NSL-KDD 73.43 69.02 66.61 122

Ren, K [20] DQN CIC_IDS 94.11 92.51 13

Our proposal DDQN

NSL-KDD 82.40 81.26 81.35 82.40 162

AWID 94.64 95.11 96.20 94.64 67

CIC_IDS 98.79 98.83 98.96 98.79 37

6	 CONCLUSION

We introduce a reinforcement learning model, the DDQN, to detect and cate-
gorize various classes of network cyberattacks. The model is verified using three 
datasets (NSL-KDD, CIC-IDS-2018, and AWID) and employs DQNs to establish a DRL 
strategy. The DNN is integrated with reinforcement learning to interact with the 
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network environment. Network traffic is captured and analyzed to detect malicious 
network payloads using the autonomous behavior of DDQN agents. Additionally, 
DDQN, along with other DRL methods, offers the advantage of significantly reducing 
prediction times, making them highly suitable for online detection and the require-
ments of modern network services. Furthermore, to enhance learning capabilities, 
we thoroughly analyze various parameters of the DDQN agent, such as the dis-
count factor, the number of learning episodes, and batch size, to identify optimal 
fine-tuning strategies for network cyberattack detection tasks. Our experimental 
findings demonstrate the effective learning capacity of the proposed DDQN model, 
as it can autonomously classify different types of network attacks with a high level 
of accuracy. As part of our future work, we plan to implement our proposed solution 
in an actual cloud environment. This deployment will enable the DDQN agent to 
enhance its self-learning capabilities and achieve accurate threat classification in 
real-time scenarios. Additionally, we plan to apply the DDQN model to detect ran-
somware to assess its generalizability and practicality.
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