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PAPER

Deep Learning-Based Approaches Using Medical 
Imaging for Therapy Response Prediction in Breast 
Cancer: A Systematic Literature Review

ABSTRACT
The prediction of response to breast cancer therapy involves assessing the effectiveness of 
treatment by comparing biomarker levels before and after treatment. Deep learning (DL) 
models can provide a non-invasive and early way to evaluate the response to therapy based 
on medical imaging analysis. We conducted this systematic review to investigate the cur-
rent DL based methods for predicting breast cancer therapy response using medical imag-
ing. This review included 19 studies based on the PRISMA methodology. Some selected 
studies personalized the Convolutional Neural Network (CNN) architecture to improve its 
performance in handling medical images, while others used pre-trained models. The accuracy 
rates range from 0.73 to 0.90, and the Area Under the Curve (AUC) reaches 0.98. Our study’s 
findings suggest that the performance of these approaches varies depending on various med-
ical imaging modalities, the nature of the DL architecture used, and the fusion of training data 
sources. However, several challenges related to their explainability and generalizability arise. 
Therefore, it is necessary to develop larger datasets and broaden the scope of current studies 
to include multi-center studies.

KEYWORDS
deep learning (DL), therapy response prediction, medical image, breast cancer

1	 INTRODUCTION

With approximately 2.3 million cases diagnosed in 2022, breast cancer is con-
sidered one of the most common cancers among women worldwide, and it is the 
primary cause of cancer-related mortality in many countries, with a rate of 6.9% [1]. 
After a breast cancer diagnosis, patients must begin a therapy protocol that varies 
depending on the cancer’s stage [2]. Many women diagnosed with early-stage breast 
cancer are eligible for breast-conserving surgery followed by radiotherapy, partial 
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mastectomy, or chemotherapy. The therapy can be adjuvant or neoadjuvant [3].  
Clinical assessments, including physical exams, can assess a tumor’s response to 
treatment in conjunction with pathologic measurements gathered from a biopsy 
or surgical resection [4]. Medical practitioners also use various imaging techniques, 
such as Magnetic Resonance Imaging (MRI), mammography, and ultrasound, to eval-
uate the effectiveness of treatment and monitor the response. Among them, MRI 
is known for having the highest accuracy rate. Currently, it’s common practice to 
combine MRI with mammography to obtain complementary information about 
the effectiveness of the therapy [5]. Unfortunately, none of these techniques can 
replace a biopsy for accurately tracking response to treatment and providing crucial 
information about breast tumors [6].

The need for a non-invasive way to assist physicians in the diagnosis, monitoring, 
and prognosis of breast cancer patients led researchers to explore the path of 
artificial intelligence and, more specifically, the field of machine learning [7], [8]. 
To date, the field of radiology has the most widely implemented machine learn-
ing and deep learning. The in-depth analysis of medical imaging allows for the 
extraction of multiple imaging parameters, known as radiomics [9]. Many valuable 
radiomics-based approaches have been experienced in lesion detection, risk predic-
tion, and the prediction of therapy response [10]. However, these radiomics-based 
approaches have some limitations, including the need for handcrafted feature 
extraction and manual segmentation of the lesions [11]. Recently, new appli-
cations have been developed taking advantage of advances in computer vision. 
This is a sub-field of deep learning that operates directly on the image data and 
extracts features automatically without the necessity of human intervention [12]. 
Convolutional Neural Networks (CNN) stand out as a prevalent method within the 
realm of image analysis. CNN is adept at tasks involving pixel data, making it par-
ticularly suitable for image processing, computer vision applications, and scenarios 
requiring object recognition, such as facial recognition and medical image analysis. 
Notably, CNN methods can eliminate the need for radiologists to manually outline 
tumors in images [13].

The prediction of response to breast cancer therapy refers to the early evalu-
ation of treatment effectiveness through a comparison of the levels of biomarker 
acceptance before and after one or many cycles of systemic therapy. Thus, the 
sooner the response information is obtained, the better it is for therapy adjust-
ment [14]. We conducted this systematic literature review to investigate the exist-
ing approaches based on DL and medical imaging aimed at predicting the response 
to therapy in breast cancer patients. In the literature, many reviews have been 
carried out to answer many research questions relating to the use of DL and med-
ical image analysis to predict therapy response. However, most of the existing 
reviews have limitations in scope, focusing on one image modality, such as MRI, 
ultrasound, or mammography, and a specific therapy. Moreover, they do not dif-
ferentiate between DL models that require manual segmentation and those that 
use the whole image as input [15–18]. Therefore, we conducted a review of the 
current methods for predicting therapy response using medical imaging that take 
a broader approach and encompass multiple modalities and therapies to develop 
a deeper comprehension of the topic. Our focus was on Deep Learning and its 
related practices, including the use of pre-trained models, transfer learning, and 
techniques for enhancing data quality. We aimed to gain an updated and compre-
hensive overview of recent approaches through this review, as well as identify new 
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research questions, challenges, and areas that require further research. We also 
focused on the use of whole-breast images acquired by different imaging modal-
ities (ultrasound, MRI, and mammography). Additionally, our review involved a 
comparative analysis of performance metrics across different studies focused on 
predicting therapy response in breast cancer.

2	 METHODOLOGY

To conduct our literature review, we followed the PRISMA guidelines, which 
stand for preferred reporting items for systematic reviews and meta-analyses. 
PRISMA is one of the most popular and standard review methodologies since it 
offers a reproducible and standardized approach for the identification, selection, 
and evaluation of existing studies. Additionally, it guides on selecting, recognizing, 
and evaluating studies consistently [19]. The key steps for conducting reviews using 
PRISMA guidelines are as follows:

•	 Defining the research question
•	 Developing inclusion and exclusion criteria
•	 Conducting a systematic search
•	 Selecting eligible studies
•	 Assessing quality
•	 Extracting and synthesizing data
•	 Interpreting results

Following the previous process, the PRISMA flowchart in Figure 1 summarizes 
the details at each step.

2.1	 Research	question	and	objectives

We formulate the following research question to guide our literature review: 
“What are the current deep learning-based approaches that use medical imaging 
to predict therapy response in breast cancer patients?” The objective is to gather 
comprehensive information about the popular architectures, their performance, the 
used data, and their eventual limitations.

2.2	 Data	sources	and	search	strategy

To collect literature data for this review, three bibliographic databases were 
surveyed: Scopus, Web of Science, and Google Scholar. We selected Scopus and 
Web of Science due to their extensive coverage, credibility, and ability to provide 
cross-disciplinary access to high-quality, peer-reviewed content. Google Scholar 
served as a complementary tool to access a broad range of gray literature, such as 
theses and conference papers. This strategy allows us to capture the most exten-
sive spectrum of relevant academic information available, providing a robust 
foundation for our analysis. To get the most updated studies, we limited our search 
to the last five years corresponding to the period between 2019 and December 2023, 
and we selected only articles written in English.
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Reports sought for retrieval
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Fig. 1. PRISMA flowchart describing the study selection process for the review

The keywords used to perform the search are: “deep learning,” “approaches,” 
“medical image,” “medical imaging,” “therapy,” “response prediction,” and 
“breast cancer.”

The search strategy used the following search strings (SS):

•	 SS1: “deep learning” AND “approaches” AND “Medical Image” AND “Therapy 
Response Prediction” AND “Breast Cancer”

•	 SS2: “deep learning” AND “approaches” AND “Medical Imaging” AND “Response 
Prediction” AND “Breast Cancer” AND “Therapy”
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2.3	 Selection	(inclusion	and	exclusion)	criteria

After performing the search strategies in the pre-cited databases, a total of 
167 studies were obtained. At the identification step, the duplicated results, the non-
open access and not full-text papers, and the abstract proceeding were excluded. 
As a result, 115 studies were retained for the screening step.

The screening of the 115 results based on title and abstract allowed the elimination 
of 59 other research papers; 20 of them were about general applications of artificial 
intelligence in breast cancer and did not include experimentation. At this stage, the 
main exclusion criteria considered are the application to cancers other than breast 
cancer, the use of histopathological imaging as a type of data for the approaches, and 
the treatment of another prediction problem other than therapy response.

After reading and deeply analyzing the full-text versions of the screened papers, 
we assessed eligibility and included 19 studies in this review. The different criteria 
for inclusion and exclusion have been summarized in Table 1.

Table 1. List of inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

Publication between 2019 and 2023 Treating a subject other than that of predicting 
response to therapy

Use of English as a language Considering a pathology other than breast cancer

Being a conference or journal paper Absence of experimental approaches based on 
deep learning

Being about the prediction of therapy response in 
breast cancer patients

Use of histopathological image data

Use of medical image as a type of data for 
training models

No use of medical image data

Use of deep learning architecture-based models Not open access or no full text available

Use of whole breast image datasets Manual extraction of features from breast images

All the included studies were about the development of new approaches based 
on deep learning with the objective of predicting breast cancer therapy response 
using medical imaging.

2.4	 Quality	assessment

The objective of quality assessment in a systematic literature review (SLR) is to 
meticulously examine the methodological robustness and reliability of the included 
studies. As a result, it serves as a meticulous filter to sift through full-text articles, 
representing the concluding phase in the preparation of the study pool for subse-
quent data extraction and synthesis [20]. According to Yu Xiao et al. [21], there is no 
consensus on how reviewers should deal with quality assessment in their reviews, 
but they should collaboratively determine their stance on quality assessment, taking 
into account the specific circumstances and nuances that characterize their study.

To assess the quality of the included studies, two control levels were performed. 
The first control focuses on methodology quality through an elaborated check-
list of nine quality assessments (QA). All the included studies must cover all the 
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criteria in Table 2. The second level of control aims to precisely meet the inclusion/ 
exclusion criteria. For this purpose, another checklist with five questions (Q) was 
developed, as presented in Table 3. To be considered in this review, the study must 
have a yes answer to each of the questions; otherwise, it will be excluded from the 
final literature list.

Table 2. List of quality assessment questions

ID Quality Assessment Questions

QA1 Has the research objective been clearly defined?

QA2 Did the study have a clear research question?

QA3 Is the target population well described?

QA4 Is the methodology and experimental process clearly outlined?

QA5 Is the data collection process well described?

QA6 Were the results demonstrated by experimentation?

QA7 Are the results clearly presented and interpreted?

QA8 Are the reporting coherent and transparent?

QA9 Are the findings of the study generalizable?

2.5	 Data	extraction

From the included studies, we extracted general data such as title, authors, year of 
publication, and the objective of the research. More specific data was also extracted, 
such as image modality, type of therapy, subtype of breast cancer, level of response 
to the therapy, dataset, DL architecture, and performance metrics.

Table 3. List of inclusion/exclusion criteria assessment questions

ID Inclusion/Exclusion Criteria Assessment Questions

Q1 Are breast cancer patients the target population of the study?

Q2 Is therapy response prediction the objective of the study?

Q3 Is there a medical image-based and deep learning-based approach developed in the study?

Q4 Does the developed approach use the breast cancer image without a prior manual feature 
selection step?

Q5 Does the developed approach predict outcomes without relying on biopsy data?

2.6	 Data	synthesis

According to the selected studies’ data analysis, there has been a noticeable trend 
in publication numbers from 2019 to 2023. The chart in Figure 2a displays the pub-
lication trends during this period. The overall trend shows an upward trajectory in 
publications, with 2022 being the peak year. The data suggests a growing interest 
in research and scholarly work during this period. Regarding the datasets used for 
training, we notice that there is a prevalence of private datasets in research. Only a 
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small number of public datasets are being utilized, with approximately five public 
datasets and 14 private datasets being used (see Figure 2b).

In our analysis, we observe that the prevalence of custom CNN architectures 
remains evident as being the most frequently employed in the selected studies. Also, 
we notice that there are eight instances of pre-trained CNNs that have been utilized, 
such as AlexNET, VGG16, ResNet50, and Unet. This finding confirms the practicality 
of transfer learning, which lets researchers adapt and fine-tune existing architec-
tures, saving valuable time and computational resources (see Figure 3a).

a) b)

Fig. 2. (a) Distribution of selected studies by year of publication (b) Distribution of training datasets used 
in the selected studies by type

a) b)

Fig. 3. (a) Deep learning architectures used in the selected studies (b) Different image modalities used 
in the relevant datasets

The retained research studies have utilized various medical imaging modalities, 
as illustrated in Figure 3b. We noticed that the most commonly used imaging modal-
ity is MRI, which includes various subtypes. Ultrasound follows as a close second. 
This can be attributed to the greater availability of MRI datasets. On the other 
hand, CT scans are not as frequently used, despite their capacity to perform several 
functions, but they are still a costly imaging modality.

3	 RESULTS	AND	DISCUSSION

3.1	 Description	of	the	selected	studies

Different approaches emerged in the selected papers. Some of them had person-
alized the CNN architecture to enhance its performance when dealing with medical 
image, other authors preferred to harness the strengths of pre-trained models and 
build models based on them. We have also noticed that many studies used clinical, 
demographic, or molecular data as complementary sources to improve the accuracy 
of the prediction. Additionally, all the studies under consideration were focused on 
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neoadjuvant chemotherapy (NAC), and none of them examined the prediction of 
other types of therapies. Many researchers consider that neoadjuvant chemotherapy 
is the typical treatment for breast cancer because it can diminish the size of tumors 
and improve overall outcomes even at advanced stages [22]. Neoadjuvant chemo-
therapy facilitates also downstaging large tumors, rendering previously inoperable 
ones suitable for surgery and enabling breast-conserving surgery in situations where 
mastectomy was formerly the single choice [23]. However, histopathological assess-
ment following breast surgery is crucial for measuring the response to NAC. One of 
the metrics used for the evaluation of the efficiency of NAC is pathological complete 
response (pCR). Essentially, it indicates the absence of any detectable residual cancer 
cells in the tissue removed during surgery following a course of treatment, typically 
chemotherapy or radiation therapy [24]. In addition to pCR, there are other metrics 
to evaluate treatment response in breast cancer, which are based on changes in 
tumor cellularity and observation of regressive changes in residual tumor tissue [3].

After conducting our review, we observed that all the analyzed studies were 
limited to the prediction of pCR as a metric for response assessment and NAC as 
a targeted therapy. Only one study considered the partial response among the 
predicted classes. In the following, the retained approaches are classified into two 
families: the first is based on customized CNN (see Table 4), and the second is based 
on pre-trained architectures (see Table 5).

3.2	 Therapy	response	prediction	approaches	based	on	custom	convolutional	
neural	network	architecture

Based on a custom CNN, several approaches and models were developed in the 
selected papers to predict a complete response to NAC. We will discuss the findings 
by image modality hereafter.

Approaches using magnetic resonance imaging datasets: Magnetic reso-
nance imaging is a suitable imaging technique to monitor disease progression. There 
are different types of MRI, including structural MRI, functional MRI, diffusion MRI, 
and DCE-MRI, which stands for Dynamic Contrast-Enhanced MRI. To face the absence 
of imaging metrics that can effectively predict the response to NAC before it starts, 
Ravichandran et al. [25] utilized the I-SPY1 dataset, which consists of DCE-MRI scans 
on a per-voxel basis for 166 patients, to train a CNN-based model to predict the pCR 
to NAC. The developed model consisted of six blocks and was evaluated through two 
case studies. The CNN achieved a high prediction accuracy of 0.82 and an area under 
the curve (AUC) of 0.77 using pre-contrast data. The study suggested that identifying 
areas with greater predictive value could improve DL-guided treatment planning. 
However, the small training dataset and mix of molecular subtypes are limitations 
that can affect the effectiveness of this approach. Likewise, Qu et al. [26] conducted a 
study where they used a dataset of 302 patients with locally advanced breast cancer 
(LABC) to train a CNN architecture. The network was fed with six phases of enhance-
ment of pre- and post-NAC images. The study resulted in improved accuracy, achiev-
ing an AUC of 0.97. Nevertheless, supposing that T1 weighted image pre-contrast 
and post-contrast sequences of breast MRI are the most characteristic could be a 
limitation to this approach and may raise questions about its accuracy.

Early prediction of a patient’s response to NAC in breast cancer treatment is essen-
tial for informing therapy decisions and enhancing the personalization and effec-
tiveness of patient care. For this purpose, varying time points can provide a more 
comprehensive understanding of the longitudinal alterations in primary tumors.  
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To reach this goal, Verma et al. [27] conducted experiments using the ISPy-1 trial 
dataset and proposed deep-NST, an end-to-end multimodal spatiotemporal DL 
framework. Deep-NST integrates four parallel 3D-CNN networks trained on DCE-
MRI imaging data from different stamps. The developed framework includes 
molecular and demographical data that was fused using a cross-kernel feature 
fusion (CKFF) module. An AUC of 0.88 was registered. One of the strengths of this 
approach is its ability to predict pCR from pretreatment imaging alone, as well as 
the fusion of different data sources, which allows for improved prediction accu-
racy. Similarly, Duanmu et al. [28] developed three CNN models based on MRI imag-
ing data in 3D format, demographic data, and molecular data from the I-SPY1 trial 
dataset. The models include an imaging data-only model, a parallel model, and an 
interactive model. One advantage of the proposed approach is that it operates on 
the entire three-dimensional MRI image without the need for prior manual tumor 
segmentation. The prediction was based only on the pre-treatment time point, and 
the best-reached accuracy was 0.80. However, more extensive testing on a larger 
sample size across multiple institutions is required.

Triple-negative breast cancer is the most aggressive type of breast cancer, 
characterized by the absence of three biomarkers: HER2, ER, and PR. To gain better 
insights into the progression of this type of cancer, Zhou et al. [29] laid emphasis on 
the use of multiparametric MRI, which includes additional imaging sequences or 
parameters such as T1-weighted, T2-weighted, and diffusion-weighted, in addition 
to DCE. The authors developed a CNN-based model to predict pCR, which achieved 
high accuracy in training and validation and reached an AUC of 0.86 in testing 
groups. The only limitations of this study are the exclusion of patients with axillary 
lymph node residual disease and the small size of the considered sample.

Approaches using ultrasound datasets: In addition to MRI, several studies 
have investigated the use of ultrasound image datasets to suggest non-invasive 
and practical methods for predicting personalized responses in breast cancer 
patients during NAC treatment. For this aim, a dual-branch CNN was proposed by 
Xie et al. [30] to predict early NAC response at different stages of chemotherapy in 
114 patients with LABC. The best results were obtained when using a 9-block CNN, 
combining training data from pre-NAC and the first cycle of NAC, and using feature 
element sum as a sharing method. An AUC of 0.939 was achieved. Feature sharing 
enables the model to account for correlations between data at various stages of NAC 
during training.

Based on quantitative ultrasound multiparametric imaging (QUS) and deep con-
volutional neural network architecture (DCNN), Taleghamar et al. [31] developed 
an approach combining two cascaded networks: a residual network and a residual 
attention network to predict the response to therapy of LABC patients. The atten-
tion-guided network has shown better performance in extracting optimal quanti-
tative features from QUS multi-parametric images, achieving an AUC score of 0.86. 
In [32], the authors proposed a novel deep-learning radiomics pipeline (DLRP) for 
response prediction in breast cancer patients who have undergone four courses 
of NAC. The dataset was composed of ultrasound images of 168 patients. The pro-
posed model is based on CNN and enables sequential prediction of response at var-
ious time points during NAC administration. The best results were achieved when 
training with data from the four NAC courses, with an AUC of approximately 0.9. 
Working towards the same objective, Jiang et al. [33] developed and validated a 
deep learning radiomic nomogram (DLRN) trained on ultrasound images of 365 
patients captured before the beginning of NAC and after the first cycle. The AUC 
was approximately 0.9. The common limitation of all these studies is their use of 
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small datasets or their conduct in a single center, which underscores the necessity 
for larger and multi-institutional datasets to enhance their generalizability. Also, the 
pCR prediction models based on US imaging are often considered by practitioners 
as not sufficiently robust, therefore, they advise holistically evaluating treatment 
strategies using diverse sources of information.

Approaches using CT scan datasets: The CT scan imaging modality has the 
advantages of being more efficient in assessing soft tissue tumors and distinguishing 
between tissues, but it is not as commonly used as MRI and ultrasound modalities 
because of its high costs and its radiation exposure [34]. Tan Hong Qi et al. [35] 
developed a predictive AI model based on CT imaging and clinical parameters. The 
proposed deep learning model has been trained on a multi-center dataset containing 
CT scans of 342 patients with LABC. By including clinical parameters, the AUC of pCR 
prediction has improved from 0.743 to 0.772. However, the study acknowledged 
limitations, such as its retrospective nature and the relatively small size of the cohort.

3.3	 Therapy	response	prediction	approaches	based	on	pre-trained	
architectures

Deep learning models require large training datasets. To address the lack of data, 
transfer learning strategies offer a promising solution to address these constraints. 
In [36], Massafra et al. developed an AI method to predict early response to treatment 
by exploiting the data of 151 patients, including axial and sagittal DCE MRI. The 
approach follows a three-step process: First, automatic feature extraction is per-
formed using the pre-trained CNN Alexnet; then, important features are extracted 
using the stratified feature selection method; and finally, the classification of respond-
ers is achieved. The results were enhanced using additional clinical data, reaching the 
best AUC of 0.80 on the sagittal MRI data. To improve the generalizability of the model, 
both private and public datasets were utilized for training. Based on the Alexnet archi-
tecture, Choi et al. [37] introduced a DL model tailored for PET and MRI images and 
compared its performance to conventional methods. The model was trained using 
a dataset of 56 advanced breast cancer patients who had undergone three cycles of 
NAC. Although the use of data augmentation contributed to the parametric improve-
ment of the deep learning model, the imbalance rate between the two considered 
classes remains a limitation of this study due to the small size of the dataset.

Using U-net architecture, Lui et al. [35] proposed an approach predicting PCR 
to NAC by combining ultrasound imaging data and clinical data of 393 patients 
with HER2-positive breast cancer. The proposed architecture consisted of two 
subnetworks, one for tumor segmentation and the other for pCR prediction. The lat-
ter subnetwork uses the extracted features from the tumor segmentation subnetwork 
as its input. To enhance the prediction, a clinician model using multivariable logistic 
regression analysis was added. Hence, the achieved AUC was 0.90. However, there 
may be limitations due to the separate misanalysis of data from the two NAC cycles, 
which could impact the results. In [39], Joo et al. proposed a novel approach for 
predicting response to NAC by combining MRI imaging and a Resnet50 architec-
ture. The approach involved a model consisting of three parts: a 3D volumetric CNN 
for extracting MR features, a layer for clinical information and feature concatena-
tion, and a fully connected layer for predicting PCR. The authors experimented with 
different combinations of datasets, including clinical data and T1/T2-weighted MRIs, 
and found that the best results were obtained when all datasets were used together. 
The approach achieved an AUC of 0.88. Some limitations were identified for these 
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studies and concern the explainability of deep learning models and the generability 
of the results.

Based on the pre-trained VGG16 architecture, Ha et al. [40] developed a model to 
classify patients with LABC into three classes: response, partial response, and complete 
response, using an MRI breast cancer dataset of 144 patients. The model achieved an 
accuracy of 0.88. In [41], Li et al. developed a model combining multi-period image 
information and clinical characteristics to predict pCR. The DCE-MRIs of 95 patients 
were involved in the experimentation. The model was based on the pre-trained net-
work Uctransunet to extract semantic segmentation features. The model achieved an 
AUC of 0.90 when using multi-period images and clinical data. The previous studies 
were based on a population from a single center, which can lead to biased results. To 
avoid this problem, Wu et al. [42] led a multi-center and retrospective study involving 
801 patients dispatched in 4 cohorts and developed an auto segmentation-based 
ultrasonography assessment system to predict pCR. The system is based on Unet, 
which includes automatic tumor segmentation and a model called SUAS for predict-
ing optimal therapeutic management after NAC. Even though a high AUC of 0.97 was 
achieved, there were some limitations to the developed approach, such as the imbal-
anced distribution of patients among the four cohorts. To compare the performance 
of deep learning-based models to radiomics analysis-based models, Peng et al. [43] 
developed four models based on Unet, using kinetic, imaging, and molecular data 
from a private dataset of 356 patients. The best-performing model was a DL model 
that utilized image, kinetic, and molecular data.

3.4	 Discussion

Through the present systematic literature review, we attempted to answer our 
research question: “What are the current deep learning-based approaches that use 
medical imaging to predict therapy response in patients with breast cancer?” We 
identified several approaches with accuracy rates ranging from 0.73 to 0.90 and an 
AUC reaching 0.98. The difference in the performance of these approaches is highly 
dependent on the imaging modality used, the nature of the deep learning archi-
tecture used, and the fusion of training data sources. In addition to identifying DL 
approaches, this review enabled us to identify some factors that can influence the 
effectiveness of the models. These factors include:

•	 The imaging modalities of the training datasets: MRI and ultrasound imaging 
modalities were associated with most approaches with high accuracy. This can 
be explained by the high resolution of MRI images and their soft tissue contrast, 
which enhance the quality of training data. Additionally, ultrasound allows the 
evaluation of changes in tumor size and morphology throughout the course of 
NAC. In contrast, CT scans are less effective in detecting small changes in tumor 
size, especially during early treatment stages, and may struggle to distinguish 
between scar tissue and active cancer cells.

•	 The use of pre-trained architectures: Several pre-trained architectures, including 
U-Net, VGG16, and ResNet50, were utilized in the studies that were selected to 
improve tumor segmentation and feature extraction in the developed models. 
The use of pre-trained models improved the segmentation process’s accuracy and 
reliability when delineating tumor boundaries. Furthermore, transfer learning 
has helped overcome the limitations of medical imaging datasets in terms of vari-
ations in image quality, acquisition protocols, and equipment.
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•	 The integration of multimodal data fusion: Most retained studies evaluated the 
effectiveness of the proposed deep learning approaches when using only medi-
cal image data, as well as when combining other sources of data such as clinical, 
demographic, or molecular data. These studies have also explored the integra-
tion of data from different time stamps. To combine features from different 
modalities, approaches such as concatenation, summing, attention-based fusion, 
cross-kernel fusion, and the stack approach were used. The results have shown 
that combining different sources of data leads to the best outcomes.

4	 CONCLUSION

In this systematic literature review, we have examined the recent DL-based 
methods for predicting therapy response using medical image datasets of breast can-
cer patients. To get an overall view, we did not limit the study to a single therapy or a 
specific imaging modality. The findings of this study cannot conclusively determine 
the best approach due to the varying methods involved, which makes it difficult to 
compare them. This study’s limitation is due to the heterogeneity of the involved 
methods. However, we have identified some factors that affect the performance 
of the proposed models. These factors include the imaging modalities used in the 
training datasets, the utilization of pre-trained architecture, and the integration 
of multimodal data fusion. Moreover, there are significant challenges related to 
the explainability and generalizability of DL approaches in medical imaging. The 
complexity of DL models often makes it difficult to understand how decisions are 
made, which is a critical barrier in clinical environments where trust and trans-
parency are paramount. Furthermore, these models frequently exhibit variability 
in performance when applied to different groups of patients or used with various 
imaging equipment, highlighting concerns about their reliability and broad applica-
bility. Resolving these challenges is essential for the effective integration of DL into 
clinical practice.
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