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PAPER

EEG-Based Control of a 3D-Printed Upper Limb 
Exoskeleton for Stroke Rehabilitation

ABSTRACT
Brain-computer interfaces (BCIs) have emerged as transformative tools for translating users’ 
neural signals into commands for external devices. The urgent need for innovative treat-
ments to enhance upper limb motor function in stroke survivors is underscored by the limita-
tions of traditional rehabilitation methods. The development of communication and control 
technology for individuals with severe neuromuscular diseases, particularly stroke patients, is 
centered on utilizing electroencephalographic (EEG) signals to accurately decode users’ inten-
tions and operate external devices. Two healthy subjects and a stroke patient were enrolled to 
acquire EEG signals using the EMOTIV EPOC+ sensor. The experimental procedure involved 
recording five actions for both motor imagery and facial expression signals to control the 
3D-printed upper limb exoskeleton. EEGLAB and BCILAB software were used for preprocess-
ing and classification. The results showed successful EEG-based control of the exoskeleton, 
representing a significant advancement in assistive technology for individuals with motor 
impairments. The support vector machine (SVM) classifier achieved higher accuracy in both 
offline and online modes for both motor imaginary and facial expression tasks. The conclu-
sion highlights the appropriateness of using EEGLAB for offline EEG data analysis and BCILAB 
for both offline and online analysis and classification. The integration of servo motors in the 
exoskeleton, allowing movements in five Degrees of Freedom (DOF), positions it as an effec-
tive rehabilitation solution for individuals with upper limb impairments.
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1	 INTRODUCTION

Systems known as BCIs translate users’ intentions from the central nervous system 
to external devices [1]. With a better understanding of the functioning of the brain, 
the introduction of effective low-cost computer equipment, and the recognition of 
the requirements and potentials of individuals with disabilities, the current focus of 
BCI research is on creating new technologies for augmentative communication and 
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control that will help people with severe neuromuscular illnesses such as spinal cord 
damage, brainstem stroke, and amyotrophic lateral sclerosis. Modern BCIs derive the 
user’s intent from a range of electrophysiological signals such as EEG, ECoG, and so on.  
Examples of these signals include mu or beta rhythms, P300 potentials, slow corti-
cal potentials, and cortical neuronal activity recorded by implanted electrodes. They 
are instantly converted into commands that control a computer display or another 
device [2, 3]. In particular, over the past ten years, BCI interventions have been inves-
tigated as treatments to enhance stroke patients’ recovery of their upper limb motor 
function [4, 5]. The fact that patients may still operate a BCI while having damaged 
brain tissue is one of the key factors contributing to the increased interest in BCI for 
stroke rehabilitation. Additionally, the development of innovative treatments is a top 
priority to alleviate the strain on healthcare systems, as stroke is one of the leading 
causes of motor disability worldwide [6, 7]. It has been demonstrated that rehabilita-
tion helps stroke victims regain specific motor skills. It is not difficult to regain some 
range of motion in the shoulder and elbow through effective and intense rehabilita-
tion training, according to several clinically controlled investigations. The rehabilita-
tion of severely paretic wrist and finger control, which sometimes hinders patients 
from rejoining their families and society, is difficult to improve. Therefore, there is an 
urgent need to look for innovative treatments to enhance. The motor function of the 
upper limb. Patients with stroke often experience profound and superficial sensory 
abnormalities [8, 9]. According to studies, enhancing sensory output and input while 
exercising may be crucial for the recovery of motor impairments because it encour-
ages the rehabilitation of sensory impairments [10]. The potential for advancements 
in the field of stroke rehabilitation in the future is believed to be inherent in EEG-
controlled exoskeletons, a cutting-edge technology [11]. Either the scalp’s surface or 
the cortical surface directly provides the brain with signals that indicate the overall 
electrophysiological activity of the brain’s nerve cells. It is a neuronal voltage fluctu-
ation that can indicate changes in several physiological states [12]. There are three 
different approaches for recording the electrical activity of the brain: two of them 
are invasive (ECoG and intracortical recordings), and one is non-invasive (EEG) [13]. 
The signal is stronger and has a higher amplitude in the invasive methods com-
pared to the non-invasive ones, which results in more accurate data. The issue is 
that obtaining these signals often involves risky, costly, and complex surgery. One 
of the primary shortcomings of the invasive method is that it can only be used for 
a very limited time before it needs to be withdrawn because it can damage nearby 
tissue [14]. The most widely used BCI systems are non-invasive because they do not 
need to be implanted, and their use is neither challenging nor dangerous [15]. The 
purpose of this work is to explore and develop BCIs as transformative tools for trans-
lating neural signals into commands for external devices. The focus is specifically 
on addressing the urgent need for innovative treatments to improve upper limb 
motor function in stroke survivors, taking into account the limitations of traditional 
rehabilitation methods. The research emphasizes the development of augmentative 
communication and control technologies, particularly for individuals with severe 
neuromuscular disorders, with a specific focus on stroke patients. The study utilizes 
EEG signals to effectively decode users’ intentions and control a 3D-printed upper 
limb exoskeleton. The experimental procedure involved recording actions related 
to both motor imagery and facial expression signals. Ultimately, integrating servo 
motors into the exoskeleton to enable movements in five DOFs positions it as an 
effective rehabilitation solution for individuals with upper limb impairments. The 
work contributes to the advancement of BCIs and their application in providing 
enhanced rehabilitation solutions for individuals with motor impairments, particu-
larly those with upper limb disabilities like stroke survivors.
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1.1	 Principles of brain-computer interfaces

A BCI consists of several crucial components, such as an input mechanism, usu-
ally based on the user’s electrophysiological activity; an output system that conveys 
instructions to the connected device; intermediary elements that convert input sig-
nals into actionable output commands; and a structured protocol that governs the 
timing, methodology, and instances of operation and non-operation. The interaction 
between the user and the system’s adaptive controllers is crucial for the successful 
operation of BCI. BCI must identify and extract user-controllable features and then 
precisely and efficiently translate those characteristics into device commands. These 
components and their primary interactions are illustrated in Figure 1 [1].

Fig. 1. Basic design and operation of a BCI system [1]

EEG activity can be examined and measured in two different ways: voltage ver-
sus time and voltage or power versus frequency. EEG-based communication can 
take advantage of either type of analysis. Additionally, research has shown that indi-
viduals can influence certain EEG characteristics, leading to EEG signals becoming 
more prevalent than other types of BCIs [16].

2	 MATERIALS AND METHODS

2.1	 Participants

Two healthy subjects and one stroke patient were recruited as participants in 
the study, and each of them completed EEG recording sessions under controlled 
conditions.

2.2	 EEG signal acquisition and processing

EMOTIV EPOC+ sensor. According to the international 10–20 system, a reason-
ably priced, commercially accessible 14-channel EEG EMOTIV EPOC+ Neuroheadset 
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(see Figure 2A) was utilized to collect raw data from electrodes placed at F3, FC5, 
AF3, F7, T7, P7, O1, O2, P8, T8, F8, AF4, FC6, and F4 positions, in conjunction with two 
reference electrodes (CMS, DRL), and a gyroscope that provides information about 
head movements (see Figure 2B).

Fig. 2. (A) EMOTIV EPOC+ sensor, and (B) Electrodes locations for motor imaginary and facial  
expressions of EMOTIV headset based on 10/20 international system

The sensor includes effective classifiers to recognize a variety of facial emotions, 
such as blinking, left and right winks, raised eyebrows, frowns, smiles, and clenched 
teeth. Since the headset uses Bluetooth to connect to PCs or other microcontroller 
devices, it offers greater mobility. The maximum sampling frequency is 128 Hz. 
All of the EMOTIV EPOC+ headset’s standard accessible electrodes were used in this 
experimental investigation. The signal quality can be improved by using conductive 
media, such as saline solutions, to reduce impedance and enhance contact quality. 
Real-time impedance monitoring is possible with the impedance monitoring pro-
gram included in the EMOTIV EPOC+ headset.

Experimental procedure. The EEG data was obtained using a 14-channel 
EMOTIV EPOC headset, which was programmed with EmotivPRO and connected 
to third-party programs (MATLAB Simulink and Emokey) for acquiring motor 
imagery and facial expression signals within specific paradigms. These signals 
were then used as input signals for the exoskeleton actuators. EmotivPRO is an 
Emotiv application used to analyze the output from their EEG headset. It allows 
users to practice mental commands to operate machines using their minds. It also 
enables users to examine real-time performance metrics, facial expressions, and 
motion sensor data streams from their headsets. The first step in properly con-
figuring the EmotivPRO is to place it in the correct position. To do so, verify the 
reference sensors. If they are green, the position is correct, and it is safe. Each day, 
three runs were collected during the training data collection. Each run includes 
five different trials (files) of eight seconds for each case of motor imagery (by 
visualizing the cubic status: fixed, pull, move left, right, and push) task record-
ings. In addition, three runs were recorded per day, with each run containing five 
unique trials (files) of eight seconds for five different facial expressions (frown, 
clenched teeth, left and right eye blink, and eyes closed). The overall data size 
for each subject was 15,360 samples for motor imagery and 15,360 samples for 
facial expressions, calculated as follows: 3 runs × 5 trials × 8 seconds × 128 sam-
pling rates for each day. The data recording process took five days for each per-
son. During the acquisition process, EmotivPRO presents unique images for each 
instance of motor imagination and facial expression. These images are shown 
to the subject after giving them specific instructions at a designated time for a 
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set duration, guiding them on the tasks to perform in the depicted sequence, as 
illustrated in Figure 3.

Fig. 3. Experimental protocol for each trial of (A) Motor imaginary, (B) Facial expressions

Motor imaginary signals were used to move the exoskeleton, while facial expres-
sions were utilized to determine which method had the highest accuracy. Every facial 
expression or motor imagery action corresponds to a movement in the exoskeleton, 
as illustrated in Table 1.

Table 1. Shows face expressions and motor imaginary actions with corresponding exoskeleton movements

Facial 
expressions

Motor  
imaginary  
actions

Desired  
exoskeleton  
movement

Hand flexion 
and extension

Hand abduction 
and adduction

Elbow flexion 
and extension

Shoulder 
flexion 
and extension

Shoulder 
abduction 
and adduction

Facial expressions and motor imagery signals were used to control the exoskele-
ton, as detailed in Table 1 and described below:

•	 Furrow brows; or, the cube does not move = Hand flexion or extension
•	 Clenched teeth; or, the cube is approaching = Hand abduction or adduction
•	 Left eye blink; or, the cube is moving right = Elbow flexion or extension
•	 Right eye blink; or, the cube is moving left = Shoulder flexion or extension
•	 Eyes closed; or, the cube is moving away = Shoulder abduction or adduction

https://online-journals.org/index.php/i-joe
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When the setup is finished, the main EmotivPRO window displays, which is sep-
arated into two sections.

•	 The section on facial expressions will capture brain signals and train expressions 
such as smiling, smirking left or right, frowning, and so on. By selecting the live mode, 
a face model replicates the facial expressions made in real life. A user must configure 
the EEG sensor correctly and start training an expression in the training window.

•	 The section on mental commands involves training and tracking signals of con-
centration, relaxation, stress, and motor imagery. The system is designed to learn 
and recognize the user’s baseline mental state or neutral condition by capturing a 
short period of their brain patterns when they are not actively trying to give any 
commands. Then, training a new mental command is as simple as selecting the 
correct command label in the training mode. Next, envision a moment of cubic 
for 8 seconds. For instance, for the left, right, push, and pull commands, imagine 
the target object floating up into the air.

The cube moves away when the training includes the push command. If the “left” 
command is triggered, it will move to the left instead. The neutral state is repre-
sented by the center. The goal is to refine the instructions to ensure that the disparity 
between states is significant enough for the EmotivPRO to avoid mistaking one com-
mand for another during live mode.

Feature extraction and classification. The statistical EEGLAB software 
(a MATLAB plugin) was used to pre-process the obtained EEG signal. It included a 
built-in digital notch filter at 50 Hz and a digital band-pass filter at 60 Hz, covering 
a frequency range of 0.16–45 Hz. BCILAB is an EEGLAB plug-in used for designing, 
testing, prototyping, exploring, and evaluating BCI. Both of these applications are 
MATLAB-based. EEGLAB is well-optimized for processing EEG data and can efficiently 
handle datasets of different sizes. BCILAB’s performance depends on the complexity 
of the BCI model under development and the computational resources at hand. The 
choice between them depends on the research or application requirements. The signal 
processing of raw EEG data occurs in multiple phases to transform it into classified 
findings that can be accessed by output devices, such as an upper limb exoskeleton. 
These phases include feature extraction, classification, and translation. The processing 
stage includes feature extraction, feature selection, and classification. The spatial filter 
was utilized, and the linear classifier was employed to translate the extracted features 
into signals independent of device control. The outputs were normalized to have a 
zero mean and a specific desired value range. Open-source packages and functions 
can be used to interface with the MATLAB application. It supports the support vec-
tor machine (SVM) classifier package from the Libsvm library, which is an extremely 
effective toolkit for optimizing and implementing SVM models. Libsvm’s most essential 
functions in the MATLAB environment are “svmtrain” and “svmpredict.” For classifi-
cation, the characteristics are directly input into the SVM model and transformed into 
power spectrum density (PSD) in the frequency domain. Fast Fourier Transform (FFT) 
is a common method used to convert signals from the time domain to the frequency 
domain. In this experiment, w1 and w2 represent the weights of the classes for the 
SVM classification algorithm. W1 and w2 are usually equal to 0.5 when there are two 
classes and the amount of data in each class is the same. A final EEG signal analy-
sis was performed to categorize the subject’s EEG data into two classes: imagining a 
cube movement and employing a facial expression. The computer sends a command 
to the upper limb exoskeleton to move the patient’s hand using a Simulink control-
ler based on the best signal accuracy categorization. Each trial’s data is recorded in a 
MATLAB matrix file (.mat) with a size of 640 × 14. Only three runs were required to 
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train the machine-learning module. Before each trial recording, the subject was asked 
to remain calm, avoid clenching their jaw or blinking their eyes (for both motor imag-
ery and facial expression tests), and to listen to the cue sound (beep) signaling the start 
of the acquisition procedure. In each trial, the individual performs the task upon hear-
ing the beep sound and stops when hearing another beep after 8 seconds of recording. 
Three classifiers were implemented: KNN [17], LDA [18], and SVM, with a flowchart 
shown in Figure 4 below.

Fig. 4. Proposed flowchart of SVM classifier used

The architecture of the EEG paradigm is shown in Figure 5.

Fig. 5. Proposed architecture of EEG paradigm for online control of upper limb exoskeleton

https://online-journals.org/index.php/i-joe
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2.3	 Mechanical design

The exoskeleton was created using a manufacturing technique known as 3D 
printing. This method allows for the construction of computer-aided design (CAD) 
models using thermoplastics, specifically polylactic acid (PLA). 3D printing offers 
customization, simplicity, affordability, and access to open-source designs. It is com-
posed of five DOFs as follows:

1.	 Shoulder abduction or adduction and flexion or extension: The shoulder servo 
motor enables the exoskeleton to move the arm away from or towards the body, 
replicating the natural abduction and adduction movements.

2.	 Elbow flexion or extension: The servo motor in the elbow region enables the 
exoskeleton to bend and straighten the user’s arm, replicating the flexion and 
extension actions.

3.	 Wrist flexion or extension: One of the hand region servo motors controls the 
wrist’s flexion and extension movements, which are essential for accomplishing 
various daily tasks.

4.	 Wrist abduction or adduction: The second servo motor in the hand region enables 
the exoskeleton to execute abduction/adduction movements.

Individual parts and the final design are shown in Figure 6.

Fig. 6. Shows individual parts and final design with five DOFs

3	 RESULTS AND DISCUSSIONS

The successful deployment of EEG-based control of an upper limb exoskeleton 
utilizing five distinct facial expressions represents a significant milestone in the field 
of assistive technology. Individuals with poor motor function can control a variety 
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of complex actions within the exoskeleton by analyzing EEG signals associated with 
five specific facial expressions. This unique approach leverages the brain’s capacity 
to create intricate neural patterns, enabling users to seamlessly coordinate move-
ments such as flexion, extension, adduction, and abduction simply by evoking the 
corresponding facial expressions. The proposed classification approach has been 
applied to the recorded EEG data to develop a model capable of classifying motor 
imagery and facial expression EEG signals. A subset of the best channels was chosen, 
and three classification techniques—SVM, KNN, and LDA algorithms—were used to 
test the performance. Better accuracy was achieved with the SVM classifier in both 
offline and online modes. A single trial took eight seconds to complete at a sampling 
rate of 128 Hz, producing a total of 1024 samples. The motor imagery channels (FC5, 
FC6, T7, T8, P7, P8, O1, and O2) and the facial expression channels (AF3, AF4, F7, 
F8, F3, and F4) were selected. Figure 7 displays raw data from eight channels of 
single-trial EEG signals.

Fig. 7. Selection of (A) eight channels in the motor imagery and (B) six channels of facial  
expression case of a single-trial EEG

Table 2 shows the classification accuracy for facial expressions and motor imagi-
nary EEG signals during 10-fold cross-validation.

Table 2. Classification accuracy for facial expressions and motor imaginary of EEG signals

No. of Folds
Facial Expressions Accuracy %  

(20% Test and 80% Train)
Motor Imaginary Accuracy % 

(20% Test and 80% Train)

SVM LDA KNN SVM LDA KNN

1 90 88 86 77 72 65

2 89 85 82 73 70 61

3 87 79 88 69 65 63

4 91 90 87 70 61 60

5 92 87 80 67 78 72

6 88 90 77 74 70 71

7 90 89 81 68 64 62

8 92 91 86 80 77 60

9 92 90 88 79 75 68

10 90 90 78 81 77 70

Average 90.1 87.9 83.3 73.8 70.9 65.2
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As shown in Table 2, the SVM classifier performed the best in both facial expres-
sions and motor imagery sessions. The average accuracy for facial expressions with 
the SVM classifier was 90.1% and 73.8% for motor imagery. There was no difference 
in terms of movement performance among the volunteer participants, but there 
was a disparity in the speed of the patient’s adaptation to the exoskeleton, which 
was slightly slower compared to that of typical individuals. Referring to some stud-
ies in this field, in the study [19], there was an issue with the duration of the reha-
bilitation. The MI group utilized two rehabilitation procedures, leading to a longer 
rehabilitation period compared to the control group, which impacted the scoring. In 
the study [20], only signals from imagination were utilized, and the predicate was 
applied to a healthy individual using only two electrodes EEG sensor, and a whole-
arm manipulator.

Below is an analysis of various aspects of the study:

1.	 DOFs and movement complexity: The incorporation of five DOFs in the upper 
limb exoskeleton allows for a nuanced and naturalistic replication of upper limb 
movements. The inclusion of multiple movements, such as hand and elbow 
actions, shoulder flexion and extension, and abduction and adduction, addresses 
the complex nature of upper limb motor function. In addition to the achieved 
accuracy, the range of motion is comparable to that of a healthy individual, and 
the response time is estimated to be one second.

2.	 Control mechanism with EMOTIV EPOC sensor: The utilization of the EMOTIV 
EPOC sensor for controlling the upper limb exoskeleton reflects a novel and 
non-invasive approach. The sensor, designed to measure and interpret electri-
cal brain activity, offers an intuitive and user-friendly interface for individu-
als with motor impairments. This BCI enables users to control the exoskeleton 
using their thoughts, improving the overall user experience and enabling 
smooth control.

3.	 Relevance to rehabilitation: The selected set of movements closely aligns with the 
requirements of upper-limb rehabilitation. By enabling hand, elbow, and shoul-
der movements, the exoskeleton can be customized to meet the specific needs of 
individuals recovering from various upper limb impairments, including stroke 
survivors. This personalized approach is crucial for effective rehabilitation and 
relearning of motor skills.

4.	 Integration of EMOTIV EPOC sensor data: The success of the study in integrat-
ing the EMOTIV EPOC sensor data into the control mechanism demonstrates the 
feasibility of translating neural signals into precise and coordinated movements. 
The accuracy and efficiency of this integration are crucial for the exoskeleton’s 
effectiveness in rehabilitation settings.

5.	 Challenges and future considerations: While the current study highlights 
promising outcomes, future research may need to address potential chal-
lenges such as calibration accuracy, real-time responsiveness, and adapting 
the system to different levels of motor impairment. Additionally, user feedback 
and long-term usability studies could provide valuable insights for refining the 
technology.

Figure 8a shows the topographical map of the scalp for each motor imagery 
case (natural, push, pull, left, and right) and (b) the topographical map of the scalp 
for facial expressions in each case (eye closed, clench teeth, frown, wink left, and 
wink right).
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Fig. 8. The topographical map of the scalp for each motor imaginary (a) and facial expressions (b) cases respectively

The results can be summarized in the following points:

1.	 More than one method was used to control the exoskeleton, such as facial expres-
sions and motor imagery.

2.	 The combination of the number of upper-limb movements and the extent of each 
movement enhances the effectiveness of the rehabilitation process.

3.	 The exoskeleton is designed to be easy to wear so that it does not burden 
the patient.

4.	 More than one classifier was used to achieve the highest possible accuracy.

Performance was measured in the following ways:

1.	 Classification accuracy according to three classifiers: LDA, KNN, and SVM.
2.	 The response time was approximately one second.
3.	 The range of movement was completely similar to that of a normal person.

4	 CONCLUSION

EEGLAB is more suitable for offline analysis of EEG data, while BCILAB is opti-
mal for both offline and online analysis and classification of EEG data, as well as for 
real-time transfer of classification results to external applications. The integration 
of these servo motors in the back, shoulder, elbow, and hand regions, along with 
the five primary movements, guarantees that the upper limb exoskeleton offers an 
efficient and adaptable rehabilitation solution. It enables people with upper limb 
impairments to recover their independence, develop their motor skills, and reclaim 
a better quality of life. Higher accuracy was achieved using the SVM classifier for 
both motor-imaging and facial expression tasks in both offline and online modes. 
The criteria used to assess the benefits and performance of the exoskeleton for reha-
bilitation were established based on input from physical therapy specialists. This 
input was used to develop software that includes:

•	 The repetition of movements,
•	 The time of each movement, and
•	 The training time.
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