
 102 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 11 (2024)

iJOE | eISSN: 2626-8493 | Vol. 20 No. 11 (2024) | 

JOE International Journal of 

Online and Biomedical Engineering

Cabanillas-Carbonell, M., Zapata-Paulini, J. (2024). Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer  
Prediction. International Journal of Online and Biomedical Engineering (iJOE), 20(11), pp. 102–122. https://doi.org/10.3991/ijoe.v20i11.49139

Article submitted 2024-03-16. Revision uploaded 2024-05-05. Final acceptance 2024-05-08.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Improving the Accuracy of Oncology Diagnosis: A Machine 
Learning-Based Approach to Cancer Prediction

ABSTRACT
Cancer ranks among the most lethal illnesses worldwide, and predicting its onset can be a 
crucial factor in enhancing people’s quality of life by taking preventive measures to improve 
treatment and survival. This study conducted comparative research to determine the 
machine learning model with the highest accuracy for tumor type classification, distinguish-
ing between malignant (cancer) and benign tumors. The models evaluated include decision 
tree (DT), naive bayes (NB), extra trees classifier (ETM), random forest (RF), K-means clustering 
(K-means), logistic regression (LR), adaptive boosting (AdaBoost), gradient boosting (GB), light 
gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost) to identify 
the one with the best accuracy. The models were trained using a dataset of 569 records and a 
total of 32 variables, containing patient information and tumor characteristics. The study was 
structured into sections, such as related studies, descriptions of the models, case study devel-
opment, results, discussion, and conclusions. The models’ performance was evaluated based 
on metrics of precision, sensitivity, accuracy, and F1 score. Following the training, the results 
positioned the XGBoost model as having the best performance, achieving 98% precision, 
accuracy, sensitivity, and F1 score.
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1	 INTRODUCTION

Each year, millions of people worldwide are diagnosed with cancer, and slightly 
more than half of those diagnosed die from the disease [1]. Currently, cancer, 
along with cardiovascular disease, is the leading cause of death in approximately 
127 countries [2]. Lifestyle, environmental factors, and genetic variations are 
believed to influence the development of cancer, which is present in more than 90% 
of diagnosed cases [3], [4]. Cancer is generally characterized by the abnormal growth 
of cells and can occur in any body structure or organ [5]. It is estimated that in 2020, 
there will be approximately 19 million new cases of cancer and about 10 million 
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deaths [6]. Moreover, a higher incidence of cancer is observed in countries with a 
high socioeconomic level and advanced stages of development, particularly breast, 
colon, prostate, and uterine cancer [7]. People under 75 years of age have a 20% risk 
of developing cancer and a 10% risk of dying from the disease [8]. In some countries, 
the incidence level is 400 diagnosed cases per 100,000 men and 300 per 100,000 
women [9].

In recent years, non-melanoma skin cancer, tracheal, bronchus, and lung can-
cer, colon and rectal cancer, breast cancer, prostate cancer, stomach cancer, and 
other malignant neoplasms have reached the highest mortality rates, with an 
incidence rate of 79.1%, 27.66%, 26.71%, 24.17%, 17.39%, 15.59%, and 10.45%, 
respectively [10]. These cancers account for about half of the mortality worldwide, 
with the most deaths occurring in East Asia at 36.2%, followed by South Central 
Asia at 12%, Eastern Europe at 7.3%, and North America at 7.3% of deaths [11]. The 
incidence rate was 49.2% in Asia, 22.4% in Europe, 13.4% in North America, 7.8% in 
South and Central America, 5.9% in Africa, and 1.3% in Oceania [12].

In the United States, some of the most common cancers affecting the male popula-
tion include prostate cancer at 27%, lung and bronchus cancer at 12%, and colon and 
rectal cancer at 8%. For women, breast cancer accounts for 31%, lung and bronchus 
cancer for 13%, and colon and rectal cancer for 8% [13], [14]. Conversely, China exhibits  
a lower cancer incidence compared to the United Kingdom and the United States. 
However, the mortality rate in China is notably higher, ranging from 30% to 40%, 
with over 36% of deaths attributed to liver, stomach, and esophagus cancers [15].

Much study has been done with mathematical models to determine and classify 
cancer, as in [16], where a novel technique is proposed for the treatment of tumor 
models with a power-law kernel using the Sumudu transform. Machine learning 
(ML) models are an important tool as they use large datasets to identify patterns that 
can predict the development of diseases [17], [18]. ML has been used in various fields 
of study, such as aiding in the discovery of disease-related genes [19], word analysis 
and classification [20], [21], and price prediction [21], among others. By using these 
models, it is possible to estimate the probability that a person will develop a disease 
in the future [22], [23].

This study aims to compare the accuracy of ML models for tumor type classifi-
cation, distinguishing between malignant (cancer) and benign tumors. The models 
evaluated include decision tree (DT), Naive Bayes (NB), extra trees classifier (ETM), 
random forest (RF), k-means clustering (K-Means), logistic regression (LR), adap-
tive boosting (AdaBoost), gradient boosting (GB), light gradient boosting machine 
(LightGBM), and extreme gradient boosting (XGBoost) to determine which of the 
10 models provides better accuracy. This paper is structured into six parts. The first 
part contextualizes the study problem. The second part details related work, while 
the third part describes the ML models used and analyzes the data before training 
the models. The training results are presented in part four, followed by discussions 
in part five. Finally, the conclusions of the study are presented in the sixth part.

2	 RELATED	WORK

The following are studies that aim to predict the most prevalent cancers globally, 
such as lung cancer, breast cancer, and colon cancer, among others. In a study by 
the authors [24], a comparative investigation of five ML models focused on breast 
cancer prediction was conducted using the Wisconsin dataset. The study identi-
fied artificial neural networks (ANN) as the most accurate model with 0.9857 accu-
racy and 0.9782 precision, followed by support vector machines (SVM) with 0.9714 
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accuracy and 0.9565 precision. Similarly, a study [25] compared different ML models 
for breast cancer prediction. The results showed that AdaBoost, GB, and RF achieved 
0.1 accuracy, followed by k-nearest neighbor (KNN), bagging, and the multi-layer 
perceptron (MLP), with accuracies of 0.9956, 0.9582, and 0.9692, respectively. In 
study [26], a comparative analysis of 13 ML models for breast cancer prediction was 
developed using the Wisconsin Breast Cancer Original (WBCO) dataset. The study 
concluded that the MLP model achieved the highest accuracy at 0.9876. On the other 
hand, a study [27] presented a study of ML models for colon cancer prediction and 
survival using a dataset from Chang Gung Memorial Hospital, Taiwan, with 4021 
records. The study found that the RF model achieved the highest accuracy at 0.84. 
Similarly, the authors of the study [28] conducted a comparative analysis of multiple 
ML models focused on colon cancer prediction. They employed feature selection 
and classification techniques for data processing, with the results positioning RF as 
the most accurate model with 0.951. Study [29] performed a comparative study of 6 
ML models for the prediction and classification of colon and lung cancer, utilizing 
feature engineering techniques for data processing. The study concluded that the 
XGBoost model outperformed all others with 0.99 accuracy. In contrast, a study [30] 
compared different ML models for ovarian cancer prediction, using Pearson’s skew-
ness and correlation coefficient to process the dataset. The findings indicated that 
the RF model achieved an accuracy of 0.8872. In study [31], the authors evaluated 
different ML models focused on lung cancer prediction, with the results positioning 
the ANN model as the most accurate with 0.1 accuracy. Similarly, a study [32] exam-
ined different ML models for lung cancer prediction, concluding that the ANN model 
is the most accurate with 0.813 accuracy. The authors of the study [33] conducted 
an investigation to identify the optimal ML model for lung cancer prediction using a 
dataset containing hundreds of grayscale images. The training results positioned the 
Adaboost model as the best, achieving 0.9074 in accuracy, 0.8180 in sensitivity, and 
0.9399 in specificity. In the study [34], multiple ML models were analyzed for col-
orectal cancer prediction, with RF achieving the best metrics with 0.75 in accuracy 
and 0.76 in sensitivity. Compared various [35] ML models for cervical cancer predic-
tion, with the NB model being identified as the most accurate, achieving 0.9638 in 
accuracy. Similarly, a study [36] evaluated three ML algorithms for cervical cancer 
prediction, with all three methods achieving the best metrics at 0.9333 in accuracy. 
Finally, in the study [37], RF, XGBoost, BN, and convolutional neural networks (CNN) 
models were analyzed and trained for cervical cancer prediction. The study con-
cluded that the CNN model is the best predictor, achieving 0.1 in accuracy.

3	 METHODOLOGY

In this part of the paper, we will develop the case study, which is divided into two 
sections. In Section 3.1, we describe the ML models (NB, DT, RF, ETM, K-means, logis-
tic regression model, adaptive boosting model, gradient boosting model, LigthGBM, 
and XGBoost). In Section 3.2, we perform a detailed analysis of the dataset to 
subsequently train the models.

3.1	 Description	of	the	ML	models

Naive bayes model. NB is a well-known probabilistic classification algorithm, 
known for its simplicity and effectiveness in various real-world applications [38]. 
NB operates under the assumption that all attributes in a dataset are independent of 
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each other, which streamlines the training and learning process [39]. The model is 
founded on Bayes’ rule or theorem, represented by the following notations: [40], [41]. 
The model can be mathematically described by equations (1) and (2).

 P A B
P Aand B
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Where P(A) represents the likelihood of event A, P(B) denotes the probability of 
event B, and P (A and B) indicates the joint probability of both events A and B. P(A\B) 
is the conditional probability of event A assuming that B has occurred.

Decision tree model. DT is a popular tool in supervised learning, as it can be 
used for classification and prediction [42]. The model is structured by recursively 
dividing the dataset into smaller subsets until a level of homogeneity is reached [43]. 
Furthermore, it is hierarchically structured with internal nodes and leaves, where 
leaves represent decisions or class labels [44]. DT can be applied in various fields, 
such as asthma prediction and financial risks, among others [45], [46]. Equation (3) 
presents the mathematical representation of the model.
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Where s is the sample, E represents the entropy, Pn is the probability of NO, and 
Py is the probability of YES.

Random forest model. RF is one of the most widely used algorithms because it 
can be applied to both data regression and classification [47]. Typically, the model 
trains thousands of DT using a random subset of data, aggregates the results of 
each tree, and generates predictions [48], [49]. Additionally, the model is utilized for 
feature selection metrics, data classification, and assessing the proximity between 
data [50]. The model’s architecture is illustrated in Figure 1.

Fig. 1. Architecture of the RF model

https://online-journals.org/index.php/i-joe


 106 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 11 (2024)

Cabanillas-Carbonell and Zapata-Paulini

Extra trees model. ETM is very similar to the RF model, but it employs different 
data selection methods. The model is constructed with multiple decision or regres-
sion trees that are not pruned to prevent overfitting [51]. ETM uses randomization 
to split the nodes based on cutoff points and leverages the entire training dataset to 
build the trees without employing bootstrap replication [52]. The model finds appli-
cations in various fields such as linear regression in ML, classifying cardiac signals, 
and predicting epileptic seizures, among others [53], [54], and [55]. Similar to RF, 
the model aggregates all trees to average and predict the final outcome using the 
Breiman equation, as described below [56]. The mathematical representation of the 
model is shown in equation (4).
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K-Means model. K-means is one of the most widely used clustering algo-
rithms today, as it is quick to learn and simple to apply [57]. The model utilizes 
the value of k throughout the clustering process, sequentially assigning each data 
point to the center of the corresponding cluster and updating at each new assign-
ment until convergence is reached [58]. The algorithm can be used in parallel for 
data processing acceleration and can be combined with other data segmentation 
techniques [59], [60]. The model can be expressed as equation (5).

 
arg

���
min

S
x

i

K

x S

i

i
� �
�� �

1

2

�  (5)

Where K is the number of groups, S is the set of observations, x is the observation 
point, and mi mean of the points in Si.

Logistic regression model. LR is a statistical model that illustrates the relationship 
between variables and is used to predict the probability of an event occurring based 
on independent variables [61]. This model is widely utilized in fields such as finance, 
marketing, and the social sciences [62]. Moreover, the model utilizes the likelihood 
function for optimization and subsequent training [63], [64]. The equation of the model 
is detailed in equation (6). The event Y occurring has a probability denoted as P(Y).
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Adaptive boosting model. AdaBoost is an ML algorithm that enhances the accu-
racy of other classification models by amalgamating multiple weak classification algo-
rithms into a robust one. This technique assigns weights to each data point in the 
training set to train weak classifiers [65], [66]. The model is widely recognized as one of 
the most popular, being the first one dedicated to practical application [67]. AdaBoost 
is extensively used in both studies and industry due to its capability to enhance other 
classification models [68], [69]. The model can be mathematically represented in equa-
tion (7), where T denotes the count of weak models, FT(x) is the final prediction of x, 
ft(x) is the prediction of the weak model, and at is the weighting coefficient.
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Gradient boosting model. Similar to AdaBoost, GB focuses on enhancing 
the accuracy of classification and regression algorithms. The model sequentially 
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trains multiple weak learners to correct the errors of previous learners, result-
ing in a more precise model [70]. Due to its capability to enhance the accuracy 
of other models, AdaBoost is extensively utilized in various fields of study and 
industries [71], [72]. The model is optimized in function space using gradients, 
based on Friedman’s statistical development [73]. AdaBoost can be represented 
by the following equation (8), where f (x) is the prediction function, ˆ �y is the final 
model accuracy, γ is the learning coefficient, and h(x) is the prediction of the i-th 
weakest model.

 ˆ ( ) * ( )y f x h x� � ��  (8)

LigthGBM model. The LigthGBM model is mainly focused on classification 
and regression. Compared to other models, it is faster and more efficient [74]. The 
model utilizes the gradient-based one-sided sampling (GOSS) technique to reduce 
the amount of data used in the training process, enhancing the accuracy and speed 
of the model [75], [76]. The model architecture is illustrated in Figure 2.

Fig. 2. Architecture of the LigthGBM model

Extreme gradient boosting model. XGBoost is a highly popular classification 
and regression algorithm. It sequentially incorporates weak learners to enhance 
the model’s accuracy and utilizes regularization techniques to mitigate overfitting 
issues [77], [78]. Equation (9) outlines the formula used by the model to compute 
the prediction of each tree. Here, f (x) represents the prediction generated by the i-th 
decision tree, and y denotes the final model prediction.
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3.2	 Case	study

Understanding the dataset. For this study, we used a dataset provided by 
Kaggle, which included a total of 33 variables. These variables consist of patient id, 
diagnosis (B = benign, M = malignant), and various tumor characteristics such as 
mean radius, mean perimeter, mean texture, mean area, mean smoothness, mean 
concavity, mean concave points, mean symmetry, mean fractal dimension, mean 
compactness, radius se, perimeter se, texture se, area se, smoothness se, concavity 
se, compactness se, concave points se, fractal dimension se, symmetry se, radius 
worse, texture worse, perimeter worse, area worse, smoothness worse, compactness 
worse, concavity worse, concave points worse, symmetry worse, and fractal dimen-
sion worse. The dataset comprises 569 patient records. The process of developing 
the case study is outlined in Figure 3.
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Fig. 3. Case study development process

Preparation of the case study. In this section, we carry out a content analysis of 
the dataset before proceeding with the analysis and training of the models. Initially, 
we imported the necessary libraries for data manipulation. During the initial anal-
ysis, we observed that the dataset consists of continuous and categorical variables. 
It is important to note that no null values are present, as indicated in Table 1. 
Subsequently, we examined the types of data stored in each column of the dataset, 
as outlined in Table 2. To streamline the training process, we opted to remove the 
‘Unnamed: 32’ column, as it will not be used in the process.

Table 1. Content of the data set

0 1 2 3 … 565 566 567 568

id 842302 842517 84300903 84348301 … 926682 926954 927241 92751

diagnosis M M M M … M M M B

radius_mean 17.99 20.57 19.69 11.42 … 20.13 16.6 20.6 7.76

texture_mean 10.38 17.77 21.25 20.38 … 28.25 28.08 29.33 24.54

perimeter_mean 122.8 132.9 130 77.58 … 131.2 108.3 140.1 47.92

area_mean 1001 1326 1203 386.1 … 1261 858.1 1265 181

smoothness_mean 0.1184 0.08474 0.1096 0.1425 … 0.0978 0.08455 0.1178 0.05263

compactness_mean 0.2776 0.07864 0.1599 0.2839 … 0.1034 0.1023 0.277 0.04362

concavity_mean 0.3001 0.0869 0.1974 0.2414 … 0.144 0.09251 0.3514 0

concave points_mean 0.1471 0.07017 0.1279 0.1052 … 0.09791 0.05302 0.152 0

… … … … … … … … … …

texture_worst 17.33 23.41 25.53 26.5 … 38.25 34.12 39.42 30.37

perimeter_worst 184.6 158.8 152.5 98.87 … 155 126.7 184.6 59.16

area_worst 2019 1956 1709 567.7 … 1731 1124 1821 268.6

smoothness_worst 0.1622 0.1238 0.1444 0.2098 … 0.1166 0.1139 0.165 0.08996

compactness_worst 0.6656 0.1866 0.4245 0.8663 … 0.1922 0.3094 0.8681 0.06444

concavity_worst 0.7119 0.2416 0.4504 0.6869 … 0.3215 0.3403 0.9387 0

concave points_worst 0.2654 0.186 0.243 0.2575 … 0.1628 0.1418 0.265 0

symmetry_worst 0.4601 0.275 0.3613 0.6638 … 0.2572 0.2218 0.4087 0.2871

fractal_dimension_worst 0.1189 0.08902 0.08758 0.173 … 0.06637 0.0782 0.124 0.07039

Unnamed: 32 NaN NaN NaN NaN … NaN NaN NaN NaN
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Table 2. Summary information of the data set

# Column Dtype Non-Null Count

0 id int64 569 non-null

1 diagnosis object 569 non-null

2 radius_mean float64 569 non-null

3 texture_mean float64 569 non-null

4 perimeter_mean float64 569 non-null

5 area_mean float64 569 non-null

6 smoothness_mean float64 569 non-null

7 compactness_mean float64 569 non-null

8 concavity_mean float64 569 non-null

9 concave points_mean float64 569 non-null

10 symmetry_mean float64 569 non-null

11 fractal_dimension_mean float64 569 non-null

12 radius_se float64 569 non-null

13 texture_se float64 569 non-null

14 perimeter_se float64 569 non-null

15 area_se float64 569 non-null

16 smoothness_se float64 569 non-null

17 compactness_se float64 569 non-null

18 concavity_se float64 569 non-null

19 concave points_se float64 569 non-null

20 symmetry_se float64 569 non-null

21 fractal_dimension_se float64 569 non-null

22 radius_worst float64 569 non-null

23 texture_worst float64 569 non-null

24 perimeter_worst float64 569 non-null

25 area_worst float64 569 non-null

26 smoothness_worst float64 569 non-null

27 compactness_worst float64 569 non-null

28 concavity_worst float64 569 non-null

29 concave points_worst float64 569 non-null

30 symmetry_worst float64 569 non-null

31 fractal_dimension_worst float64 569 non-null

Exploratory analysis of the data. In Figure 4, we present an analysis of the tar-
get variable, which involves classifying tumors as benign (B) or malignant (M). It is 
evident that there is an imbalance in the class distribution, with a higher number of 
benign tumor records compared to malignant tumors. While this imbalance is not 
substantial, it is a crucial factor to consider in the dataset analysis.

https://online-journals.org/index.php/i-joe
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Fig. 4. Analysis of the target variable

In the bivariate analysis presented in Figure 5, the relationships between spe-
cific visual characteristics of tumors and the likelihood of developing cancer were 
examined. The results illustrated in Figure 5a indicate that tumors with a mean 
radius ranging from 10 mm to 15 mm are more likely to be benign and less likely to 
develop cancer. Conversely, in Figure 5b, it was discovered that tumors with a mean 
texture size between 20 mm and 25 mm have an increased probability of develop-
ing cancer. Additionally, Figure 5c demonstrates that tumors with a mean perimeter 
exceeding 70 mm have a reduced risk of being cancerous.

Fig. 5. (Continued)
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Fig. 5. Analysis of the objective variable with the visual characteristics of the tumor: (a) Objective variable 
and mean radius of the tumor, (b) Objective variable and average texture of the tumor,  

(c) Objective variable and average perimeter

Likewise, Figure 6 shows the results of the analysis of the target variable with 
the metric characteristics of the tumor. In Figure 6a, it is observed that when 
the smoothness of the tumor exceeds 0.005, the probability of the tumor being 
malignant or benign is nearly equal. Similarly, in Figure 6b, it is evident that a tumor 
compactness of 0.012 correlates with a lower probability of cancer development. 
Additionally, in Figure 6c, it is noted that a range of concave points from 0.05 mm 
to 0.10 mm is associated with a higher probability of developing a benign tumor, as 
opposed to a range from 0.15 mm to 0.10 mm, where it could be cancerous.

Fig. 6. (Continued)
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Fig. 6. Analysis of the target variable with the metric characteristics of the tumor: (a) Target variable and 
tumor smoothness, (b) Target variable and tumor compactness, (c) Target variable and tumor concave points

In Figure 7, the distribution of the data as a function of the target variable is 
presented to analyze the probabilities associated with the development of cancer 
according to additional tumor characteristics. According to Figure 7a, if the measure 
of tumor concavity (concavity worst) is pronounced, the odds of the tumor being 
malignant also increase considerably. Similarly, in Figure 7b, it is shown that a high 
number of concave points (concave points worst) is related to a higher probability 
of developing a cancerous tumor. Tumor smoothness (smoothness worst), depicted 
in Figure 7c, is also an important factor, as higher smoothness is associated with a 
higher probability of cancer. Additionally, an increase in tumor symmetry (the worst 
symmetry) also increases the probability of malignancy, according to Figure 7d. On 
the other hand, the fractal dimension (fractal dimension worst) does not seem to be 
a relevant indicator, as the probability of the tumor being benign or malignant is 
almost the same, as shown in Figure 7e. In contrast, tumor compactness is shown to 
be an important factor, as its increase correlates with a higher probability of cancer, 
as shown in Figure 7f.

a) b) c)

Fig. 7. (Continued)
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d) e) f)

Fig. 7. Box plot of the target variable with additional variables: (a) Target variable and tumor concavity, (b) Target variable  
and tumor concavity points, (c) target variable and tumor smoothness, (d) Target variable and tumor symmetry,  

(e) target variable and fractal dimension, (f) Target variable and tumor capacity

Data processing and modeling. Before training the models, the LabelEncoder 
class from the scikit-learn library was used to convert the categorical variables into 
continuous variables. Next, the target variable (diagnosis) was separated from the 
other variables. Subsequently, the StandardScaler class was employed to standardize 
all the data. Finally, the dataset was divided into two groups, with 30% allocated “0” of 
the data to the test group and the remaining 70% allocated “1” to the training group.

4	 RESULTS

In this study, NB, DT, RF, ETM, K-Means, LR, AdaBoost, GB, LightGBM, and XGBoost 
models were focused on tumor type prediction, distinguishing between malignant 
(cancer) and benign tumors. These models were analyzed and trained. The dataset, 
consisting of 32 variables and 569 patient records, was extracted from the Kaggle 
platform. This dataset was analyzed and processed to subsequently train ML models. 
The results of these trainings are shown in Table 3.

Table 3. Model training results

Naive Bayes

F1-Score (%) Recall (%) Precision (%)

0 0.93 0.92 0.94

1 0.88 0.9 0.86

macro avg 0.91 0.91 0.9

weighted avg 0.91 0.91 0.91

accuracy 0.91

Decision Tree

F1-Score (%) Recall (%) Precision (%)

0 0.93 0.91 0.96

1 0.89 0.94 0.86

macro avg 0.91 0.92 0.91

weighted avg 0.92 0.92 0.92

accuracy 0.92

(Continued)
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Random Forest

F1-Score (%) Recall (%) Precision (%)

0 0.98 0.97 0.98

1 0.96 0.97 0.95

macro avg 0.97 0.97 0.97

weighted avg 0.97 0.97 0.97

accuracy 0.97

Extra Trees

F1-Score (%) Recall (%) Precision (%)

0 0.96 0.99 0.93

1 0.92 0.87 0.98

macro avg 0.94 0.93 0.96

weighted avg 0.95 0.95 0.95

accuracy 0.95

K-Means

F1-Score (%) Recall (%) Precision (%)

0 0.95 0.97 0.92

1 0.9 0.86 0.95

macro avg 0.92 0.91 0.93

weighted avg 0.93 0.93 0.93

accuracy 0.93

Logistic Regression

F1-Score (%) Recall (%) Precision (%)

0 0.98 0.98 0.97

1 0.96 0.95 0.97

macro avg 0.97 0.97 0.97

weighted avg 0.97 0.97 0.97

accuracy 0.97

AdaBoost

F1-Score (%) Recall (%) Precision (%)

0 0.98 0.97 0.98

1 0.96 0.97 0.95

macro avg 0.97 0.97 0.97

weighted avg 0.97 0.97 0.97

accuracy 0.97

(Continued)

Table 3. Model training results (Continued)
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Gradient Boosting

F1-Score (%) Recall (%) Precision (%)

0 0.97 0.97 0.96

1 0.94 0.94 0.95

macro avg 0.96 0.95 0.96

weighted avg 0.96 0.96 0.96

accuracy 0.96

LightGBM

F1-Score (%) Recall (%) Precision (%)

0 0.97 0.97 0.96

1 0.94 0.94 0.95

macro avg 0.96 0.95 0.96

weighted avg 0.96 0.95 0.96

accuracy 0.96

XGB Boost

F1-Score (%) Recall (%) Precision (%)

0 0.98 0.98 0.98

1 0.97 0.97 0.97

macro avg 0.97 0.97 0.97

weighted avg 0.98 0.98 0.98

accuracy 0.98

In training the NB, DT, RF, ETM, and AdaBoost models, we used entropy and Gini 
calculations, along with GridSearch, to determine which metric is more effective for 
optimizing the models. The results indicate that the NB, DT, RF, ETM, K-Means, LR, 
AdaBoost, GB, LightGBM, and XGBoost models managed to achieve an accuracy of 
91%, 92%, 97%, 95%, 93%, 97%, 97%, 96%, 96%, and 98%, respectively.

All 10 models achieved exceptional metrics, reaching accuracies above 90%. 
The model that stands out the most is the XGBoost, which achieved the best perfor-
mance with 98% precision, 98% sensitivity, a 98% F1 score, and 98% accuracy. This 
was followed by the RF, LR, and AdaBoost models, which achieved 97% precision, 
97% sensitivity, a 97% F1 score, and 97% accuracy. In third place, we have the GB 
and LightGBM models with 96% accuracy and 96% in F1 count, except for sensi-
tivity, where GB obtained 96% and LightGBM 95%. In fourth place, the ETM model 
achieved 95% accuracy, 95% sensitivity, and a 95% F1 score. Finally, the K-means, 
DT, and NB models achieved 93%, 92%, and 91% accuracy, respectively.

5	 DISCUSSION

Cancer ranks among the most lethal illnesses worldwide; every year, thousands 
of people die from this disease. Predicting its development can be a crucial factor in 
improving the quality of life for people and taking preventive actions to enhance 
treatment and survival rates. This study conducted a comparative investigation to 

Table 3. Model training results (Continued)
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determine the model with the best accuracy for classifying tumor types in future 
individuals, distinguishing between malignant (cancer) and benign tumors. The 
models were trained with a dataset of 569 records and a total of 32 variables, con-
taining patient information and tumor characteristics. After applying data process-
ing and training, the models achieved accuracy levels above 90%. The XGBoost 
model achieved the best metrics with 98% accuracy, sensitivity, and F1-count. 
Similar to a study [29], where XGBoost was identified as the best predictor of lung 
and colon cancer with 99% accuracy and a 98% F1 count, this analysis used histo-
pathological images for predicting 5 types of lung and colon cancer tissues, unlike 
this study, which did not utilize images for cancer prediction. Additionally, the RF 
model achieved one of the best metrics in prediction with 97%, similar to the results 
obtained in the other studies [25], [28], where the RF model achieved 100% and 
95.16%, respectively, for predicting breast and colon cancer. The difference with the 
first study lies in the optimization techniques used to achieve 100% accuracy. On the 
other hand, studies [27], [30], and [34] for the prediction of colon, ovarian, and col-
orectal cancer achieved lower metrics than this study, with the RF model achieving 
84%, 88.72%, and 75%, respectively. Regarding the AdaBoost model, in this study, the 
model achieved 97% in all its performance metrics, somewhat similar to the results 
obtained in [25], [33], and [79] for the prediction of lung cancer, breast cancer, and 
the classification of autism spectrum disorder, where the model achieved 100%, 
90.74%, and 99.8%, respectively. Finally, the NB model obtained 91% accuracy, being 
the model with the lowest performance, which is lower than the accuracy obtained 
by [35], where NB achieved an accuracy of 96.38% for cervical cancer prediction. 
In conclusion, the results of the models are very similar to those obtained in other 
studies; the main difference lies in the use of different datasets and optimization 
techniques. For all these reasons, ML models can be a crucial tool in improving the 
treatment or life prognosis of patients by predicting the formation of cancerous 
tumors years in advance. However, these models are severely limited by the quality 
of the dataset used to achieve ideal accuracy.

6	 CONCLUSIONS

The use of ML models is becoming increasingly common in the medical field for 
predicting diseases such as cancer. However, one of the main challenges we face is 
the quality of the datasets used to train these models. In this study, we compared the 
accuracy of ML models for tumor type classification, distinguishing between malig-
nant (cancer) and benign tumors. A dataset of 569 records and 32 variables provided 
by Kaggle was used. After contrasting the training results, it was concluded that the 
XGBoost model delivered outstanding results, achieving a remarkable 98% accuracy, 
sensitivity, and F1 score. The other models also achieved exceptional results, with 
accuracies exceeding 90%.

Additionally, the visual and metric characteristics of tumors are important factors 
in determining whether they are malignant or not. This can help enhance the diag-
nosis of oncology patients, thereby improving their quality of life and prognosis in 
the future.

Finally, ML models for cancer detection are rapidly developing and improving. 
Therefore, it would be beneficial to examine various types of data, including genom-
ics, proteomics, and medical imaging data, and to study different types of cancer. 
Additionally, it is important to train the models with diverse datasets to assess the 
accuracy of the training.

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 11 (2024) International Journal of Online and Biomedical Engineering (iJOE) 117

Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction

7	 REFERENCES

 [1] World Health Organization, “Cancer,” 2022. https://www.who.int/news-room/fact-sheets/
detail/cancer

 [2] F. Bray, M. Laversanne, E. Weiderpass, and I. Soerjomataram, “The ever-increasing 
importance of cancer as a leading cause of premature death worldwide,” American 
Cancer Society, vol. 127, no. 16, pp. 3029–3030, 2021. https://doi.org/10.1002/cncr.33587

 [3] N. Waespe et al., “Cohort-based association study of germline genetic variants with acute 
and chronic health complications of childhood cancer and its treatment: Genetic Risks 
for Childhood Cancer Complications Switzerland (GECCOS) study protocol,” BMJ Open, 
vol. 12, no. 1, 2022. https://doi.org/10.1136/bmjopen-2021-052131

 [4] A. W. Kurian et al., “Gaps in incorporating germline genetic testing into treatment 
decision-making for early-stage breast cancer,” Journal of Clinical Oncology, vol. 35, 
no. 20, pp. 2232–2239, 2017. https://doi.org/10.1200/JCO.2016.71.6480

 [5] P. S. Roy and B. J. Saikia, “Cancer and cure: A critical analysis,” Indian Journal of CANCER, 
vol. 53, no. 3, pp. 441–442, 2016. https://doi.org/10.4103/0019-509X.200658

 [6] H. Sung et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, 
vol. 71, no. 3, pp. 209–249, 2021. https://doi.org/10.3322/caac.21660

 [7] N. L. Renna Junior and G. de Azevedo e Silva, “Socioeconomic status and cancer sur-
vival in Brazil: Analysis of population data from the municipalities of Aracaju and 
Curitiba, 1996–2012,” Cancer Epidemiol, vol. 85, p. 102394, 2023. https://doi.org/10.1016/ 
j.canep.2023.102394

 [8] J. Ferlay et al., “Cancer statistics for the year 2020: An overview,” International Journal of 
Cancer, vol. 149, no. 4, pp. 778–789, 2021. https://doi.org/10.1002/ijc.33588

 [9] L. A. Torre, R. L. Siegel, E. M. Ward, and A. Jemal, “Global cancer incidence and mortality 
rates and trends––an update,” Cancer Epidemiol Biomarkers Prev., vol. 25, no. 1, pp. 16–27, 
2016. https://doi.org/10.1158/1055-9965.EPI-15-0578

 [10] L. Lin, Z. Li, L. Yan, Y. Liu, H. Yang, and H. Li, “Global, regional, and national cancer 
incidence and death for 29 cancer groups in 2019 and trends analysis of the global can-
cer burden, 1990–2019,” J. Hematol. Oncol., vol. 14, no. 1, 2021. https://doi.org/10.1186/
s13045-021-01213-z

 [11] J. Ferlay et al., “Estimating the global cancer incidence and mortality in 2018: GLOBOCAN 
sources and methods,” Internation. Journal of Cancer, vol. 144, no. 8, pp. 1941–1953, 2019. 
https://doi.org/10.1002/ijc.31937

 [12] International Agency for Research on Cancer of WHO, “Absolute numbers, incidence,  
both sexes, in 2022: All cancers,” 2024. https://gco.iarc.fr/today/en/dataviz/pie?mode= 
population&group_populations=0

 [13] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2022,” CA Cancer 
Journal for Clinicians, vol. 72, no. 1, pp. 7–33, 2022. https://doi.org/10.3322/caac.21708

 [14] K. D. Miller et al., “Cancer treatment and survivorship statistics, 2022,” CA Cancer Journal 
for Clinicians, vol. 72, no. 5, pp. 409–436, 2022. https://doi.org/10.3322/caac.21731

 [15] R. M. Feng, Y. N. Zong, S. M. Cao, and R. H. Xu, “Current cancer situation in China: Good or 
bad news from the 2018 Global Cancer Statistics?” Cancer Communications, vol. 39, no. 1, 
pp. 1–12, 2019. https://doi.org/10.1186/s40880-019-0368-6

 [16] K. S. Nisar, M. Farman, A. Zehra, and E. Hincal, “Numerical and analytical study of 
fractional order tumor model through modeling with treatment of chemotherapy,” 
International Journal of Modelling and Simulation, pp. 1–14, 2024. https://doi.org/10.1080/
02286203.2024.2327659

https://online-journals.org/index.php/i-joe
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
https://doi.org/10.1002/cncr.33587
https://doi.org/10.1136/bmjopen-2021-052131
https://doi.org/10.1200/JCO.2016.71.6480
https://doi.org/10.4103/0019-509X.200658
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.canep.2023.102394
https://doi.org/10.1016/j.canep.2023.102394
https://doi.org/10.1002/ijc.33588
https://doi.org/10.1158/1055-9965.EPI-15-0578
https://doi.org/10.1186/s13045-021-01213-z
https://doi.org/10.1186/s13045-021-01213-z
https://doi.org/10.1002/ijc.31937
https://gco.iarc.fr/today/en/dataviz/pie?mode=population&group_populations=0
https://gco.iarc.fr/today/en/dataviz/pie?mode=population&group_populations=0
https://doi.org/10.3322/caac.21708
https://doi.org/10.3322/caac.21731
https://doi.org/10.1186/s40880-019-0368-6
https://doi.org/10.1080/02286203.2024.2327659
https://doi.org/10.1080/02286203.2024.2327659


 118 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 11 (2024)

Cabanillas-Carbonell and Zapata-Paulini

 [17] A. N. Ramesh, C. Kambhampati, J. R. T. Monson, and P. J. Drew, “Artificial intelligence in 
medicine.,” Ann. R. Coll. Surg. Engl., vol. 86, no. 5, p. 334, 2004. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC1964229/

 [18] Q. Bi, K. E. Goodman, J. Kaminsky, and J. Lessler, “What is machine learning? A primer 
for the epidemiologist,” American Journal of Epidemiology, vol. 188, no. 12, pp. 2222–2239, 
2019. https://doi.org/10.1093/aje/kwz189

 [19] D. H. Le, “Machine learning-based approaches for disease gene prediction,” Briefings 
in Functional Genomics, vol. 19, nos. 5–6, pp. 350–363, 2020. https://doi.org/10.1093/
bfgp/elaa013

 [20] O. Iparraguirre-Villanueva et al., “Classification of tweets related to natural disasters using 
machine learning algorithms,” International Journal of Interactive Mobile Technologies 
(iJIM), vol. 17, no. 14, pp. 144–162, 2023. https://doi.org/10.3991/ijim.v17i14.39907

 [21] R. Jáuregui-Velarde, L. Andrade-Arenas, D. H. Celis, R. C. Dávila-Morán, and 
M. Cabanillas-Carbonell, “Web application with machine learning for house price pre-
diction,” International Journal of Interactive Mobile Technologies (iJIM), vol. 17, no. 23, 
pp. 85–104, 2023. https://doi.org/10.3991/ijim.v17i23.38073

 [22] S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, “Comparing different supervised 
machine learning algorithms for disease prediction,” BMC Med. Inform. Decis. Mak., 
vol. 19, no. 1, 2019. https://doi.org/10.1186/s12911-019-1004-8

 [23] A. Banerjee et al., “Machine learning for subtype definition and risk prediction in 
heart failure, acute coronary syndromes and atrial fibrillation: Systematic review of 
validity and clinical utility,” BMC Med., vol. 19, no. 1, 2021. https://doi.org/10.1186/
s12916-021-01940-7

 [24] M. M. Islam, M. R. Haque, H. Iqbal, M. M. Hasan, M. Hasan, and M. N. Kabir, “Breast can-
cer prediction: A comparative study using machine learning techniques,” SN Comput. 
Sci., vol. 1, no. 5, 2020. https://doi.org/10.1007/s42979-020-00305-w

 [25] O. Iparraguirre Villanueva, A. Epifanía Huerta, C. Torres Ceclén, J. Ruiz Alvarado, and 
M. Cabanillas Carbonell, “Breast cancer prediction using machine learning models,” 
International Journal of Advanced Computer Science and Applications (IJACSA), vol. 14, 
no. 2, 2023. https://doi.org/10.14569/IJACSA.2023.0140272

 [26] C. Saini, K. D. Mahato, C. Azad, and U. Kumar, “Breast cancer prediction using different 
machine learning algorithms: A comparative study,” in 2023 International Conference on 
Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1), 
Banglore, India, 2023, pp. 1–6. https://doi.org/10.1109/ICAIA57370.2023.10169729

 [27] P. Gupta et al., “Prediction of colon cancer stages and survival period with machine 
learning approach,” Cancers 2019, vol. 11, no. 12, p. 2007, 2019. https://doi.org/10.3390/
cancers11122007

 [28] A. S. M. Shafi, M. M. I. Molla, J. J. Jui, and M. M. Rahman, “Detection of colon cancer based 
on microarray dataset using machine learning as a feature selection and classification 
techniques,” SN Appl. Sci., vol. 2, no. 7, 2020. https://doi.org/10.1007/s42452-020-3051-2

 [29] A. Hage Chehade, N. Abdallah, J. M. Marion, M. Oueidat, and P. Chauvet, “Lung and colon 
cancer classification using medical imaging: A feature engineering approach,” Phys. Eng. 
Sci. Med., vol. 45, pp. 729–746, 2022. https://doi.org/10.1007/s13246-022-01139-x

 [30] A. S. Azar et al., “Application of machine learning techniques for predicting survival 
in ovarian cancer,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, 2022. https://doi.
org/10.1186/s12911-022-02087-y

 [31] N. Banerjee and S. Das, “Prediction lung cancer- in machine learning perspective,” 
in 2020 International Conference on Computer Science, Engineering and Applications 
(ICCSEA 2020), 2022, pp. 1–5. https://doi.org/10.1109/ICCSEA49143.2020.9132913

https://online-journals.org/index.php/i-joe
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964229/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964229/
https://doi.org/10.1093/aje/kwz189
https://doi.org/10.1093/bfgp/elaa013
https://doi.org/10.1093/bfgp/elaa013
https://doi.org/10.3991/ijim.v17i14.39907
https://doi.org/10.3991/ijim.v17i23.38073
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1186/s12916-021-01940-7
https://doi.org/10.1186/s12916-021-01940-7
https://doi.org/10.1007/s42979-020-00305-w
https://doi.org/10.14569/IJACSA.2023.0140272
https://doi.org/10.1109/ICAIA57370.2023.10169729
https://doi.org/10.3390/cancers11122007
https://doi.org/10.3390/cancers11122007
https://doi.org/10.1007/s42452-020-3051-2
https://doi.org/10.1007/s13246-022-01139-x
https://doi.org/10.1186/s12911-022-02087-y
https://doi.org/10.1186/s12911-022-02087-y
https://doi.org/10.1109/ICCSEA49143.2020.9132913


iJOE | Vol. 20 No. 11 (2024) International Journal of Online and Biomedical Engineering (iJOE) 119

Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction

 [32] R. Patra, “Prediction of lung cancer using machine learning classifier,” in Communications 
in Computer and Information Science, vol. 1235, pp. 132–142, 2020. https://doi.org/ 
10.1007/978-981-15-6648-6_11

 [33] K. Ingle, U. Chaskar, and S. Rathod, “Lung cancer types prediction using machine 
learning approach,” in International Conference on Electronics, Computing and 
Communication Technologies (CONECCT), 2021, pp. 1–6. https://doi.org/10.1109/
CONECCT52877.2021.9622568

 [34] L. Zheng, E. Eniola, and J. Wang, “Machine learning for colorectal cancer risk predic-
tion,” in 2021 International Conference on Cyber-Physical Social Intelligence, (ICCSI), 2021, 
pp. 1–6. https://doi.org/10.1109/ICCSI53130.2021.9736248

 [35] S. K. Suman and N. Hooda, “Predicting risk of cervical cancer: A case study of machine 
learning,” Journal of Statistics and Management Systems, vol. 22, no. 4, pp. 689–696, 2019. 
https://doi.org/10.1080/09720510.2019.1611227

 [36] L. Akter, Ferdib-Al-Islam, M. M. Islam, M. S. Al-Rakhami, and M. R. Haque, “Prediction of 
cervical cancer from behavior risk using machine learning techniques,” SN Comput. Sci., 
vol. 2, 2021. https://doi.org/10.1007/s42979-021-00551-6

 [37] M. Kruczkowski, A. Drabik-Kruczkowska, A. Marciniak, M. Tarczewska, M. Kosowska, 
and M. Szczerska, “Predictions of cervical cancer identification by photonic method 
combined with machine learning,” Sci. Rep., vol. 12, no. 1, 2022. https://doi.org/10.1038/
s41598-022-07723-1

 [38] I. Wickramasinghe and H. Kalutarage, “Naive Bayes: Applications, variations and vul-
nerabilities: A review of literature with code snippets for implementation,” Soft Comput, 
vol. 25, pp. 2277–2293, 2021. https://doi.org/10.1007/s00500-020-05297-6

 [39] R. Mosquera, O. D. Castrillón, and L. Parra, “Support vector machines, Naïve Bayes 
classifier and genetic algorithms for the prediction of psychosocial risks in teachers 
of colombian public schools,” Inf. Tecnol., vol. 29, no. 6, 2018. https://doi.org/10.4067/
S0718-07642018000600153

 [40] C. Bielza and P. Larrañaga, “Discrete Bayesian network classifiers,” ACM Computing 
Surveys, vol. 47, no. 1, pp. 1–43, 2014. https://doi.org/10.1145/2576868

 [41] O. Takawira and J. W. M. Mwamba, “Determinants of sovereign credit ratings: An appli-
cation of the Naïve Bayes classifier,” Eurasian Journal of Economics and Finance, vol. 8, 
no. 4, pp. 279–299, 2020. https://doi.org/10.15604/ejef.2020.08.04.008

 [42] S. B. Kotsiantis, “Decision trees: A recent overview,” Artif. Intell. Rev., vol. 39, no. 4, 
pp. 261–283, 2013. https://doi.org/10.1007/s10462-011-9272-4

 [43] V. G. Costa and C. E. Pedreira, “Recent advances in decision trees: An updated survey,” 
Artif. Intell. Rev., vol. 56, pp. 4765–4800, 2022. https://doi.org/10.1007/s10462-022-10275-5

 [44] J. Zapata-Paulini and M. Cabanillas-Carbonell, “Evaluation of machine learning algo-
rithms in the early detection of Parkinson’s disease: A comparative study,” Indonesian 
Journal of Electrical Engineering and Computer Science, vol. 35, no. 1, pp. 222–237, 2024. 
http://doi.org/10.11591/ijeecs.v35.i1.pp222-237

 [45] X. Wei, “A method of enterprise financial risk analysis and early warning based on 
decision tree model,” Security and Communication Networks, vol. 2021, no. 1, pp. 1–9, 
2021. https://doi.org/10.1155/2021/6950711

 [46] F. Ton, O. Jiang, and V. Chang, “Development of an accurate operational definition for 
asthma using decision tree model,” Respirology, vol. 24, no. S2, pp. 166–167, 2019. https://
doi.org/10.1111/resp.13700_216

 [47] S. Han, B. D. Williamson, and Y. Fong, “Improving random forest predictions in small 
datasets from two-phase sampling designs,” BMC Med. Inform. Decis. Mak., vol. 21, 2021. 
https://doi.org/10.1186/s12911-021-01688-3

https://online-journals.org/index.php/i-joe
https://doi.org/10.1007/978-981-15-6648-6_11
https://doi.org/10.1007/978-981-15-6648-6_11
https://doi.org/10.1109/CONECCT52877.2021.9622568
https://doi.org/10.1109/CONECCT52877.2021.9622568
https://doi.org/10.1109/ICCSI53130.2021.9736248
https://doi.org/10.1080/09720510.2019.1611227
https://doi.org/10.1007/s42979-021-00551-6
https://doi.org/10.1038/s41598-022-07723-1
https://doi.org/10.1038/s41598-022-07723-1
https://doi.org/10.1007/s00500-020-05297-6
https://doi.org/10.4067/S0718-07642018000600153
https://doi.org/10.4067/S0718-07642018000600153
https://doi.org/10.1145/2576868
https://doi.org/10.15604/ejef.2020.08.04.008
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/s10462-022-10275-5
http://doi.org/10.11591/ijeecs.v35.i1.pp222-237
https://doi.org/10.1155/2021/6950711
https://doi.org/10.1111/resp.13700_216
https://doi.org/10.1111/resp.13700_216
https://doi.org/10.1186/s12911-021-01688-3


 120 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 11 (2024)

Cabanillas-Carbonell and Zapata-Paulini

 [48] S. Abdullah and G. V. Prasetyo, “Easy ensemmble with random forest to handle imbal-
anced data in classification,” Journal of Fundamental Mathematics and Applications 
(JFMA), vol. 3, no. 1, pp. 39–46, 2020. https://doi.org/10.14710/jfma.v3i1.7415

 [49] X. Yang, “Prediction of credit risk based on logistic regression and random forest tech-
nique,” in ACM International Conference Proceeding Series, 2022, pp. 531–535. https://doi.
org/10.1145/3558819.3565138

 [50] P. A. A. Resende and A. C. Drummond, “A survey of random forest based methods for 
intrusion detection systems,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–36, 
2018. https://doi.org/10.1145/3178582

 [51] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol. 63, 
pp. 3–42, 2006. https://doi.org/10.1007/s10994-006-6226-1

 [52] L. Peng, R. Yuan, L. Shen, P. Gao, and L. Zhou, “LPI-EnEDT: An ensemble framework 
with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction 
data classification,” BioData Mining, vol. 14, no. 1, 2021. https://doi.org/10.1186/s13040- 
021-00277-4

 [53] S. M. Mastelini, F. K. Nakano, C. Vens, and A. C. P. de L. F. de Carvalho, “Online extra trees 
regressor,” IEEE Transaction on Neural Networks and Learning Systems, vol. 34, no. 10, 
pp. 6755–6767, 2022. https://doi.org/10.1109/TNNLS.2022.3212859

 [54] B. Dhananjay, N. P. Venkatesh, A. Bhardwaj, and J. Sivaraman, “Cardiac signals clas-
sification based on Extra Trees model,” in 2021 8th International Conference on Signal 
Processing and Integrated Networks (SPIN), 2021, pp. 402–406. https://doi.org/10.1109/
SPIN52536.2021.9565992

 [55] M. Ntahobari, L. Kuhlmann, M. Boley, and Z. R. Hesabi, “Enhanced Extra Trees clas-
sifier for epileptic seizure prediction,” in 2022 5th International Conference on Signal 
Processing and Information Security (ICSPIS), 2023, pp. 175–179. https://doi.org/10.1109/
ICSPIS57063.2022.10002677

 [56] M. M. Hameed, M. K. Alomar, F. Khaleel, and N. Al-Ansari, “An extra tree regression 
model for discharge coefficient prediction: Novel, practical applications in the hydrau-
lic sector and future research directions,” Mathematical Problem Engineering, vol. 2021, 
no. 1, 2021. https://doi.org/10.1155/2021/7001710

 [57] Y. P. Raykov, A. Boukouvalas, F. Baig, and M. A. Little, “What to do when k-means 
clustering fails: A simple yet principled alternative algorithm,” PLoS One, vol. 11, no. 9, 
pp. 1–28, 2016. https://doi.org/10.1371/journal.pone.0162259

 [58] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive sur-
vey and performance evaluation,” Electronics, vol. 9, no. 8, p. 1295, 2020. https://doi.
org/10.3390/electronics9081295

 [59] N. S. Sagheer and S. A. Yousif, “A parallel clustering analysis based on Hadoop multi-
node and Apache Mahout,” Iraqi Journal of Science, vol. 62, no. 7, pp. 2431–2444, 2021. 
https://doi.org/10.24996/ijs.2021.62.7.32

 [60] R. W. Sembiring Brahmana, F. A. Mohammed, and K. Chairuang, “Customer segmen-
tation based on RFM model using k-means, k-medoids, and DBSCAN methods,” Lontar 
Komputer: Jurnal Ilmiah Teknologi Informasi, vol. 11, no. 1, pp. 32–43, 2020. https://doi.
org/10.24843/LKJITI.2020.v11.i01.p04

 [61] N. R. Panda, “A review on logistic regression in medical research,” National Journal 
of Community Medicine, vol. 13, no. 4, pp. 265–270, 2022. https://doi.org/10.55489/
njcm.134202222

 [62] C. Wallisch et al., “Review of guidance papers on regression modeling in statistical series 
of medical journals,” PLoS One, vol. 17, no. 1, pp. 1–20, 2022. https://doi.org/10.1371/ 
journal.pone.0262918

https://online-journals.org/index.php/i-joe
https://doi.org/10.14710/jfma.v3i1.7415
https://doi.org/10.1145/3558819.3565138
https://doi.org/10.1145/3558819.3565138
https://doi.org/10.1145/3178582
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1186/s13040-021-00277-4
https://doi.org/10.1186/s13040-021-00277-4
https://doi.org/10.1109/TNNLS.2022.3212859
https://doi.org/10.1109/SPIN52536.2021.9565992
https://doi.org/10.1109/SPIN52536.2021.9565992
https://doi.org/10.1109/ICSPIS57063.2022.10002677
https://doi.org/10.1109/ICSPIS57063.2022.10002677
https://doi.org/10.1155/2021/7001710
https://doi.org/10.1371/journal.pone.0162259
https://doi.org/10.3390/electronics9081295
https://doi.org/10.3390/electronics9081295
https://doi.org/10.24996/ijs.2021.62.7.32
https://doi.org/10.24843/LKJITI.2020.v11.i01.p04
https://doi.org/10.24843/LKJITI.2020.v11.i01.p04
https://doi.org/10.55489/njcm.134202222
https://doi.org/10.55489/njcm.134202222
https://doi.org/10.1371/journal.pone.0262918
https://doi.org/10.1371/journal.pone.0262918


iJOE | Vol. 20 No. 11 (2024) International Journal of Online and Biomedical Engineering (iJOE) 121

Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction

 [63] O. Iparraguirre Villanueva et al., “Comparison of predictive machine learning models 
to predict the level of adaptability of students in online education,” International Journal 
of Advanced Computer Science and Applications (IJACSA), vol. 14, no. 4, 2023. https://doi.
org/10.14569/IJACSA.2023.0140455

 [64] M. Zivkovic et al., “Training logistic regression model by hybridized multi-verse opti-
mizer for spam email classification,” in Lecture Notes in Networks and Systems, vol. 552, 
2023, pp. 507–520. https://doi.org/10.1007/978-981-19-6634-7_35

 [65] P. Sherubha, L. J. Ahmed, K. S. Kannan, and S. P. Sasirekha, “Adaptive boosting model 
for breast cancer prediction,” Journal of Intelligent and Fuzzy Systems, vol. 45, no. 2, 
pp. 3417–3431, 2023. https://doi.org/10.3233/JIFS-230086

 [66] S. Dalal et al., “Machine learning-based forecasting of potability of drinking water 
through adaptive boosting model,” Open Chem, vol. 20, no. 1, pp. 816–828, 2022. https://
doi.org/10.1515/chem-2022-0187

 [67] J. Tang, A. Henderson, and P. Gardner, “Exploring AdaBoost and random forests machine 
learning approaches for infrared pathology on unbalanced data sets,” Analyst, vol. 146, 
no. 19, pp. 5880–5891, 2021. https://doi.org/10.1039/D0AN02155E

 [68] Y. Wang and L. Feng, “An adaptive boosting algorithm based on weighted feature selec-
tion and category classification confidence,” Appl. Intell., vol. 51, pp. 6837–6858, 2021. 
https://doi.org/10.1007/s10489-020-02184-3

 [69] Z. Zheng and Y. Yang, “Adaptive boosting for domain adaptation: Towards robust 
predictions in scene segmentation,” IEEE Transactions on Image Processing, vol. 31, 
pp. 5371–5382, 2021. https://doi.org/10.1109/TIP.2022.3195642

 [70] S. A. Fayaz, S. Kaul, M. Zaman, and M. A. Butt, “An adaptive gradient boosting model for 
the prediction of rainfall using ID3 as a base estimator,” Revue d’ Intelligence Artificielle, 
vol. 36, no. 2, pp. 241–250, 2022. https://doi.org/10.18280/ria.360208

 [71] C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boost-
ing algorithms,” Artif. Intell. Rev., vol. 54, pp. 1937–1967, 2021. https://doi.org/10.1007/
s10462-020-09896-5

 [72] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Front. Neurorobot., 
vol. 7, 2013. https://doi.org/10.3389/fnbot.2013.00021

 [73] A. Mayr, H. Binder, O. Gefeller, and M. Schmid, “The evolution of boosting algorithms: 
From machine learning to statistical modelling,” Methods Inf. Med., vol. 53, no. 6, 
pp. 419–427, 2014. https://doi.org/10.3414/ME13-01-0122

 [74] S. Park, S. Jung, S. Jung, S. Rho, and E. Hwang, “Sliding window-based LightGBM 
model for electric load forecasting using anomaly repair,” J. Supercomputing, vol. 77, 
pp. 12857–12878, 2021. https://doi.org/10.1007/s11227-021-03787-4

 [75] M. Gan, S. Pan, Y. Chen, C. Cheng, H. Pan, and X. Zhu, “Application of the machine learning 
LightGBM model to the prediction of the water levels of the lower Columbia River,” 
J. Mar. Sci. Eng, vol. 9, no. 5, p. 496, 2021. https://doi.org/10.3390/jmse9050496

 [76] B. Li et al., “GNSS/INS integration based on machine learning LightGBM model for vehicle 
navigation,” Appl. Sci., vol. 12, no. 11, p. 5565, 2022. https://doi.org/10.3390/app12115565

 [77] Y. Zheng, “A default prediction method using XGBoost and LightGBM,” in 2022 
International Conference on Image Processing, Computer Vision and Machine Learning 
(ICICML), 2022, pp. 210–213. https://doi.org/10.1109/ICICML57342.2022.10009823

 [78] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 
pp. 785–794. https://doi.org/10.1145/2939672.2939785

 [79] R. Sujatha, S. L. Aarthy, J. M. Chatterjee, A. Alaboudi, and N. Z. Jhanjhi, “A machine 
learning way to classify autism spectrum disorder,” International Journal of Emerging 
Technologies in Learning (iJET), vol. 16, no. 6, pp. 182–200, 2021. https://doi.org/10.3991/
ijet.v16i06.19559

https://online-journals.org/index.php/i-joe
https://doi.org/10.14569/IJACSA.2023.0140455
https://doi.org/10.14569/IJACSA.2023.0140455
https://doi.org/10.1007/978-981-19-6634-7_35
https://doi.org/10.3233/JIFS-230086
https://doi.org/10.1515/chem-2022-0187
https://doi.org/10.1515/chem-2022-0187
https://doi.org/10.1039/D0AN02155E
https://doi.org/10.1007/s10489-020-02184-3
https://doi.org/10.1109/TIP.2022.3195642
https://doi.org/10.18280/ria.360208
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.3414/ME13-01-0122
https://doi.org/10.1007/s11227-021-03787-4
https://doi.org/10.3390/jmse9050496
https://doi.org/10.3390/app12115565
https://doi.org/10.1109/ICICML57342.2022.10009823
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3991/ijet.v16i06.19559
https://doi.org/10.3991/ijet.v16i06.19559


 122 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 11 (2024)

Cabanillas-Carbonell and Zapata-Paulini

8	 AUTHORS

Michael Cabanillas-Carbonell is an engineer with a Masters in Systems 
Engineering, pursuing a PhD in Systems Engineering and Telecommunications 
at the Polytechnic University of Madrid. Conference Chair of the Engineering 
International Research Conference IEEE Peru EIRCON. Research professor and 
international lecturer specializing in software development, artificial intelligence, 
machine learning, business intelligence, and augmented reality. He has authored 
more than 100 scientific articles indexed in IEEE Xplore, Scopus, and WoS (E-mail: 
mcabanillas@ieee.org).

Joselyn Zapata-Paulini is a Systems Engineering and Computer Science 
graduate from the Universidad de Ciencias y Humanidades, a Masters in Science 
with environmental management and sustainable development at the Universidad 
Continental, Peru. She has several international publications. She is specialized in 
augmented reality, virtual reality, machine learning, and the Internet of Things 
and is author of scientific articles indexed in IEEE Xplore, Scopus, and WoS (E-mail: 
70994337@continental.edu.pe).

https://online-journals.org/index.php/i-joe
mailto:mcabanillas@ieee.org
mailto:70994337@continental.edu.pe

