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PAPER

e-LSTM: EfficientNet and Long Short-Term Memory 
Model for Detection of Glaucoma Diseases

ABSTRACT
Glaucoma is an eye disease that often has no symptoms until it is advanced. According 
to the World Health Organization (WHO), after cataracts, glaucoma is the second-leading 
cause of permanent blindness globally and is expected to affect 111.8 million patients by 
2040. Early detection of glaucoma is important to reduce the risk of permanent blindness. 
Detection is achieved by structural measurement of early thinning of the retinal nerve 
fiber layer (RNFL). The RNFL is the portion of the retina located outside the optic nerve 
head (ONH) and can be observed in fundus images of the retina. Analysis of retinal fun-
dus images can be performed with computer assistance using machine learning, especially 
deep learning. This study proposes a deep learning-based model, a convolutional neural 
network (CNN) using the EfficientNet architecture combined with long short-term mem-
ory (LSTM), for laucoma detection. Using ACRIMA, DRISHTI-GS, and RIM-ONE DL datasets 
with k-fold cross-validation, the model achieved high performance on the ACRIMA dataset: 
accuracy 0.9799, loss 0.0596, precision 0.9802, sensitivity 0.9799, specificity 0.9771, and 
F1score 0.9799. This EfficientNet and LSTM combination (e-LSTM) outperformed previous 
studies, offering a promising alternative for evaluating retinal fundus images in glaucoma 
detection.
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1	 INTRODUCTION

The eye is one of the five sensory organs in humans that is very vital. In general, 
the eye has a function to recognize an object that is around. Eye disorders often 
occur without any symptoms. One visual disorder that tends to have no symptoms 
until it reaches an advanced stage is glaucoma [1].

Glaucoma is a neurodegenerative disorder of the eye caused by increased intra-
ocular pressure on the optic nerve [2]. Data from the World Health Organization 
(WHO) suggests that glaucoma cases in recent years have increased and become 
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the second cause of permanent blindness in the world after cataracts [3]. In 2020, 
glaucoma patients worldwide are expected to increase from 64 million to 76 million 
people [4] and are predicted to continue to increase to 111.8 million people in 
2040 [5]. From this data, it is undeniable that eye examinations are needed for the 
early detection of glaucoma. Detection is done by taking structural measurements 
in the form of retinal nerve fiber layer (RNFL) thinning in the early stages. The 
RNFL is the part of the retina that lies on the outside of the optic nerve head (ONH), 
which can be observed in retinal fundus images. According to [6], developing an 
automatic glaucoma detection system using retinal fundus images is considered 
to be able to save costs when compared to retinal imaging technologies that are 
quite expensive, such as Heidelberg retina tomography (HRT) and optical coher-
ence tomography.

Extensive research has been carried out on the detection of various diseases by 
analyzing retinal fundus images, and it has been largely computer-based, especially 
by using machine learning techniques. For instance, studies [7] and [8] used fundus 
images to detect diabetic retinopathy, which is an eye disease caused by diabetes. 
In another study, researchers [9] and [10] detected glaucoma by calculating the cup 
disc ratio (CDR) on the retinal fundus image, which refers to the ISNT rule (inferior, 
superior, nasal, temporal). The research conducted [11] classifies glaucoma by seg-
menting the optic disk before it is classified. Detection of glaucoma using CDR, ISNT 
rules, or pre-processing data such as segmentation can indeed be done, but it takes 
a lot of time and is not efficient [12].

In [13], a system capable of classifying glaucoma and non-glaucoma based on 
deep learning CNN with an accuracy of 87.6% was built and was able to outper-
form the accuracy of ophthalmologists and traditional methods such as advanced 
glaucoma intervention (AGIS) and glaucoma staging system 2 (GSS2), which only 
resulted in an accuracy of 45.9% and 52.3%, respectively. Research conducted by 
[14] using image processing and classification methods with pre-trained Deep 
CNN architecture models (GoogleNet, VGG, and ResNet), used to detect glaucoma, 
was able to achieve accuracy of 83.40%, 83.73%, and 85.56%. On the other hand, 
the EfficientNet deep learning model is used in the classification of other medical 
imaging problems, such as in research [15], to diagnose COVID-19 and pneumonia 
through X-ray images, with an accuracy value of 96.7%.

EfficientNet can produce promising performance, as seen in research conducted 
by Toptaş and Hanbay [16] and Marques et al. [15]. By utilizing compound scaling 
techniques, EfficientNet can overcome important factors in deep learning, namely 
computational efficiency and model performance [17]. The efficiency is obtained 
by balancing scaling in the dimensions of width, depth, and resolution. Therefore, 
the model size of EfficientNet is relatively smaller, with fewer parameters but good 
model performance.

Deep learning algorithms can significantly improve the performance of image 
classification in the feature extraction process. Research [18] combined deep 
learning CNN and LSTM algorithms in the case of coronavirus detection from 
X-ray images, which resulted in an accuracy of 99.4%. Research conducted in [19] 
related to brain tumor classification also uses the deep learning CNN model VGG-16  
in the feature extraction process, which is then incorporated into LSTM with 
100 units to help learn high-level features from the data. In addition, LSTM is also 
able to cover the shortcomings of the fully connected layer, where the network 
is fully connected and the nodes between the layers only process on one input, 
while LSTM can connect the nodes in a graph, which is considered an input [20]. 
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Therefore, the combination of deep learning and LSTM can improve the classifi-
cation performance of the system [21]. Referring to several previous studies, this 
study proposes a deep learning CNN model with efficientNet architecture com-
bined with LSTM, hereinafter referred to as e-LSTM, for glaucoma detection. The 
e-LSTM model aims to improve the fully connected layer in the classification pro-
cess and help learn high-level features from the data. Retinal fundus photos from 
several publicly accessible online datasets were utilized as the data to be tested on 
the proposed model.

2	 MATERIALS AND METHODS

The research method used in this study can be seen in Figure 1. It shows many 
stages, including preprocessing, building the e-LSTM model architecture, training 
and tuning the hyperparameters, and evaluating model performance.

Fig. 1. Research flow

2.1	 Image fundus retina dataset

Some of the datasets that will be used in this study are publicly available. The 
data are retinal fundus images labeled as glaucoma and normal, which can be 
used to evaluate the glaucoma disease detection model. Figure 2 is a sample of 
fundus image data from each dataset consisting of two classes. The retinal fundus 
images were obtained through three datasets available online, namely ACRIMA 
and DHRISTI-GS, obtained through https://www.kaggle.com/datasets/sshikamaru/
glaucoma-detection, while the RIM-ONE DL dataset was obtained through https://
github.com/miag-ull/rim-one-dl.
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Fig. 2. The first row is normal fundus images and the second row is fundus images 
with glaucoma from ACRIMA, DRISHTI-GS, and RIM-ONE DL datasets

2.2	 Data preprocessing

In the previous stage, we collected retinal fundus image data that had differ-
ent sizes. To build a model using EfficientNet-B0, we need to standardize the input 
size to 224 × 224 pixels. Therefore, we will equalize the size of the fundus image to 
facilitate the model-building stage. This will ensure that the pixel size is consistent 
throughout the model, making it easier to analyze the data.

Deep learning is more successful in big data, but limited datasets require data aug-
mentation. Furthermore, augmentation is added to increase the training images and 
minimize overfitting. Augmentation is applied in the form of rotation by 90 degrees 
clockwise and counterclockwise, then a rotation of 180 degrees and mirroring ver-
tically and horizontally. The amount of data after augmentation is shown in Table 1, 
while the following illustration of augmentation can be seen in Figure 3.

Table 1. The number of images after augmentation

Dataset Original Data Augmentation

ACRIMA Glaucoma 396 2376

Normal 309 1854

DRISHTI-GS Glaucoma  70  420

Normal  31  186

RIM-ONE DL Glaucoma 172 1032

Normal 313 1818
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a) b) c)

d) e) f)

Fig. 3. Augmentation illustration (a) Original image (b) Rotation 90° to the Right (c) Rotation 90° to the Left 
(d) 180° Rotation (e) Vertical flip (f) Horizontal flip

2.3	 Model building

In this stage, a model is created that can identify glaucoma disease from the retinal 
fundus image that has been collected. The model will be compiled using one of the 
CNN architectures, EfficientNet, combined with LSTM. In the process, the EfficientNet 
used is EfficientNet-B0. EfficientNet-B0 is used to extract complex features owned by 
each fundus image. The next stage is LSTM, with a size of 100 units, which corre-
sponds to the number of features useful for assisting the fully connected layer in the 
classification process. The use of LSTM can provide support in providing memory 
to store the features that have been obtained. Figure 4 is an illustration of the archi-
tecture created.

1.	 EfficientNet: EfficientNet is a popular CNN architecture that is widely utilized 
for tasks such as image classification and object recognition. By applying com-
pound scaling techniques, EfficientNet can balance two important factors in deep 
learning, namely computational efficiency and model accuracy [17]. Compound 
scaling is a technique to balance the three scaling dimensions of width, depth, 
and resolution. The mathematical formula for compound scaling is given in 
Equations 1–3.

	 w = b f, d = a f, r = g f	 (1)

	 s. t a. b 2. g 2 ≈ 2	 (2)

	 a ≥ 1, b ≥ 1, g ≥ 1	 (3)
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Fig. 4. e-LSTM architecture model

	  The optimal combination of width, depth, and resolution scaling is obtained by 
conducting a systematic grid search. This search is denoted by ‘phi’ (ϕ), which is a 
compound coefficient. The value of ϕ is determined by the user to scale the overall 
model dimensions. While α, β, and γ are constants that represent the dimensions 
of width, depth, and resolution, the width scaling of compound scaling refers to 
the number of channels in each layer of the neural network. The depth scaling is 
related to the total number of layers in the network. Resolution scaling involves 
adjusting the size of the input image that will be used in the model. Table 2 is the 
basic network of EfficientNet.
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Table 2. EfficientNet baseline network

Step Operator Resolution Channels Layers

1 Conv3×3 224×224 32 1

2 MBConv1, k3×3 112×112 16 1

3 MBConv6, k3×3 112×112 24 2

4 MBConv6, k5×5 56×56 40 2

5 MBConv6, k3×3 28×28 80 3

6 MBConv6, k5×5 14×14 112 3

7 MBConv6, k5×5 14×14 192 4

8 MBConv6, k3×3 7×7 320 1

9 Conv1×1 and Pooling and FC 7×7 1280 1

	  In Table 2, the main underlying network of EfficientNet is composed of a 
mobile inverted bottleneck (MBConv) [22], which is also a module used in the 
MobileNetV2 architecture. The MBConv layer combines depthwise separable 
convolution and inverted residual blocks that are optimized using squeeze-and- 
excitation (SE) to enhance the performance of the model. Figure 5 illustrates the 
architecture of a mobile inverted bottleneck.

Fig. 5. MBConv architecture

	  Depthwise separable convolution is a type of convolution that reduces com-
putation and the number of parameters in the model [23]. This technique is 
more efficient than traditional convolution, with a computational amount that is 
8–9 times lighter. Figure 6 illustrates depthwise separable convolution.
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Fig. 6. Depthwise separable convolution

	  Inspired by the residual block in [24], the inverted residual block is a kind of 
block used in neural networks. The residual block in ResNet is designed to map 
inputs with a wide range of channels, first narrowing them in the inner layer and 
then widening them again at the output layer. However, the inverted residual 
block takes the opposite approach: it starts with a narrow input channel, then 
widens it in the inner layer, and finally narrows it again at the output layer. As a 
result, the inverted residual block has fewer parameters than the regular residual 
block. The differences between the two blocks can be observed in Figure 7.

a) b)

Fig. 7. (a) Residual block (b) Inverted residual block

2.	 Long short-term memory: Long short-term memory is an architecture devel-
oped from a recurrent neural network (RNN). This architecture is intended to 
overcome the vanishing gradient problem that causes the difficulty of processing 
a lot of data, commonly referred to as long-term dependencies [25]. LSTM can 
store and connect information that has been obtained in previous data with data 
obtained at this time [26]. The architecture of LSTM adds three gates to the cell 
that is built, namely the input gate, output gate, and forget gate. Figure 4 shows 
the structure of a long short-term memory.

	  The addition of a forget gate in LSTM allows for resetting of the internal 
memory once the stored information is deemed unnecessary. This reduces the 
load the memory. Equations 7–8 outline the working principle of long short-
term memory.

	 ft = s (W(f )xt + V(f )ht - 1 + bf )	 (4)

	 it = s (W(i)xt + V(i)ht - 1 + bi)	 (5)

	 ot = s (W(o)xt + V(o)ht - 1 + bo)	 (6)
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	 ct = ft ⊗ ct - 1 + it ⊗ tanh(W(c)xt + V(c)ht - 1 + bc)	 (7)

	 ht = ot ⊗ tanh(ct)	 (8)

	  To update information about the cell state, the process includes several steps. 
These steps are: (1) discarding any irrelevant information obtained from the pre-
vious step’s state; (2) extracting important information and adding it to the state; 
(3) calculating the state unit; and (4) calculating the output of the current step.

2.4	 Tuning hyperparameter

To find good training conditions, hyperparameter tuning is carried out on the 
model created. Usually, the hyperparameter tuning used is the value of batch size, 
learning rate, epoch, activation function, loss function, etc. In this study, we will find 
the best hyperparameters used in the model for batch size, learning rate, loss function, 
and epoch. In addition, a 10-fold cross-validation technique is also applied, where 
the data will be cross-tested as a reference to determine the best hyperparameters.

2.5	 Training model

After undergoing preprocessing, the data will move on to the model training 
stage. Training will be run using Google Collab with GPU. Four training schemes will 
be conducted, where each dataset will be used as input to the model. In addition, 
ACRIMA, DHRISTI-GS, and RIM-ONE DL data will also be combined to compare the 
performance of the model. Model training is useful for extracting characteristics 
from each data point with each label. Training will store the weight values that will 
be used in the classification stage.

2.6	 Evaluation result

The next process is the evaluation of the built model. The evaluation is carried out to 
compare the classification of the EfficientNet model added by LSTM with the EfficientNet 
model alone. The assessment of this evaluation will consider the performance of the 
model in terms of average accuracy, precision, sensitivity, specificity, and the F1 score 
obtained from 10-fold cross-validation. The performance parameters are calculated by 
referring to the confusion matrix. A confusion matrix is a table that displays the predicted 
and actual data shown in Figure 8. It is used to measure the accuracy, precision, sensi-
tivity, specificity, and F1 score of a model, which consists of the following components:

a)	 True positive (TP): If the fact is positive for glaucoma, the e-LSTM model is also 
detected as positive for glaucoma.

b)	 True negative (TN): If the patient is negative for glaucoma, the e-LSTM model also 
detects negative.

c)	 False positive (FP): If the patient has negative glaucoma, the e-LSTM model detects 
positive glaucoma.

d)	 False negative (FN): If the patient has positive glaucoma, the e-LSTM model 
detects negative glaucoma.

Referring to the values of TP, TN, FP, and FN, the parameters used for evaluating 
the performance of the e-LSTM model can be written in a formula, as shown in 
Equations 9–13.

https://online-journals.org/index.php/i-joe
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Fig. 8. Confusion matrix

The accuracy of a model refers to its ability to make correct predictions from 
all available data. However, the accuracy value may not be valid if the tested data 
is unbalanced. To test for unbalanced data, precision, sensitivity, and specificity 
metrics are used. Precision measures the level of TP predictions in comparison to 
all predicted positive data. Sensitivity measures the accuracy of TP predictions in 
comparison to all actual positive data. Specificity, on the other hand, is the measure 
of TNs in comparison to all actual negative data. To calculate the accuracy level of 
the model, the F1 score is used by combining precision and sensitivity with the ideal.

3	 RESULTS

This study is built using the Python 3 programming language and the TensorFlow 
framework on the Google Collaboratory Pro platform with a GPU accelerator. In addi-
tion, hyperparameter tuning will be done to get the best performance from the built 
model. Then, the results obtained from the experiments will be analyzed.

3.1	 Loss function experiments

In the first experiment, we will test the effect of the loss function on the perfor-
mance of the EfficientNet-B0 LSTM model. The values that will be used as a reference 
are accuracy, loss, precision, sensitivity, specificity, and F1 score. This experiment 
will test three loss functions, namely binary cross entropy (BCE), mean squared 
error (MSE), and mean absolute error (MAE), by applying the 10-fold cross-validation  
testing technique to take the average of the performance matrix. Table 3 shows the 
hyperparameters used in this test.
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Table 3. Hyperparameter for loss function experiments

Hyperparameter Value

Batch Size 16

Optimizer Adam

Learning Rate Reduce Learning Rate

Loss Function BCE, MSE, and MAE

Activation Function ReLu, Sigmoid

Unit LSTM 100

Epoch 50

The results shown in Table 4 indicate that using the BCE loss function achieves the 
best value in terms of average accuracy, precision, sensitivity, specificity, and F1 score. 
However, on the loss value, using the MSE or MAE loss function produces a relatively 
smaller value. Figures 9 and 10 are comparison graphs of the use of loss functions 
against accuracy and loss values, where the BCE loss function can achieve the highest 
accuracy when compared to other loss functions. But for the loss value, MSE pro-
duces the minimum value when compared to other loss function values. Therefore, 
the next experiment will use the BCE loss function since BCE can outperform MSE in 
other performance matrices such as precision, sensitivity, specificity, and F1 score.

Table 4. Loss function experiment results

Performance Matrix
Loss Function

BCE MSE MAE

Accuracy 0.9709 0.9662 0.9603

Loss 0.0857 0.0257 0.0422

Precision 0.9715 0.9668 0.9611

Sensitivity 0.9709 0.9662 0.9603

Specificity 0.9659 0.9599 0.9515

F1 Score 0.9710 0.9662 0.9604

Fig. 9. Comparison graph of loss function on accuracy value

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 10 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 75

e-LSTM: EfficientNet and Long Short-Term Memory Model for Detection of Glaucoma Diseases

Fig. 10. Comparison graph of loss function on loss value

3.2	 Learning rate and epoch experiments

In the previous experiment, a reduced learning rate was used, where the 
learning rate would decrease when the loss value did not change during train-
ing. This experiment will test the constant learning rate and epoch value on the 
performance of the EfficientNet-B0 LSTM model. The values that will be used as 
a reference are accuracy, loss, precision, sensitivity, specificity, and F1 score. This 
experiment will use the 10-fold cross-validation technique and compare several 
constant learning rate values, namely 0.001, 0.0001, and 0.00001, with the num-
ber of epochs 20, 35, 50, and 65. Table 5 is the hyperparameter used for the exper-
iments conducted.

Table 5. Hyperparameter for learning rate and epoch experiments

Hyperparameter Value

Batch Size 16

Optimizer Adam

Learning Rate 0.001, 0.0001, and 0.00001

Loss Function BCE

Activation Function ReLu, Sigmoid

Unit LSTM 100

Epoch 20, 35, 50, and 65

Table 6 shows the results of the experiments that have been conducted.  
A constant learning rate value of 0.0001 with several epochs of 50 produces an opti-
mal average performance matrix of accuracy, loss, precision, sensitivity, specificity, 
and F1 score when compared to other combinations of learning rate and epoch. 
Figures 11 and 12 are the average accuracy and loss comparison graphs for each 
learning rate used.
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Table 6. Learning rate and epoch experiment results

Performance Matrix
Learning Rate

0.001 0.0001 0.00001

Accuracy 0.9667 0.9780 0.9721

Loss 0.0966 0.0641 0.0706

Precision 0.9673 0.9784 0.9728

Sensitivity 0.9667 0.9780 0.9721

Specificity 0.9671 0.9740 0.9687

F1 Score 0.9667 0.9780 0.9721

0.9600

0.9620

0.9640

0.9660

0.9680

0.9700

0.9720

0.9740

0.9760

0.9780

0.9800

20 35 50 65

Ac
cu

ra
cy

Epoch

Lr:0,001 Lr:0,0001 Lr:0,00001

Fig. 11. Comparison of learning rate on accuracy value

Figure 13 is a comparison graph of the average accuracy and loss of the reduced 
learning rate and constant learning rate of 0.0001 with the loss function BCE and 
epoch 50. The comparison of the reduced learning rate and constant learning rate 
with a value of 0.0001 in Figure 9 shows that the use of these two types of learning 
rates does not increase significantly in terms of average accuracy and loss. However, 
in the next experiment, a constant learning rate with a value of 0.0001 will be used.

0.0600

0.0650

0.0700

0.0750

0.0800

0.0850

0.0900

0.0950

0.1000

0.1050

20 35 50 65
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Lr:0,001 Lr:0,0001 Lr:0,00001

Fig. 12. Comparison of learning rate on loss value
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Fig. 13. Comparison of reduced learning rate and constant learning rate 0.0001 on accuracy and loss value

3.3	 Batch size experiments

In the next experiment, we will test the effect of the batch size value on the perfor-
mance of the EfficientNet-B0 LSTM model. The values that will be used as a reference 
are accuracy, loss, precision, sensitivity, specificity, and F1 score. This experiment will 
use the 10-fold cross-validation technique and several batch size values, namely 16, 32, 
and 64. Table 7 below shows the hyperparameters used for the experiments conducted.

Table 7. Hyperparameters for batch size experiments

Hyperparameter Value

Batch Size 16, 32, and 64

Optimizer Adam

Learning Rate 0.0001

Loss Function BCE

Activation Function ReLu, Sigmoid

Unit LSTM 100

Epoch 50

From the experimental results shown in Table 8 and Figure 14, it can be seen 
that the use of batch size with a value of 32 produces the most optimal results on the 
average value of accuracy, loss, precision, sensitivity, specificity, and F1 score com-
pared to other batch size values.

Table 8. Batch size experiment results

Performance Matrix
Batch Size

16 32 64

Accuracy 0.9740 0.9799 0.9688 

Loss 0.0748 0.0596 0.0842 

Precision 0.9748 0.9802 0.9704

Sensitivity 0.9740 0.9799 0.9688 

Specificity 0.9743 0.9771 0.9581 

F1 Score 0.9740 0.9779 0.9689 
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Fig. 14. Comparison of batch size on accuracy and loss value

3.4	 Summary of experiment results

All the experiments that have been conducted previously obtained a combina-
tion of several hyperparameters, namely loss function, learning rate, epoch, and 
batch size, to achieve the optimal average performance matrix. The hyperparameter 
combinations used can be seen in Table 9.

The EfficientNet LSTM model built using the hyperparameters in Table 9 was 
trained using the ACRIMA dataset, which has a total of 4,230 fundus images, 
with 3,807 images used for training and 423 images used for testing. The evalua-
tion method used is 10-fold cross-validation. The data will be divided equally into 
10 folds, and each fold can be used as testing data once.

Table 10 presents the results for tests conducted on each fold along with the per-
formance matrix values in the form of accuracy, loss, precision, sensitivity, specificity, 
and F1 score. Tests conducted on fold one produce the best accuracy, loss, preci-
sion, sensitivity, and F1 score when compared to other folds, with values of 0.9905, 
0.0337, 0.9906, 0.9905, and 0.9905. At the same time, the best specificity is generated 
in fold five, with a value of 0.9957. The resulting average accuracy is 0.9799. Then 
0.0596, 0.9802, 0.9799, 0.9771, and 0.9799 are the average values generated for loss, 
precision, sensitivity, specificity, and F1 score.

Table 9. Hyperparameters for the best performance

Hyperparameter Value

Batch Size 32

Optimizer Adam

Learning Rate 0.0001

Loss Function BCE

Activation Function ReLu, Sigmoid

Unit LSTM 100

Epoch 50
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3.5	 Comparison of e-LSTM and EfficientNet

To evaluate the effectiveness of adding an LSTM layer to the EfficientNet-B0 archi-
tecture, we need to conduct performance testing. We will present the performance 
matrix results of e-LSTM tested using several datasets that have been collected, 
namely ACRIMA (D1), DRISHTI-GS (D2), RIM-ONE DL (D3), and the combination of 
the three (D4). The performance matrix that will be used as a reference is: accuracy, 
loss, precision, sensitivity, specificity, and the F1 score.

It can be seen in Table 11 that the performance matrix of the average F1 score on 
the four training schemes increased when EfficientNet added LSTM, with an increase 
in the ACRIMA dataset by 2.11%, the DRISGTI-GS dataset by 16.79%, the RIM-ONE DL 
by 1.23%, and the combined dataset by 2.73%. The average of the four tests’ F1 score 
increases is 5.7%. Not only in the F1 score performance matrix, but the addition of 
LSTM can also increase other performance matrices such as accuracy, loss, precision 
sensitivity, and specificity. The second training scheme with the DRISHTI-GS dataset 
input experienced the most significant increase in the performance matrix when 
compared to the others.

Table 10. Experiment result for each fold of the ACRIMA dataset

Fold ACC LOSS PRE SEN SPE F1

 1 0.9905 0.0337 0.9906 0.9905 0.9870 0.9905

 2 0.9858 0.0421 0.9863 0.9858 0.9753 0.9858

 3 0.9787 0.0935 0.9798 0.9787 0.9639 0.9788

 4 0.9740 0.0726 0.9741 0.9740 0.9824 0.9740

 5 0.9811 0.0403 0.9814 0.9811 0.9957 0.9811

 6 0.9764 0.0597 0.9769 0.9764 0.9688 0.9764

 7 0.9811 0.0450 0.9813 0.9811 0.9748 0.9811

 8 0.9716 0.0880 0.9717 0.9716 0.9696 0.9716

 9 0.9835 0.0600 0.9835 0.9835 0.9818 0.9835

10 0.9764 0.0606 0.9766 0.9764 0.9723 0.9764

Average 0.9799 0.0596 0.9802 0.9799 0.9771 0.9799

Table 11. Comparison performance of EfficientNet and e-LSTM

Data Method ACC PRE SEN SPE F1

D1 EfficientNet 0.9638 0.9539 0.9649 0.9638 0.9588

e-LSTM 0.9799 0.9802 0.9799 0.9771 0.9799

D2 EfficientNet 0.8630 0.8465 0.6823 0.6823 0.7525

e-LSTM 0.9208 0.9251 0.9208 0.8679 0.9204

D3 EfficientNet 0.8814 0.8896 0.9344 0.7847 0.9103

e-LSTM 0.9230 0.9255 0.9230 0.9444 0.9226

D4 EfficientNet 0.9023 0.8866 0.9253 0.8785 0.9054

e-LSTM 0.9329 0.9353 0.9329 0.9520 0.9327
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Figures 15 and 16 are comparison graphs of the average accuracy and loss of 
EfficientNet LSTM tested using several datasets that have been collected. The ACRIMA 
dataset produces the best accuracy and loss when using the proposed method, with 
values of 0.9799 and 0.0596. Adding LSTM can improve the accuracy and loss of 
EfficientNet on each of the other datasets, namely DRISHTI-GS, RIM-ONE DL, and the 
combination of the three.
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Fig. 15. Comparison of average accuracy for each dataset
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Fig. 16. Comparison of average loss for each dataset

3.6	 Analysis of results

Analysis of the results is useful for obtaining information related to the feasibility 
of performance in calculating the success rate of a classifier model. This process is 
carried out using the confusion matrix shown in Figure 17. It can be seen that the 
model built made a prediction error of four images from a total of 423 images tested 
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on the ACRIMA dataset. The three images in the glaucoma class are predicted as a 
normal class, and one image for the normal class is assessed by the model in the 
glaucoma class.

Fig. 17. Confusion matrix

Model errors in prediction can be caused by many factors, such as poor data qual-
ity, mislabeling of the dataset, or inadequate feature extraction. Figure 18a below is 
one of the fundus images that the model failed to classify. The image appears blurred 
in the optic cup and optic disc parts and is almost invisible, so the model has diffi-
culty predicting the class of the image. Figure 18b is a fundus image that is visible 
in the optic cup (blue circle) and optic disc (red circle), so the image is successfully 
classified in the normal class by the model.

a) b)

Fig. 18. Fundus image (a) Misclassified (b) Successfully classified

3.7	 Comparison with previous research

To validate the performance of the proposed method, e-LSTM, we will compare 
the performance of the method with several previous methods on the same datasets, 
namely ACRIMA (D1), DRISHTI (D2), and RIM-ONE DL (D3).
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Table 12. Comparison with the existing machine learning-based state-of-art 
methods of glaucoma classification

Data Method Evaluation Method Performance

ACRIMA Self-ONN [27] 10-Fold Cross Validation ACC: 0.945
SEN: 0.945 
SPE: 0.924
F1: 0.939

EfficientNet-B0 [16] Hold Out ACC: 0.9775 
PRE: 0.9945
SEN: 0.9577 
SPE: 0.9953
F1: 9757

e-LSTM (Proposed Method) 10-Fold Cross Validation ACC: 0.9799
PRE: 0.9802
SEN: 0.9799
SPE: 0.9771
F1: 0.9799

DRISHTI-GS DeeplabV3+Transfer learning [11] Hold Out ACC: 85.19

e-LSTM (Proposed Method) 10-Fold Cross Validation ACC: 0.9208
PRE: 0.9251
SEN: 0.9208
SPE: 0.8679
F1: 0.9204

RIM-ONE DL AG-CNN [28] Hold Out ACC: 0.852
SEN: 0.848
SPE: 0.855
AUC: 0.916
F1: 0.837

e-LSTM (Proposed Method) 10-Fold Cross Validation ACC: 0.9230
PRE: 0.9255
SEN: 0.9230
SPE: 0.9444
F1: 0.9226

On the ACRIMA dataset, research conducted by Devecioglu et al. [27] using the 
Self-ONN method and the 10-fold cross-validation evaluation method for glaucoma 
classification cases resulted in accuracy, sensitivity, specificity, and an F1 score of 
0.945, 0.945, 0.924, and 0.939. When compared to the results of the proposed method 
with the same dataset in Table 12, the proposed method can outperform all perfor-
mance matrices.

Then Toptaş and Hanbay’s research [16] using the EfficientNet method and the 
hold-out evaluation method with the ACRIMA dataset obtained results of accuracy 
of 0.9775, precision of 0.9945, sensitivity of 0.9577, specificity of 0.9953, and an 
F1 score of 0.9757. When compared to the results obtained by the proposed method 
in Table 12, the proposed method has decreased in precision and specificity. On the 
other hand, there is an insignificant increase in the accuracy and F1 score perfor-
mance matrices. For sensitivity, the proposed method is superior, with a difference 
of approximately 2%. The ups and downs in the performance matrix are due to the 
use of different data preprocessing and evaluation methods. Toptaş and Hanbay’s 
research applied contrast-limited adaptive histogram equalization (CLAHE) to 
improve image quality with the hold-out evaluation method. At the same time, 
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the proposed method does not use an algorithm for image enhancement and uses 
the 10-fold cross-validation evaluation method. The use of 10-fold cross-validation 
will improve the performance estimation of the model by calculating the average of 
10 iterations with different training and testing data, resulting in a more stable and 
accurate performance estimate when compared to the hold-out method.

The results of the proposed method in Table 12 for the DRISHTI-GS dataset 
obtained better accuracy performance when compared to research conducted by 
Sreng et al. [11], which only obtained an accuracy of 0.8519. In addition, research 
conducted by Sreng et al. applied segmentation to the optic disc using DeepLabV3 
from the dataset that had been obtained to be used as input to the model built. 
Whereas in the proposed method, the data used as input is raw data only, but it 
produces better performance, so it has better efficiency when compared to research 
conducted by Sreng et al. [11].

The results shown by the proposed method for the RIM-ONE DL dataset in 
Table 12 obtained better accuracy, sensitivity, specificity, and F1 score performance 
when compared to research conducted by Li et al. [28]. The research of Li et al. used 
the AG-CNN method and the hold-out evaluation method, with results of accuracy, 
sensitivity, specificity, and F1 scores of 0.852, 0.848, 0.855, and 0.837.

4	 CONCLUSION

In some experiments conducted previously, it can be concluded that utilizing the 
LSTM algorithm can improve the performance of EfficientNet-B0 in the classifica-
tion of glaucoma eye diseases. The addition of LSTM can improve the performance 
matrix F1 score in all four training schemes, with an average increase of 5.7%. The 
most optimal results were obtained with an average accuracy of 0.9799, loss of 
0.0596, precision of 0.9802, sensitivity of 0.9799, specificity of 0.9771, and F1 score of 
0.9799 in the training scheme with ACRIMA dataset input. Then, in another training 
scheme with the DRISHTI-GS dataset input, it obtained the most significant improve-
ment in the performance matrix when added to long short-term memory.

The EfficientNet LSTM or e-LSTM model was built with 100 units in the LSTM 
layer, batch size 32, a learning rate of 0.0001, a loss function using binary cross- 
entropy, and a number of epochs as large as 50. These results are obtained using the 
10-fold cross-validation method technique, where the model is tested with 10-fold 
different data, which will then take the average performance matrix obtained.

Based on the study conducted, the proposed method has shown satisfactory 
accuracy. Nevertheless, after analyzing the results in depth, the authors suggest 
further improvement by using image quality enhancement techniques such as 
histogram equalization (HE), adaptive histogram equalization (AHE), CLAHE, etc. 
Incorporating these techniques can substantially enhance the system’s ability to 
detect glaucoma from blurry fundus images. However, this study’s system only 
classifies the fundus image into two categories. The author suggests that in future 
research, glaucoma can be categorized based on its severity by comparing the 
cup-disc ratio to the fundus image.
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