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PAPER

Hybrid Classification Approach Utilizing DenseUNet+ 
for Diabetic Macular Edema Disorder Detection

ABSTRACT
Diabetic macular edema (DME) poses a significant threat to vision. It is characterized by the 
enlargement of the macula due to the accumulation of plasma in the extracellular space of 
the retina. Detection of DME, crucial for timely intervention, traditionally relies on man-
ual inspection of images, which is time-consuming and prone to human error. Leveraging 
advancements in computer-assisted diagnostics, this study proposes a novel approach uti-
lizing the DenseUNet+ architecture tailored for precise segmentation across diverse image 
modalities. The proposed method integrates data from four modalities within dense block 
structures, followed by linear operations and concatenation to enhance feature representa-
tion. Evaluation using ResNet101V2 and DenseNet201 demonstrates superior performance, 
with accuracy exceeding 95% and 99%, respectively, showcasing their efficacy in screening 
retinal optical coherence tomography (OCT) images for DME. This research highlights the 
potential of deep learning techniques to enhance ophthalmologists’ abilities to efficiently 
screen, diagnose, and manage DME, thus reducing the risk of irreversible vision loss.
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1	 INTRODUCTION

Computerized diagnosis using imaging technology in medicine is of utmost impor-
tance in healthcare systems. The prevalence of diabetes mellitus (DM) has increased 
in modern times due to changes in social habits, work environments, nutrition, and 
daily routines. The World Health Organization (WHO) has raised concerns about the 
rapid increase in the diabetes epidemic attributed to lifestyle changes among indi-
viduals [1]. Diabetes induces metabolic and molecular changes in various parts of 
the body, leading to microvascular and structural issues. Diabetes can significantly 
impair eyesight. Ocular diseases such as diabetes-related retinopathy (DR), detached 
retinas (RD), cataracts, diabetes-related macular edema (DME), and glaucoma are 
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caused by various factors. Around 135 million people worldwide suffer from visual 
difficulties caused by DR and DME. Diabetes patients with a 20-year or longer history 
are at a higher risk for DME, accounting for approximately 29% [2]. The percent-
age of people experiencing diabetes-related blindness is increasing over time due to 
the rapid expansion of the population and the daily rise in diabetic patients. The 
current population lacks sufficient access to equipment, resources, and healthcare 
specialists. As a result, there has never been a greater demand for a mass-screening 
automated diagnostic instrument capable of accurately diagnosing and classifying 
disease stages. To diagnose DME, the ophthalmologist will often capture a digital 
retinal image.

Diabetes is defined as having higher levels of glucose compared to the nor-
mal range. Diabetes may result in several visual complications, including diabetic 
retinopathy, diabetic macular edema, cataracts, and glaucoma. Diabetic retinopathy 
is a condition that affects the blood vessels in the retina and may result in the forma-
tion of microaneurysms, hemorrhages, as well as soft and hard exudates. DME, or 
diabetic macular edema, is the progressive phase of diabetic retinopathy that specif-
ically affects the macula region. DME causes fluid to accumulate in the macula, lead-
ing to edema. The retina’s central part, the macula, is responsible for clear vision [3]. 
DME, an eye condition that typically develops in patients already diagnosed with 
DR, can lead to vision impairment. Poor management of blood sugar levels can exac-
erbate medical complications, increasing the risk of blindness for individuals with 
DME. While DME can manifest at any stage of DR, it is more likely to occur in the later 
stages of the disease’s progression. The condition involves the accumulation of fluid 
in the macula, leading to its enlargement. The macula, located at the center of the 
retina and responsible for central vision, can sustain damage, leading to the loss of 
central vision. Common symptoms of DME include blurred vision, double vision, the 
presence of floaters, and ultimately, blindness if left untreated. [4] The fundus image 
comprises several key structural features, including the optic disc (OD), macula area, 
and vascular network, as depicted in Figure 1. In contrast to the vascular network 
composed of blood vessels, the bright circular region represents the OD. The fovea, 
a dark area within the macula region, is highlighted as an approximate marker of 
the macula, depicted as a circular shape with green dots. There is a concentration 
of blood vessels in the orbital dilator (OD), which is where the optic nerve emerges 
from the eyeball and enters the brain.

Fig. 1. The main anatomical elements of a fundus fluorescein angiography image

In color fundus imaging, the macula appears as a bright pinkish-yellow area that 
is spherical in shape. On the other hand, in red-free fundus imaging, the macula 
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appears as a region of high intensity. Found inside the main blood vessels, this area 
appears darker in color in fundus pictures and is densely populated with cones. 
It is also found in the arterial system. When it comes to central vision and color per-
ception, the fovea, located in the middle of the macula, is an extremely important 
component. Individuals with diabetes are at a significant risk of developing exu-
dates in this area due to the accumulation of leaky lipids from damaged capillaries, 
which can lead to diabetic maculopathy or diabetic macular edema.

There are several factors that contribute to the development of DME, including 
the accumulation of lipids in the retinal layer, the breakdown of the blood-retinal 
barrier, and the thickening of the retina leading to the formation of exudate in the 
macula [5]. Different types of DME are classified as clinically significant macular 
edema (CSME) or non-clinically significant macular edema (non-CSME) based on the 
geographic location, size, and quantity of exudates. This classification is represented 
in Figure 2. A retina is considered to be in good condition if it does not include any 
exudates (as seen in Figure 1) or if it has exudates that extend beyond the macular 
area. The exudates present in cases of non-CSME are situated away from the fovea, 
ensuring that the central vision remains unaffected. On the other hand, the condi-
tion known as CSME is characterized by the presence of exudate deposition on or 
near the fovea, which affects central vision. Figure 2 displays retinal images illus-
trating a healthy condition, non-CSME, and CSME. These photos feature the retina.

Fig. 2. Diabetic macular edema at different phases (a) Healthy retina, (b) Non-CSME, (c) CSME

Ophthalmologists diagnose and examine DME using fundoscopy. Ophthalmologists 
use fundus fluorescein angiography, or optical coherence tomography, to identify 
and analyze retinal diseases of various types and stages. Ophthalmologists typi-
cally examine the fundus or optical coherence tomography (OCT) images to detect 
any eye abnormalities. Nevertheless, detecting early-stage abnormalities solely 
through visual inspection of images is challenging. Hence, the development of a 
computer-aided diagnostic (CAD) tool capable of identifying early-stage retinal 
abnormalities would be advantageous in reducing the incidence of false negatives.

In recent years, the convergence of mobile technologies and healthcare has 
ushered in transformative advancements in medical diagnosis and management. 
Among various health challenges, DME stands out as a significant concern. It is char-
acterized by the accumulation of leaked plasma in the macula, which can lead to 
vision impairment if left untreated. The traditional approach to DME detection relies 
heavily on manual inspection of retinal images, which is not only time-consuming 
but also subject to human error. With the proliferation of mobile technologies and 
the increasing demand for efficient healthcare solutions, there is a pressing need for 
innovative approaches to automate and streamline the detection and management 
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of DME. Leveraging the power of deep learning and mobile platforms, this research 
presents a novel hybrid classification approach based on the DenseUNet+ architec-
ture for the precise identification of DME from retinal images.

By harnessing the capabilities of dense block structures and integrating data from 
multiple image modalities, the proposed method aims to enhance the accuracy and 
efficiency of DME detection. Furthermore, the utilization of mobile platforms facil-
itates seamless integration into clinical workflows, enabling timely diagnosis and 
intervention. This paper aims to contribute to the growing field of interactive mobile 
technologies in healthcare by highlighting the potential of deep learning techniques 
in revolutionizing the screening, diagnosis, and management of DME. Through rig-
orous evaluation and validation, we have demonstrated the efficacy of our approach 
in achieving high accuracy and reliability. This empowers healthcare professionals 
with a powerful tool to combat the vision-threatening complications of diabetes.

The primary objective of this study is to present a comprehensive and effective 
diagnostic approach for identifying and grading DME. This method aims to differ-
entiate between normal patients and those with either non-center-involved diabetic 
macular edema (non-CSME) or CSME. Different considerations, such as the presence 
of other ocular structures resembling exudates, challenges in accurately segmenting 
the network of blood vessels, and the precise localization of the fovea, all contribute 
to the complexity of identifying exudates. Difficulties arise due to the presence of 
artifacts in the photos, variations in light levels ranging from low to high, and blur-
riness in the images. These issues are addressed by the CAD system, which aims to 
achieve better performance compared to previous approaches. The CAD system is 
designed for screening patients, making early diagnoses, and categorizing disease 
stages. The design simplicity facilitates installation in various environments, requir-
ing only minimal technical skills from operators. It is possible to reduce the number 
of patients admitted to hospitals through screening. This, in turn, may decrease the 
workload of medical staff by identifying more complex cases. Through staff time, 
the reduction of future treatment expenditures, and the preservation of important 
healthcare resources, it is projected that implementing this automation in clinical 
settings would lead to a decrease in the costs associated with clinical care. The key 
contributions of this study include the identification of the blood vascular network, 
the accurate localization of the fovea, the segmentation of exudates (lesions), and 
the categorization of DME phases with significantly higher accuracy compared to 
existing models in use.

2	 RELATED	RESEARCH

This section discusses prior research on detecting OD, extracting blood vessels 
from the fovea, and segmenting exudates.

2.1	 Detection	of	optic	disc

When photographs of the retinal fundus are taken using a fundus camera, the dig-
ital processing of these images often includes localizing the OD and segmenting the 
borders of the fundus. It is essential to accurately segment the OD since differences 
in its shape, cupping size, cup-to-disc ratio, edge sharpness, swelling, notching, and 
color might be indicative of a variety of illnesses. In addition, the initial stages for the 
subsequent processing of fundus images involve the localization and segmentation 
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of the OD. When it comes to localizing other components of the retina, such as the 
fovea and the macula, the normal deviation (OD) acts as a reference point.

There is a close relationship between the features of the OD and the exudates, 
which highlights the importance of localizing the OD as the initial step in diagnos-
ing DME. There is a hybrid method for OD detection that was developed, as men-
tioned in reference [6]. The identification of discs was first accomplished by using 
a clustering method called vessel transformation. After that, direction vectors were 
constructed based on the pattern of the blood vessel network to locate the OD. Phase-
portrait analysis was then used to examine the convergence points of the vector 
field obtained from the vector field. In conclusion, decision model-based rules were 
used to maximize vessel transformation and phase portrait analysis, leading to an 
impressive average accuracy of 98.69%. Furthermore, for the purpose of identify-
ing the best threshold value for OD localization, an additional study reported in [7] 
suggested a method. An accuracy of over 95% was achieved through the use of the 
elliptical fitting technique in this approach, which aimed to enhance the segmenta-
tion of the optical disc boundary.

[8] presents a hybrid method that combines neural networks (NN) with super-
vised learning approaches, such as support vector machines (SVM). This approach 
was presented in the field of artificial intelligence. The detection and separation of 
exudates in retinal images were achieved through the utilization of a pre-trained 
convolutional neural network (CNN) model, specifically ResNet-50, in conjunction 
with SVM. The method achieved an accuracy of 98%. In a similar manner, the 
approach proposed in [9] involved combining a CNN network with a decoding con-
volutional block to enhance the sensitivity from 94.8% to 97.48%. For the purpose of 
segmenting the OD and the optic cup, various CNN models were employed, resulting 
in an accuracy of 98% for the OD segmentation.

When it comes to computer-assisted diagnostic systems, the precise localization 
and segmentation of the OD in retinal fundus images are crucial processes essential 
for detecting disorders like DME. Within the context of subsequent investigations 
of retinal components, the OD serves as an essential reference point and plays a 
critical role in identifying anomalies that may indicate various ocular disorders. The 
hybrid methodologies and approaches mentioned in the cited publications offer 
promising outcomes in object detection and segmentation, achieving remarkable 
accuracies exceeding 95%. Through the utilization of NN-based methodologies, 
direction vectors from vessel networks, and clustering algorithms, these approaches 
showcase the effectiveness of employing contemporary computational techniques 
to enhance the precision and sensitivity of OD localization. Furthermore, the inte-
gration of CNNs and supervised learning techniques such as SVMs demonstrates the 
potential to achieve high accuracy in detecting and segmenting OD and associated 
features. This integration can facilitate early disease diagnosis and treatment plan-
ning. In general, the continuous advancement of digital processing techniques holds 
great promise for enhancing the effectiveness and efficiency of automated disease 
detection systems in the field of ophthalmology. This progress will ultimately lead to 
improved patient care and outcomes.

2.2	 Extraction	of	blood	vessels	and	foveal	localization

The technique of retinal blood vessel segmentation is an essential method for 
identifying alterations in blood vessels and locating them in the retina. For the 
purpose of treating age-related macular degeneration, the retinal map is created 
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automatically and utilized. Within the center of the macula is where you will find 
the fovea. It is possible that damage to the macular region could result in vision loss 
or even blindness. Lesions located near the fovea can cause severe damage, and the 
distance between the lesions and the fovea is a clinically significant factor in deter-
mining the extent of the damage.

In the paper [10], it was suggested that a single CNN model could be utilized 
to segment both the fovea and the vascular network simultaneously. In order to 
identify each effective pixel in the fundus pictures, this CNN network with seven 
layers requires three input channels simultaneously. Approximately 92.68% of the 
segments were correctly segmented, according to the authors. Within the retinal 
fundus image, the blood vascular network is a prominent feature that constitutes 
a significant portion. An approach based on fuzzy rules was proposed in [11] for 
recognizing blood vessels. The first phase in this method is to perform morphologi-
cal reconstruction on the binary image, and the second step is to utilize a gaussian 
mixture model (GMM) classifier to identify small vessel pixels. The fovea and the 
vascular network were segmented together in several of the experiments conducted. 
This is due to the fact that segmenting the blood vessel network in a fundus picture 
aids in localizing the fovea. A data-driven deep learning technique was used by [12] 
to determine the location of both the fovea and the optic disc.

2.3	 Exudates	segmentation

One of the most important steps in the diagnostic procedure for DME is the iden-
tification of the exudate. Exudates can appear anywhere in the fundus image and 
vary in size. For the purpose of ensuring a high level of accuracy in lesion diagnosis, 
it is necessary to identify all probable exudate locations to prevent false negatives. 
A review of previous studies on recognizing exudates from fundus photographs is 
included in this section.

Methods that integrate NN with supervised learning approaches, such as SVM, 
are described in [13]. The researchers utilized a pre-trained CNN model (ResNet-50) 
and an SVM to detect and classify exudates in retinal images. A supervised learning 
system that combines SVM and CNN approaches was proposed in [14] as a means of 
addressing the challenge of problematic exudate segmentation. The photo prepara-
tion approaches were used before the segmentation procedure. It was stated that the 
accuracy was 99.8% on a small dataset consisting of 89 photographs. Recently con-
ducted studies utilize NN or a combination of supervised learning methodologies, 
as mentioned previously. Even though NN models have shown promising results 
with increasing accuracy, they have a number of limitations. These include their 
computational complexity, the requirement for large datasets, their dependence on 
data quality, and their sensitivity to variable initialization. An incremental learn-
ing strategy was proposed in [15], which utilizes both historical and contemporary 
segmentation models to improve segmentation results.

2.4	 DME	classification	stage

When it comes to the classification of DME, researchers developed a deep learn-
ing model in the article [16]. Techniques such as image enhancement, a focus loss 
function, cosine annealing learning rate, and weighted random sampling were uti-
lized to enhance the classification performance of the model. Despite the dataset 
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being relatively small and the classes not being evenly distributed, this was accom-
plished. Following the generation of class activation maps from fundus images, the 
system presents these maps in the form of heat maps to indicate potential lesion 
areas. The dependability of the training model is improved as a result of this, which 
is beneficial to ophthalmologists. The recent study demonstrated the potential of 
basic two-dimensional photographs through the application of deep learning. This 
has eliminated the need for specialists and costly three-dimensional imaging equip-
ment, such as OCT. It was discovered that the model was able to effectively iden-
tify DME by using only a two-dimensional color fundus picture [17]. The suggested 
model also showed the capacity to identify intra- and sub-retinal fluid with accu-
racy percentages of 0.81 and 0.88, respectively. These capabilities were proven by 
the model. In the study [18], a deep learning network was trained on cropped pic-
tures of increasing size around the fovea to predict OCT properties from fundus 
images. Three distinct CNNs were applied by the authors to accurately classify leak-
ages, microaneurysms, and non-perfusion areas (NPA) in the images. These CNNs 
were DenseNet, ResNet50, and VGG16. During the NPA segmentation process, the 
U-Net architecture was utilized, offering the capability for both up-sampling and 
down-sampling. The generation of 64 × 64 feature maps was achieved by employ-
ing four max-pooling procedures during the downsampling process. Composition 
blocks that included batch normalization (BN), Re LU activations, and 3 × 3 convolu-
tions were used before each down sampling operation. A total of four upsamplings 
were performed on the final feature maps to fully recover the original picture size. 
The objective of this strategy was to accurately designate NPA zones by utilizing the 
Attention U-Net architecture.

3	 PROPOSED	METHOD

“Pre-training” and “fine-tuning” are the two primary processes involved in 
the execution of transfer learning (TL). Six pre-trained ResNet models and three 
pre-trained DenseNet models were used in the aforementioned research project 
to categorize OCT images of individuals diagnosed with DME. In light of the fact 
that pre-trained models are utilized, the aim of this study is to enhance existing TL 
models. During the fine-turning process, the initial layers are frozen to preserve the 
learned characteristics.

Fig. 3. Flow diagram of proposed technique
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The FC layers that utilize SoftMax are the final layers incorporated in the TL 
model. In contrast to the FC layers, which utilize random parameters, the convolu-
tional layers make use of discriminative filters that are trained based on data specific 
to a particular domain. It is possible that discriminative filters will be negatively 
affected if the gradient is allowed to propagate back through the network from ran-
dom values. It is necessary to fine-tune and retrain the DL architecture to recog-
nize multiple classes. During the fine-tuning process, a new FC layer is constructed 
and will be integrated after the design development process is finished. To perform 
fine-tuning, the last layers need to be removed, and a new FC layer needs to be 
added in their place. It is possible to prevent backpropagation from causing harm to 
discriminative filters by adjusting the weights of the convolution layers.

The pre-training and fine-tuning stages are the two primary procedures included 
in the suggested technique for applying TL in the research study. For the purpose of 
classifying OCT pictures of patients with DME, initially, six pre-trained ResNet models 
and three pre-trained DenseNet models are applied. The purpose of the research is 
to increase the accuracy of categorization by enhancing existing TL models with 
more advanced versions.

During fine-tuning, the early layers of the pre-trained models are frozen to retain 
the learned characteristics. This ensures that the network does not forget the general 
features it has learned in the past. For the purpose of retaining the discriminative 
filters that were learned from the initial domain, this step is absolutely necessary. 
In the suggested method, the final layers of the TL model consist of fully connected 
(FC) layers that utilize softmax activation. It is important to note that the convolution 
layers use discriminative filters that have been learned from the particular domain, 
while the FC layers initially contain random values. When gradients are allowed to 
flow through these random parameters during backpropagation, there is a possibil-
ity that the learned features in the convolution layers may be disrupted.

The fine-tuning process involves replacing the final FC layers with a new FC layer 
that will adjust to the specific classification task being carried out. This is done in 
order to alleviate the issue. By maintaining the weights of the convolution layers 
and only adjusting the parameters of the FC layers during training, the discrimi-
native filters learned in the convolution layers are preserved. This ensures that the 
model can reliably categorize OCT images of DME patients. By using this technique, 
the need for fine-tuning and retraining is acknowledged to successfully detect var-
ious classes present in the OCT images. The objective of the proposed strategy is to 
enhance the performance of TL models in classifying DME images while retaining 
the valuable features acquired from the pre-trained models. This will be achieved 
by carefully regulating the changes to the network’s parameters, particularly in the 
FC layers.

3.1	 ResNet

In the previous iteration of CenterNet [19], ResNet was deployed to identify sig-
nificant areas in images and for medical image analysis. Skip connections and iden-
tity approaches are utilized by ResNet to manage non-linear transformations. This 
allows for a direct gradient flow from the rear layers to the front layers by utilizing 
the identity function. An illustration of the construction of the ResNet-101 frame-
work can be seen in Figure 4. It is important to note that the ResNet-101 model is 
characterized by a high number of parameters, which might lead to the vanishing 
gradient issue.
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Fig. 4. Depicts the ResNet-101 framework’s structure

A deep CNN with 101 layers, known as ResNet, was utilized in this study. The 
CNN consists of numerous layers that extract and convert input images into hier-
archical feature maps. These feature maps may vary from basic elements such as 
edges and lines to more complex factors such as shapes and colors. It also contains 
layers, which integrate these characteristics and provide the final probability value 
of the class. Additionally, there are pooling layers that combine features from mul-
tiple levels into a single layer to reduce the dimensionality of the retrieved features. 
As the number of network layers increases, the algorithm can acquire a greater 
number of characteristics. Recent research has shown that the depth of a network 
enhances the accuracy of classification. As a consequence of this, ResNet enables 
achieving higher accuracy levels from significantly deeper networks compared to 
shallower networks when performing image categorization tasks.

ResNet, short for Residual Network, is a deep convolutional NN architecture 
that introduces residual connections to enable the effective training of very deep 
networks. Let’s delve into the mathematical details of ResNet.

•	 Residual block
	 	 The basic building block of ResNet is the residual block. It consists of two convolu-

tional layers (typically 3 × 3 filters) with Rectified Linear Unit (ReLU) activations. The 
output of the second convolutional layer is added to the input of the block through a 
skip connection. Mathematically, the output of the residual block can be expressed as:

Output =	ReLU (Batch Norm (W2⋅ReLU (Batch Norm (W1⋅Input) + Input)) + Input)

Here,
1W and 2W represent the weights of the convolutional layers, while input 

denotes the input to the residual block.
•	 Residual connection

The key innovation of ResNet is the inclusion of identity shortcut connections, 
also known as skip connections. These connections bypass one or more layers 
and directly add the input of a layer to the output of one or more subsequent 
layers. Mathematically, the residual connection can be represented as:

Output = ReLU (Batch Norm (2⋅ReLU (Batch Norm (1⋅Input)) +	Input)
Output =	ReLU (Batch Norm (W⋅ReLU (Batch Norm (W1⋅Input)) +	Input)

Here, the addition operation directly adds the input to the output of the second 
convolutional layer.
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•	 Residual learning
Residual learning involves learning residual functions instead of the original 

underlying mappings. The residual function is defined as the difference between 
the output and input of a layer. Mathematically, the residual function 

F(x) of a residual block can be expressed as:

F(x) = ReLU (Batch Norm (2 ReLU (Batch Norm(1)) + F(x) 
= ReLU (Batch Norm (W2 ReLU (Batch Norm (W1 x)) + x)

The output of the residual block is obtained by adding the residual function.
F(x) to the input x: Output = F(x) + x

•	 Training and optimization
During training, ResNet is optimized using gradient descent-based optimiza-

tion algorithms such as stochastic gradient descent (SGD) or Adam. The weights 
of the network are updated iteratively to minimize a predefined loss function, 
typically categorical cross-entropy for classification tasks. The gradients are com-
puted using backpropagation, and techniques such as weight decay and dropout 
may be employed to prevent overfitting.

In your research, you can implement ResNet as a feature extractor or classifier 
for analyzing OCT images of patients with DME. Fine-tuning or training ResNet 
on your specific dataset may further enhance its performance for your particular 
classification task.

3.2	 DenseNet

The DenseNet framework offers a solution to the issue of insufficient sequen-
tial location information for top-level features by showcasing sophisticated trans-
formations. Because it enhances feature propagation and reusability, DenseNet is 
well-suited for recognizing DR and DME, and it also enables faster training [20, 21]. 
In addition to having the same number of layers as ResNet-101, DenseNet-100 con-
sists of four modules that are closely interconnected. In comparison to the ResNet-101 
model, the DenseNet-100 framework has fewer parameters, potentially offering 
computational benefits. Figure 5 illustrates that DenseNet relies significantly on the 
database, which presents the feature mappings (FMs) of the n-1 layer in the form of 
N × N × M0.

Fig. 5. Illustration of DenseNet

The algorithm makes use of various approaches, including BN, Rectified Linear 
Unit (ReLU) activation, a 1 ×	1 convolution layer (ConvL) to decrease the total number 
of channels, and a 3 × 3 ConvL for key-point rearrangement. The dense links connect 
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the n-1 and, in layers, perform concatenation with the output of H. The relationships 
are indicated by the long-dashed arrows. In conclusion, the n + 1 layer produces sen-
sors for the purpose of peer review (N Sensors, 2021, 21, x). 7 out of 17 3.3.1. Feature 
Extraction. In DenseNet-100, there are four modules tightly interconnected, with the 
same number of layers as in ResNet-101. DenseNet-100, on the other hand, has a 
smaller number of individual parameters. Creating dense connections between lay-
ers is achieved by DenseNet through the utilization of dense blocks. Each layer is 
connected to the preceding one using the feedforward approach of DenseNet. All of 
the layer feature maps have access to the gradient and loss functions, which leads 
to an improvement in the gradient flow across the network [22]. For the purpose 
of DME classification, pre-trained DenseNet models such as D121, D169, and D201 
were optimized. For the purpose of multi-feature fusion approaches, deep learning 
techniques are used in the articles [23, 24].

4	 RESULTS	AND	DISCUSSION

4.1	 Dataset	

To evaluate various TL models, DME and normal OCT images from the Mendeley 
dataset [25] were utilized. This dataset consists of 11,349 DME and 51,140 normal 
images for training and testing. In order to evaluate the performance of the best 
pre-trained model on a smaller OCT dataset, only 500 images were used in the exper-
iment. The selected OCT images were divided into two sets: 400 for training and 
100 for testing. The publicly available OCT dataset contains both DME and normal 
images with an initial individual size of 1024 × 496 pixels. To accommodate the 
selected input image size, OCT scans were resized to 224 × 224 pixels.

4.2	 Results

In this investigation, the performance of six pre-trained CNN models, namely 
R101, R101V2, R152, D121, D169, and D201, was evaluated for feature extraction. 
These models were trained using 200 images of DME and 200 images of normal ret-
inal OCT obtained from a public dataset. The training was conducted using Google 
Colab. Subsequently, the test set comprised 100 OCT images, with 50 classified as 
DME and the remaining 50 as normal.

Accuracy serves as a crucial metric for evaluating classification algorithms 
because it quantifies the number of correctly classified instances by the model. The 
pre-trained models underwent training four times with varying hyperparameter 
settings to determine the optimal configuration. Table 1 presents the various hyper-
parameter settings used in the experiment, while Table 2 shows the accuracy results 
for each model under six different hyperparameter configurations.

Table 1. Variable estimates for different sets

Settings Parameter Values

Set 1 Optimizer-Adam, LR = 0.001, Epochs = 75

Set 2 Optimizer-Adam, LR =	0.0001, Epochs = 75

Set 3 Optimizer-SGD, LR = 0.001, Epochs = 75

Set 4 Optimizer-SGD, LR = 0.0001, Epochs = 75
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Table 2. Accuracy values derived for different models and sets

Model Set 1 Set 2 Set 3 Set 4

R101 79% 93% 72% 73%

R101V2 85% 69% 91% 95%

R152 55% 92% 90% 89%

D121 95% 91% 90% 93%

D169 82% 98% 81% 97%

D201 95% 99% 84% 69%
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Fig. 6. Illustration of accuracy for ResNet
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Fig. 7. Illustration of accuracy for DenseNet
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The illustrations of the accuracy for ResNet and DenseNet are shown in Figures 6 
and 7. Models R101 and R152 typically require longer training times, are susceptible 
to overfitting, and may not always be necessary. In experiments conducted with 
the OCT retinal dataset, satisfactory results were achieved using R101 by steadily 
reducing the learning rate (LR). Among the various settings, all versions of residual 
networks, except R101V2, performed better with settings S1 and S2. For R101V2, 
optimal results were obtained with RMSprop and a lower LR. However, the larger 
versions of ResNet implementations, such as R152, can also produce satisfactory 
results. Figure 8 depict the loss and accuracy learning curves for ResNet101V2 on 
Google Colab, respectively.

Fig. 8. Training and validation loss and accuracy for ResNet101V2

Unlike ResNet, DenseNet may benefit from increased network depth. DenseNet 
implementations D201, D169, and D121 demonstrated strong performance with 
settings S2 and S1, respectively. Upon scrutinizing the highest accuracy values 
achieved by each model, it becomes evident that Model D201 delivered exceptional 
results. DenseNet distinguishes itself by utilizing feature maps from preceding layers 
for additional computational input. Figure 9 illustrate the loss and accuracy learning 
curves for DenseNet201 on Google Colab, respectively.

Fig. 9. Training and validation loss and accuracy for DenseNet201

The comprehensive analysis indicates that, for most models, settings S1 and 
S2 represent the optimal choices among the selected configurations. Figure 10 illus-
trates the accuracy results obtained for various settings that are considered ideal for 
DME detection using the pre-trained models.
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Fig. 10. Depicts the accuracy results

5	 CONCLUSION

The algorithm makes use of a variety of approaches, including BN, ReLU activa-
tion, a 1 × 1 ConvL to decrease the total number of channels, and a 3 × 3 ConvL for 
key-point rearrangement. The dense links connect the n-1 and in layers, performing 
concatenation with the output of H. The relationships are indicated by the long-
dashed arrows. In conclusion, the n +	1 layer produces N Sensors 2021, 21, and x for 
the purpose of peer review. 7 out of 17 (3.3.1). Feature Extraction. There are four 
modules that are tightly interconnected in DenseNet-100, and the number of layers 
is equivalent to ResNet-101. DenseNet-100, on the other hand, has a smaller number 
of individual parameters. Creating dense connections between layers is achieved 
by DenseNet through the utilization of dense blocks. Each layer is connected to the 
preceding one using the feedforward approach of DenseNet. All of the layer feature 
maps have access to the gradient and loss functions, which leads to an improvement 
in the gradient flow across the network [22]. For the purpose of DME classification, 
pre-trained DenseNet models D121, D169, and D201 were optimized. For the pur-
pose of multi-feature fusion approaches, deep learning techniques are used in the 
articles [23, 24].

Building upon the efficient CAD system presented in this study for detecting 
DME, several promising future directions emerge. Firstly, there is a need to inte-
grate multimodal data beyond OCT images, such as fundus photography and patient 
history records, to provide a more comprehensive understanding of diseases and 
enhance diagnostic accuracy. Secondly, the development of real-time CAD systems 
that can be directly integrated into medical imaging equipment would facilitate 
faster decision-making during patient examinations. Additionally, extending simi-
lar methodologies to detect and classify other diseases, employing advanced data 
augmentation techniques, and synthesizing realistic medical images could enhance 
the CAD system’s applicability and robustness. Clinical validation studies and collab-
oration with medical professionals are crucial for ensuring regulatory compliance 
and seamless integration into clinical workflows. Continual model improvement, 
personalized medicine approaches, and enhancing the interpretability and explica-
bility of CAD models are essential for advancing the field and improving healthcare 
outcomes globally.
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