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PAPER

Exploring the Impact of Motion Parameter Variations 
in Virtual Reality Content on Visually Induced 
Motion Sickness: An Electroencephalography 
Signal Analysis Approach

ABSTRACT
The utilization of virtual reality (VR) technology has surged during the COVID-19 pandemic, 
leading to a diversification of its applications. However, one significant challenge associated 
with VR usage is visually induced motion sickness (VIMS). To address this issue, a study was 
conducted to investigate the impact of variations in physical motion parameters on VR con-
tent in relation to VIMS. The study employed electroencephalography (EEG) signal analysis to 
measure the level of VIMS experienced by users as the motion characteristics of the content 
became more intricate, potentially inducing circular vection sensations. The results revealed 
noteworthy changes in power spectral density values within the alpha and beta brain wave 
frequency ranges in specific brain areas, including the frontal, parietal, and central regions. 
Furthermore, an elevation in stress levels and cognitive load was observed through power 
ratio analysis. These findings, which have direct implications for the design and advancement 
of VR content, are crucial for establishing an evaluation system for VR technology, ultimately 
mitigating adverse effects on users.
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electroencephalography (EEG), virtual reality (VR), visually induced motion sickness (VIMS), 
power spectral density

1	 INTRODUCTION

Amidst the transformative effects of the COVID-19 pandemic, virtual reality (VR) 
technology has been rapidly evolving and proving to be a valuable solution. As we 
adapt to new ways of working, learning, and connecting, VR offers an immersive 
and interactive experience that bridges the physical distance between individuals. 
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Its success in facilitating collaboration and overcoming barriers has made it a major 
focus of post-pandemic study and development [1], [2], [3].

Virtual reality technology has garnered significant attention across various fields, 
but amidst all the excitement, a pressing concern—VIMS—demands our attention. 
VIMS is a condition that affects some VR users, causing them to experience discom-
forting symptoms such as nausea, dizziness, and visual fatigue due to a disparity 
between the sensation of movement perceived by the brain and the sensory infor-
mation received by the body [4]. This issue is increasingly worrisome as VR finds 
use in diverse areas such as entertainment, education, and therapy [5]. It is, there-
fore, crucial to investigate the root causes of VIMS and develop effective mitigation 
strategies to ensure a more comfortable and secure VR user experience [6], [7].

Researchers have been studying the phenomenon of VIMS, which can occur 
when using VR technology. They have developed theories and models of sensory 
conflict to explain the causes of this problem. One prominent theory is the sensory 
conflict theory proposed by Reason [8], which suggests that a mismatch between 
visual, vestibular, and somatosensory information can lead to VIMS symptoms. 
Fernandes and Feiner [9] further developed this theory by emphasizing the role of 
conflict between visual and vestibular information in causing discomfort during VR 
use. Additionally, Sharples and colleagues [10] proposed a sensory conflict model 
that considers sensory disturbances, visual instability, and fatigue to explain VIMS 
symptoms fully. Bos and Bles [11] also developed the VIMS model, highlighting the 
role of mismatches between the brain’s sensory information and external sensory 
inputs. Understanding these theories and models is crucial for preventing and 
treating VIMS as VR technology develops.

Numerous studies have been conducted to identify, alleviate, and assess VIMS 
in virtual reality technology. One popular method is questionnaires, such as the 
simulator sickness questionnaire (SSQ), which gauges user discomfort levels fol-
lowing VR use [12]. While these surveys offer a subjective report of VIMS symp-
toms, relying solely on questionnaire-based approaches can be insufficient for a 
comprehensive understanding of this phenomenon. Thus, studied have turned 
to body response measurements, such as ECG, EDA, EGG, respiration, body tem-
perature, EMG, EEG, etc. Among these modalities, EEG has emerged as the most 
promising since it can record brain electrical activity with high time resolution, 
identifying patterns of brain activity associated with VIMS symptoms [13], [14], [15]. 
EEG measurements can provide a deeper understanding of how the brain reacts 
to VR use, thus facilitating the development of more effective intervention 
strategies [16].

Although there has been a lot of study on EEG-based VIMS, it has not been linked 
much to the theory and model of VIMS itself. Various studies have been conducted to 
develop and refine VIMS theories and models from a psychology and neuroscience 
perspective. This study produced several characteristics of conditions that can trig-
ger VIMS. VIMS trigger characteristics have various aspects of motion, video quality, 
and visualization quality. Analysis of the characteristics of VIMS triggers has not 
been studied further using the EEG modality. This provides an opportunity to study 
VIMS more comprehensively.

This study aims to investigate the manifestation of VIMS symptoms induced by VR 
viewing, which is contingent upon the VIMS theory and model. The physical param-
eters associated with these symptoms will be analyzed through EEG measurements, 
providing an in-depth comparison between the theoretical causes of VIMS and their 
EEG-based results. This study, conducted during the pandemic, is particularly timely 
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and relevant, as it addresses a significant challenge associated with VR usage, VIMS, 
and provides insights that can help in the design and advancement of VR content. 
For those interested in the latest advancements in VR technology and how it impacts 
different aspects of life, it is worth exploring its potential in this new era, which 
holds promising opportunities for the future.

2	 METHODS

This study was conducted in four primary phases. The initial phase involves 
preparation, which encompasses participant selection and VR content preparation. 
Next comes data acquisition, followed by data processing that includes EEG 
measurements and questionnaires. Finally, the fourth and last stage entails 
data analysis.

2.1	 Participants

For this study, we recruited 35 male participants between the ages of 19 and 26. 
To ensure their suitability for the study, each potential participant underwent a 
screening process that included the motion sickness susceptibility questionnaire 
(MSSQ), consultations with general practitioners, and in-depth interviews. The inter-
views were designed to gather comprehensive background information related to 
the study theme, such as experiences with VR technology, phobias, and familiarity 
with EEG. Subsequent interviews were conducted after the EEG recording to gain 
insight into the participants’ experiences during the session [17], [18].

Furthermore, a set of health-related standards was applied, ensuring no eye dis-
eases, past eye surgeries or injuries, neurological disorders, brain damage, ear issues, 
abnormalities, or surgeries, and no ongoing medication-dependent treatments were 
present. After the screening procedure, 31 individuals were qualified to participate 
in the data collection phase.

The implementation of the experiments was meticulously guided by the princi-
ples outlined in the Declaration of Helsinki, which sets the ethical standards for med-
ical study involving human subjects, ensuring respect for participants’ rights and 
well-being. Additionally, the study adhered to specific technical requirements for 
study ethics, ensuring that the experimental design, procedures, and data handling 
met rigorous ethical guidelines as referenced in [19]. Before the commencement of 
EEG recording, all participants were thoroughly informed about the study’s nature, 
purpose, and potential risks. Each participant provided their voluntary agreement 
to participate by signing an informed consent form, which detailed their rights, the 
confidentiality of their data, and the option to withdraw from the study at any time 
without penalty. This process ensured that all participants were fully aware of 
the study’s procedures and role, thereby upholding the highest standards of ethical 
study practices.

2.2	 Experimental	devices

The study utilizes the Neuron-Spectrum-63, a clinical EEG device with 19 + 2 
EEG electrodes (A1 and A2 as references and 19 scalp electrodes). The electrodes 

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 12 (2024) International Journal of Online and Biomedical Engineering (iJOE) 163

Exploring the Impact of Motion Parameter Variations in Virtual Reality Content on Visually Induced Motion Sickness: An Electroencephalography Signal 

are named based on their positions on the scalp, representing each lobe: frontal 
(Fp1, Fp2, F7, F3, Fz, F4, and F8), temporal (T3, T4, T5, and T6), parietal (P3, Pz, and 
P4), central (C3, Cz, and C4), and occipital (O1 and O2).

The study utilized the reference montage method, with A1 and A2 as reference 
points. A referential montage EEG involves recording brain activity using electrodes 
placed on the scalp, with each electrode referenced to a common point, typically a 
neutral location such as the earlobe or mastoid. This method enhances the detection 
of localized brain activity by comparing the potential at each electrode to the com-
mon reference, thereby providing clearer insights into regional brain functions [20]. 
Figure 1 shows the setup of the EEG, including the position of each electrode, the 
mount used, and how this device is installed on the subject together with the head 
mounted display (HMD).

Fig. 1. Set up of the EEG device (a) referential montage (b) installation of the EEG  
and HMD on the participant

2.3	 Data	acquisition

This data acquisition explored the correlation between the EEG signals and the 
movement characteristics observed in the VR video. To ensure consistency, all VR 
videos were displayed using the HMD. The experiment consisted of two VR sessions, 
and the SSQ was administered four times to gauge the subjective assessment of VIMS 
both before and after the VR session, as indicated in Figure 2.

Fig. 2. EEG recording data acquisition workflow

Participants were asked to rate their motion sickness (MS) experience during 
both VR sessions, assessed during the intermission between sub-videos. The MS (MS) 
score was categorized into five levels: 0 (comfortable), 1 (mild sickness), 2 (moderate 
sickness), 3 (severe sickness), and 4 (extreme sickness). Figure 3. illustrates a group 
of participants being monitored using EEG, along with examples of multiple screen-
shots of the VR content.
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Fig. 3. Conditions for carrying out data acquisition (a) A participant is watching a VR show through an HMD 
while being measured using EEG (b)–(e) screenshots of several videos being shown

2.4	 Virtual	reality	content	and	characterization	of	virtual	motion	parameters

During the initial virtual reality session, a video showcasing F1 car racing was 
presented, while in the subsequent VR session, a series of seven videos featuring 
different game rides were displayed. These videos were carefully selected to high-
light various motion characteristics that may contribute to VIMS, such as circular 
and linear vection, bar and frame effects, and pseudo-Coriolis and Purkinje effects, 
among others [21].

Through the conducted experiments, it has been determined that the sensations 
felt by individuals when experiencing virtual reality can be categorized as either 
linear or circular motion.

Session 1 of the VR experience comprises five scene codes that exhibit motion in a 
two-dimensional plane. Each video scene lasts 20–40 seconds. In this particular ses-
sion, the video depicts the viewpoint of a race car driver in a high-speed race setting. 
As illustrated in Figure 4, the diagram represents the motions observed in each of 
the five scene codes of VR Session 1 from the top view.

Fig. 4. Movement scheme for each video scene in session 1

The second VR session comprises seven scene codes showcasing movements in 
both horizontal and vertical planes. Each scene is captured in a 10- to 30-second 
video, offering a thrilling first-person perspective of various amusement park rides. 
Figure 5 illustrates the motion depicted in each scene code of VR Session 2.
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Fig. 5. Movement scheme for each video scene in session 2

2.5	 Data	processing

The EEG signal data is processed through multiple stages. Initially, the data is 
filtered to remove noise and artifacts. This is done using the bandpass filter (BPF) 
method, which transforms the signals from the time domain to the frequency 
domain using discrete Fourier transform (DFT) and then passes only the signals in 
the selected frequency range. The frequency range selected for this process is the 
brain wave frequency (0.5–100) Hz. The filtered data is then transformed into a time 
domain signal using inverse DFT. In the final stage of pre-processing, BPF is again 
used to pass the required signal frequencies, namely the frequency ranges of delta 
(δ) (0.5–4) Hz, theta (θ) (4–8) Hz, alpha (α) (8–13) Hz, beta (β) (13–30) Hz, and gamma 
(γ) (30–45) Hz [22].

Once the EEG signal is cleaned and separated based on brain wave frequency 
ranges, feature extraction is done through power spectral density (PSD). The 
PSD is then processed into several physical parameters that can be analyzed. 
Calculating the PSD of an EEG signal using Welch’s periodogram method involves 
segmenting the EEG signal into overlapping sections, computing the periodogram 
for each segment, and then averaging these periodograms to obtain a smoother 
and less noisy PSD estimate. These steps help reduce the variance of the PSD 
estimate [23]. The signal is first segmented into overlapping sections, represented 
mathematically as

 xn(k) = x(k + nL) (1)

where n is the segment index, k is the data point index within the segment, 
and L is the number of points by which segments overlap. For each segment, the 
periodogram is calculated using the equation
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where w(n) is the window function, and N is the segment length. Finally, the 
periodograms of all segments are averaged to obtain the PSD estimate described by
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where K is the number of segments and P f
xx

k( ) ( )� is the periodogram of the k-th 
segment. This approach results in a more stable and representative estimate of the 
frequency spectrum of the EEG signal.

This PSD calculation is carried out for the entire brain wave frequency range. 
Next, the power ratio calculation is carried out [24]. The beta/alpha ratio compares 
the PSD of beta to alpha-frequency brain waves. Apart from that, the theta/beta ratio 
compares the PSD of theta and beta-frequency brain waves [25].

3	 RESULTS	AND	DISCUSSION

3.1	 Simulator	sickness	questionnaire

The VIMS symptoms that participants experience can be described using the sim-
ulator sickness questionnaire (SSQ). In Figure 6, we can see the SSQ results calcu-
lated from 31 individuals. Four SSQ score calculations were conducted: before the 
VR show (SSQ#1), after session 1 of the VR show (SSQ#2), before session 2 of the VR 
show (SSQ#3), and after session 2 of the VR show (SSQ#4). A 15-minute break was 
provided between filling in SSQ#2 and SSQ#3 to allow the participant to return to 
their physical and mental state before engaging invirtual reality.

Fig. 6. SSQ results for four conditions during data acquisition (N, O, and D are symptom groups  
of nausea, oculomotor, and disorientation; while TS shows the total score)

Following participants’ exposure to VR, significant improvements in all VIMS  
were observed, including reductions in nausea, oculomotor issues, and disorienta-
tion. In the first VR session, which featured car racing, the most notable improvement 
was seen in disorientation, with a score difference of 89.088. Nausea and dizziness 
were commonly experienced, regardless of whether participants had their eyes 
open or closed. Oculomotor symptoms showed a score increase of 53.818, involving 
general discomfort, fatigue, and eye strain. The nausea group also demonstrated a 
score increase of 46.746, primarily attributed to general discomfort and nausea. In 
the second VR session, set in an amusement park, the most significant improvement 
was observed in the nausea group, with a score change of 125.928. This change was 
commonly associated with general discomfort, nausea, and sweating. Disorientation 
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increased with a score of 112.752, predominantly due to nausea and dizziness. 
The oculomotor group reported an increase of 84.896, with general discomfort, 
fatigue, and eye strain as prevalent symptoms. Both VR sessions indicated overall 
positive changes in VIMS symptoms across all categories.

After analyzing the SSQ results, it was found that VR session 2 led to a greater 
increase in VIMS symptoms compared to VR session 1. This outcome is directly 
related to the content presented in each session. As previously discussed, VR 
session 2 incorporated more variations and levels of movement than VR session 1. 
The video footage was further categorized into 12 scene codes to facilitate a thorough 
comparison of the content in both VR sessions.

3.2	 Motion	sickness	score

The MS score is a subjective measure used to quantify the severity of MS experi-
enced by individuals. It is categorized into five distinct levels: 0 represents a state of 
comfort with no symptoms, 1 indicates mild sickness where symptoms are minimal 
and easily manageable, 2 denotes moderate sickness with more noticeable symptoms 
that may interfere with normal activities, 3 signifies severe sickness where symptoms 
are intense and significantly disruptive, and 4 corresponds to extreme sickness with 
overwhelming symptoms that can be incapacitating. This MS score will be used as a 
comparative aspect of the PSD value that will be obtained. The scores for each scene 
code were averaged to produce a final VR video scene score, presented in Table 1.

Table 1. Subjective score results for each VR video scene

VR Session 1 VR Session 2

Scene Code Average MS Score Scene Code Average MS Score

1–1 1.64 ± 0.642 2–1 2.17 ± 0.715

1–2 2.27 ± 0.686 2–2 1.08 ± 0.366

1–3 0.42 ± 0.409 2–3 2.44 ± 0.651

1–4 1.15 ± 0.385 2–4 3.31 ± 0.567

1–5 0.13 ± 0.343 2–5 3.80 ± 0.419

2–6 3.93 ± 0.287

2–7 2.67 ± 0.778

The motion complexity of each video scene varies, describing the number and 
sequence of movement types within it. For instance, scene code 2–2 features two 
motion characters appearing sequentially, while scene code 2–6 displays two motion 
characters occurring simultaneously. As a result, videos with scene code 2–6 are con-
sidered to have a higher level of complexity than those with scene code 2–2. Each code 
for a scene corresponds to a specific aspect of VIMS observed in VR videos, including 
linear vection, circular vection, uncertainty, pseudo-Coriolis, and Purkinje effects. 
These effects can be present independently or combined in a single scene. After each 
scene transition, participants were asked to rate their motion sickness level.

Upon analysis, it is apparent that videos featuring circular vection receive higher 
scores than those featuring linear vection. Additionally, videos with higher com-
plexity are associated with higher scores than those with lower complexity. The 
video with the highest score involved scene code 2–6, which featured two types of 
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movement, oscillation and rotation, occurring simultaneously. This scene included 
circular vection and pseudo-Coriolis aspects. Conversely, videos with scene codes 
1–5, which featured only one type of movement (accelerated straight movement), 
received the lowest scores. These videos only had one aspect, namely linear vection.

The scoring system is used to evaluate brain function by examining the correla-
tion between motion sickness levels and physiological and neurological responses. For 
example, changes in brain activity measured by EEG can be studied in relation to the 
motion sickness score to gain insight into how different levels of motion sickness affect 
cognitive and neural processes. This approach helps pinpoint specific brain regions and 
neural pathways involved in the development and progression of motion sickness, offer-
ing valuable insights into the underlying mechanisms and potential treatment targets.

3.3	 Power	spectral	density

The EEG recordings were analyzed to calculate the power spectral density (PSD) and 
compared with the participant’s subjective assessments of motion sickness. The PSD 
values for each electrode within one group of brain regions were closely related. This 
was confirmed by the Wilcoxon test, which indicated that the average PSD value at elec-
trodes in one brain region was not significantly different. It was observed that less than 
5% of the pairs of electrodes in the frontal areas showed differentiation. Conversely, 
in other areas, there was no statistical distinction. Consequently, the PSD analysis 
represents an average of the PSD values for each channel within one brain area.

Fig. 7. Comparison of the average PSD of all brain waves in the frontal area (Fp1, Fp2, F7,  
F3, Fz, F4, and F8) to the motion characteristics of the video scene

Further, the average PSD value changes for each frequency range of brain waves 
are grouped according to the respective brain region. These changes are then com-
pared with the score assigned to each scene code. The average PSD value for each 
video scene code in the frontal area and the participant’s MS score are depicted 
in Figure 7. In both sessions, significant changes were noted in the alpha wave 
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frequency range, with the highest average PSD value (12.975 µV2) recorded during 
scenes with the lowest score (0.13) and the lowest average PSD value (8.83 µV2) during 
scenes with the highest score (3.93). Conversely, beta wave frequencies displayed an 
inverse relationship, where the average PSD values were directly proportional to 
the scene score. For example, scenes with the lowest score (0.13) corresponded to 
the lowest average PSD value (1.093 µV2), while scenes with the highest score (3.39) 
exhibited the highest average PSD value (1.652 µV2). It is worth noting that apart 
from these frontal alpha and beta wave frequencies, no other frequency ranges 
displayed significant changes throughout the analysis.

Fig. 8. Comparison of the average PSD of all brain waves in the central area (C3, Cz, and C4)  
to the motion characteristics of the video scene

As depicted in Figure 8, the central region displays notable variations in the theta 
frequency spectrum. Specifically, the theta wave frequency range undergoes sub-
stantial modifications correlating with the video scene transitions. Notably, the high-
est average PSD value (4.206 µV2) corresponds to the scene with the highest score, 
while the lowest PSD value (3.4755 µV2) aligns with the scene with the lowest score.

The frequency range of alpha waves in the central area shows the same pattern 
as theta waves. The average PSD value of the theta wave is directly proportional to 
the scene score. When the subject watched the video show with the lowest scene 
score (0.13), the average PSD value reached 9.78 µV2. When the subject watched the 
video with the highest scene score (3.39), the average PSD value reached 12.105 µV2. 
The beta wave frequency range in the central area experienced a significant change 
during VR session 1 but not in session 2.

Figure 9 shows the average PSD for the parietal area. The parietal area has three 
brain wave frequency ranges that experience significant changes during VR videos. 
It was observed that delta, theta, and alpha brain waves had significant changes in 
the average PSD values. The average PSD value in delta waves changes inversely to 
the scene score. Two representative points are the highest average PSD of 0.767 µV2 
and the lowest of 0.512 µV2, which appeared when the subject saw the show with 
the highest and lowest scene scores, respectively.
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Fig. 9. Comparison of the average PSD of all brain waves in the parietal area (P3, Pz, and P4)  
to the motion characteristics of the video scene

On the other hand, theta and alpha waves exhibit a contrasting pattern to delta 
waves. The mean PSD values for theta and alpha waves are 3.6195 µV2 and 13.01 µV2, 
respectively. Notably, the subject displayed the highest average PSD value when 
viewing videos 2–6, which had the most captivating scenes. In contrast, the videos 
with the lowest scene score also had the lowest average PSD values for theta and 
alpha waves, namely 3.111 µV2 and 10.4925 µV2.

The mean PSD value did not significantly change in the temporal and occipital 
regions during VR video administration. In the temporal area, the theta wave fre-
quency range only changed significantly during session 2. Meanwhile, in the occip-
ital area, the delta wave changed significantly only in session 1 and the alpha wave 
only in session 2.

3.4	 Relation	of	power	spectral	density	to	motion	sickness	score

After analyzing the PSD results, we focused on brain waves that exhibited nota-
ble changes. We then conducted a more in-depth analysis of the corresponding brain 
regions, including the frontal at alpha and beta frequencies, the central at alpha and 
theta frequencies, and the parietal at delta, theta, and alpha frequencies. To gain 
further insight, we utilized linear regression to investigate the relationship between 
the average PSD value and the scene score. Our analysis revealed two comparable 
results and five inverse relationships between the average PSD value and the scene 
score, depicted in Figure 10.

The observed changes in brain wave activity in response to VIMS can be jus-
tified by understanding the structural and biochemical dynamics of the brain 
regions involved. The inverse relationship between the average PSD value of alpha 
waves in the frontal area and the scene score suggests a functional modulation in 
response to sensory conflict and motion perception. Alpha waves, typically associ-
ated with a relaxed, wakeful state, show decreased activity as the brain’s prefrontal 
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cortex adjusts to the perceived motion in a virtual environment. This adjustment 
reflects the prefrontal cortex’s role in anticipating movement direction, where ini-
tial high activity diminishes as the frontal cortex processes and integrates sensory 
information, leading to an assumption of movement [26].

Conversely, the increase in beta wave activity in the frontal area during VIMS 
indicates heightened cognitive processing and mental workload. Beta waves are 
linked to active thinking, focus, and problem-solving, which aligns with the brain’s 
need to resolve the sensory mismatch experienced during VIMS. This heightened 
activity can be attributed to increased neurotransmitter release, such as norepineph-
rine and dopamine, which are known to enhance alertness and cognitive functions 
during stress and sensory conflict [27], [28], [29], [30].

In the parietal area, which is responsible for processing body movement and sen-
sory information, the direct relationship between the average PSD of alpha and beta 
waves and the severity of motion sickness highlights the role of the somatosensory 
system. The increased alpha and beta wave activity correlates with the brain’s effort 
to reconcile conflicting sensory inputs from the visual and vestibular systems [31]. 
This sensory integration process involves complex neural circuitry and neurotrans-
mitter interactions, such as the cholinergic and GABAergic systems, which modulate 
neural excitability and synaptic plasticity [32].

The central area’s increased alpha and theta wave activity during heightened 
VIMS symptoms further supports the involvement of somatosensory processing. 
Theta waves are often associated with memory formation and navigation, sug-
gesting that the brain is actively trying to contextualize and adapt to conflicting 
sensory information [33]. This process involves hippocampal and parahippo-
campal regions, which interact with the central somatosensory cortex to inte-
grate sensory inputs and maintain spatial orientation. This finding aligns with 
prior study conducted by Krokos and Varshney [34], H. K. Lim et al. [30], and 
Nürnberger et al. [35].

Fig. 10. (Continued)
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Fig. 10. The mean PSD values with significant changes were associated with MS scores via linear regression

3.5	 Power	ratio

A power ratio analysis was conducted to determine if the emergence of VIMS 
symptoms led to heightened cognitive load and stress levels. The results of the power 
ratio calculation are depicted in Figure 11, showcasing the beta/alpha ratio values as 
seen in Figure 11a. It is observed that the beta/alpha ratio value increases in tandem 
with the motion sickness score, which also escalates. These two data sets display a 
positive linear relationship with an R2 score of 0.9834, implying that cognitive load 
intensifies as VR is introduced and the level of movement complexity surges [36], [37].

Fig. 11. Changes in the ratios (a) β/α and (b) θ/β are related to the score in each video scene

As observed in Figure 11b, the theta/beta ratio tends to have an inverse rela-
tionship with the motion sickness score. Linear regression analysis reveals that the 
two variables negatively correlate with a linear pattern. The obtained R2 value of 
0.9114 indicates a significant reduction in stress resistance levels. Therefore, it can 
be inferred that an increase in stress levels is also likely [38], [39].
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4	 CONCLUSIONS

This study study measured EEG activity in individuals exposed to VR content. 
The VR videos were thoughtfully selected to include variations in virtual motion 
parameters, considering factors that could potentially cause sensory conflict. 
The conclusions drawn from this study suggested that changes in the average PSD 
value were linked to the severity of VIMS symptoms, as determined by SSQ and 
motion sickness scoring. It is important to note that an increase in VIMS scores 
was strongly associated with significant changes in mean PSD. Furthermore, the 
study demonstrated that movement characteristics played a critical role in deter-
mining the level of VIMS experienced by participants. Specifically, more complex 
movements involving multiple types of motion simultaneously increased VIMS 
symptoms. Additionally, it was found that circular vection had a greater impact on 
VIMS than linear vection. The changes in brain wave activity during VIMS can be 
explained by the brain’s structural and biochemical responses to sensory conflict. 
The modulation of alpha, beta, and theta waves across different brain regions 
reflects the complex interplay of neurotransmitter systems and neural circuits 
involved in sensory integration and cognitive processing during motion sickness. 
These findings could serve as preliminary data for developing an EEG signal-based 
VIMS detection system.
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