
	 16	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 11 (2024)

iJOE  |  eISSN: 2626-8493  |  Vol. 20 No. 11 (2024)  | 

JOE International Journal of 

Online and Biomedical Engineering

Almaghthawi, A., Ghaleb, E.A.A., Akbar, N.A., Asiri, L., Alrehaili, M., Altalidi, A. (2024). Federated-Learning Intrusion Detection System Based  
Blockchain Technology. International Journal of Online and Biomedical Engineering (iJOE), 20(11), pp. 16–30. https://doi.org/10.3991/ijoe.v20i11.49949

Article submitted 2024-03-02. Revision uploaded 2024-05-26. Final acceptance 2024-05-26.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Federated-Learning Intrusion Detection System Based 
Blockchain Technology

ABSTRACT
This study presents the implementation of a blockchain-based federated-learning (FL) intru-
sion detection system. This approach utilizes machine learning (ML) instead of traditional 
signature-based methods, enabling the system to detect new attack types. The FL technique 
ensures the privacy of sensitive data while still utilizing the large amounts of data distrib-
uted across client devices. To achieve this, we employed the federated averaging method and 
incorporated a custom preprocessing stage for data standardization. The use of blockchain 
technology in combination with FL created a fully decentralized and open learning system 
capable of overcoming new security challenges.
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1	 INTRODUCTION

With the exponential growth in computing power, machine learning (ML) has 
become a ubiquitous technique applied to virtually any problem that meets the 
criteria of having the required amount of data [1]. In many ML applications, vast 
quantities of user data are collected to train the ML model and produce highly accu-
rate results [2]. However, the conventional approach of storing user data on servers 
has inherent drawbacks [3, 4]. Specifically, collecting a significant amount of data 
requires considerable computational and network resources, while the collected 
data may contain sensitive user information that users may be reluctant to share [5].

Most intrusion detection systems rely on well-known signatures of attack vectors 
to classify malicious users based on their actions. While this approach may work 
well for attack vectors that have been previously investigated by cybersecurity 
experts, it cannot accurately identify new attack vectors, such as zero-day attacks 
[6, 7]. To overcome this challenge, statistics- or ML-based approaches are utilized, 
particularly anomaly-based intrusion detection systems [8]. However, ML-based 
IDSs require training data from users, raising privacy concerns.
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Federated learning (FL) is a novel ML model developed to tackle privacy-related 
concerns. It is a technique where multiple clients, each with their own private data, 
work together to train a ML model [9]. Horizontal FL involves different samples 
with the same feature space and characteristics for each client, while vertical FL 
entails clients using the same samples with different feature spaces during local 
training [9]. 

Despite their potential to solve the aforementioned privacy-related issues, 
FL models still rely on a centralized server for storing the learning results, mak-
ing them vulnerable to single-point-of-failure attacks [10]. To tackle this issue, a 
blockchain-based FL system has been developed, which leverages the distributed 
structure of blockchain to enhance the system’s security. This approach enables the 
development of a more robust and accurate IDS that can detect new and emerging 
threats, such as zero-day attacks, while maintaining user privacy. One specific appli-
cation of FL in IDSs is the use of blockchain technology [11], which can improve the 
accuracy and speed of IDSs by using blockchain technology to secure the data and 
the model parameters. Finally, our study aims to bridge this gap by implementing an 
FL intrusion detection system based on blockchain technology.

This paper is organized into five main sections. Section 1 introduces the back-
ground and motivation behind the implementation of an FL intrusion detection sys-
tem based on blockchain technology. Section 2 presents a literature review of the 
relevant topics, including FL, intrusion detection systems, and blockchain technol-
ogy. In Section 3, we describe the methodology used in our system, including data 
preprocessing, model architecture, and the training process. Section 4 presents the 
experimental results, including the performance evaluation of the proposed system 
on a publicly available dataset and the limitations of the proposed approach, while 
Section 5 provides a conclusion.

2	 RELATED WORK

Intrusion detection systems (IDS) are critical components of modern cybersecu-
rity strategies. They can be either signature-based, which can detect known attacks, 
or ML-based, which can detect new types of attacks. However, traditional IDS face 
several challenges, such as scalability, privacy, and the need for centralized data 
storage. In recent years, FL has emerged as a promising solution to these challenges, 
allowing multiple parties to train ML models collaboratively without sharing sensi-
tive data. Additionally, blockchain technology provides a decentralized and trans-
parent platform for securely storing and sharing data. Combining FL and blockchain 
can lead to more secure and private intrusion detection systems.

Performance comparisons of different FL algorithms were conducted in [12], 
and federated averaging achieved the highest accuracy. However, it has also been 
demonstrated that FL faces challenges when the data is non-IID (non-independent 
and identically distributed). To address this issue, [13] introduces a hierarchical clus-
tering approach.

A fairly comprehensive literature survey about FL for IDS is provided in [13]. 
A more general survey is given in [14], concerning IDS using machine learning. 
These papers also offer a wealth of background information on IDS, which we will 
omit for the sake of brevity.

When the training data is scarce, anomaly detection systems may produce numer-
ous false positives and demonstrate poor overall performance. FL allows us to uti-
lize the private data stored on various devices without directly sharing the data.  
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For instance, in the collaborative IDS discussed in [15], FL is used alongside a 
semi-supervised learning algorithm to address data scarcity problems. Likewise, 
in [16], the privacy-preserving features of FL are utilized to safeguard sensitive data 
while training the model.

Furthermore, due to its simplicity, FL offers an elegant and flexible framework 
for building unique ML applications. A single deep neural network is trained for 
multiple IDS tasks in [1] using FL, which even surpassed some models dedicated 
to a single task. An example of using blockchain in combination with ML is given 
in [17], which presents a deep blockchain framework for collaborative intrusion 
detection systems.

3	 METHODS

3.1	 Machine learning model

In this study, the utilization of neural networks was chosen due to their inherent 
flexibility, allowing for easy customization through a simple yet expressive config-
uration system. The architecture of the neural network can be tailored to specific 
requirements, enabling the evaluation of algorithm accuracy under various config-
urations. Regardless of the specific configuration, the last layer of the neural network 
consists of L neurons, which provide confidence values for L classes. The perfor-
mance of the algorithm is assessed by comparing the outputs against the ground 
truth using the cross-entropy loss function.

Horizontal FL was employed in this study, where all clients possess different 
training samples while sharing the same feature space. This approach was adopted 
because it represents a more common use case in practical applications. By utilizing 
horizontal FL, the study aims to address real-world scenarios where clients possess 
diverse datasets while focusing on the shared features.

The core concept of FL is introduced in a highly influential paper by [18, 19], 
which has had a significant impact on the field. The authors suggest a learning 
approach where clients conduct local updates to the model, and the server com-
bines these updates through federated averaging to conclude each round. This 
procedure is akin to stochastic gradient descent, a commonly used optimiza-
tion technique in ML. By embracing the federated averaging method, the study 
aligns with this established approach while expanding it to the blockchain-based  
FL environment.

By leveraging the flexibility of neural networks, employing horizontal feder-
ated learning, and incorporating the fundamental principles of federated averag-
ing, this study aims to contribute to the field of FL and further advance its practical 
applications. The influence of reference [8] has provided a solid foundation for this 
research, guiding the implementation and evaluation of the proposed methodology.

Let’s w
t

k denote the model parameters for client k at time t. Similarly, wt denotes 
the global model parameters. At each round, the clients perform a local update on 
their weights individually:
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Where η is the learning rate, l represents the loss function (computed on the 
local dataset), and ∇l is its gradient w.r.t, model parameters. Since the updates per-
formed by each client are independent of each other, they can work in parallel. 
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Additionally, each client has the flexibility to execute this parameter update step mul-
tiple times. A single iteration through the local dataset is referred to as a local epoch.

Instead of performing local updates with all clients at each round, the authors 
of [18] introduce another hyperparameter, C, and only conduct local updates with 
a C-fraction of clients at each round. C acts somewhat like a global batch size in this 
scenario; C = 1 implies that all clients perform updates, ensuring that all the data is 
utilized at each round, while smaller C values decrease this amount. The impact of 
adjusting C will be assessed in the results section.

After the local updates are completed, the server averages them to update the 
global model parameters:

	 w
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Where nk is the amount of local data in k th client, and n is the total, i.e., n n
kk

K

�
�� 1

represents the total number of clients. This concludes a single round of FL. In the 
following round, the clients will fetch the averaged global model and perform gradi-
ent descent on it again.

We chose the PyTorch and NumPy libraries to implement this ML model in 
Python due to my pre-existing familiarity with these tools. To read the dataset, we 
used the Pandas library. Scikit-learn is also utilized for some preprocessing steps 
(e.g., converting categorical data to one-hot vectors).

3.2	 Data standardization

With data standardization, we refer to the preprocessing step in which we elimi-
nate the varying means and standard deviations of different features in the dataset. 
This process is particularly important when the features have wildly different scales, 
e.g., one feature has a mean of 10000 and the other 0.001. In fact, data standardiza-
tion is deemed “necessary” when a non-linear activation function is utilized [20]. 
Intuitively, non-standardized values are less likely to trigger the non-linear response 
of an activation function; e.g., ReLU is linear for all positive numbers.

In a regular ML application, we usually remove the mean and divide the result 
by the standard deviation for each feature. In literature, this is commonly known in 
literature, this is commonly known as z-score:

	 z
x

�
� �
3

	 (3)

Unfortunately, data standardization is not studied in the FL paper [18], presum-
ably because it mainly targets image data, which is already normalized. Likewise, 
we failed to find any research about this issue in the literature. However, standard-
ization is a crucial step in this application, as we will demonstrate in the results sec-
tion. Moreover, we aimed to make this project more general-purpose by not making 
any assumptions about the data.

My solution to data standardization in FL is based on the local update and gen-
eral averaging steps explained in the previous section. Before the training process 
starts, the server and clients participate in two sequential preprocessing stages for 
data standardization, one for the mean and the other for the standard deviation.
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Similar to the local update step, the clients report their local means to the server 
first, μk for each client k, alongside their data size nk. After that, the server computer 
calculates the overall mean of the formula.

	 �
�
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This computed μ will be used by all clients to standardize their data. A similar 
process is carried out for the standard deviation. An important detail is that each 
client uses the global μ when computing their local standard deviation instead of 
the local μk.
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Also note that these two standardization steps must be taken for each feature. 
However, thanks to vectorized operations, this does not require a separate pass for 
each feature. In practice, μ, μk, σ, and σk are vectors of values computed for all fea-
tures, e.g., μk = [μk,1, μk,2].

Impact on privacy. One of the primary motivations for FL is to preserve the 
privacy of sensitive data, which is achieved by performing the updates locally and 
averaging them. A stochastic gradient descent update tells very little about the train-
ing data. However, the mean and standard deviation preprocessing steps that we 
introduced require the clients to send the means and standard deviations of their 
local data, which arguably exposes more sensitive information compared to gradi-
ent descent updates.

Similar to how only a fraction of clients participate in each round of gradient 
descent, we can limit the participation to volunteers in these two preprocessing 
stages. We will call this fraction care. With this approach, μ and σ values we com-
pute will not be exactly correct, but they will provide a reasonable estimate, which 
is adequate in most cases.

Furthermore, in real life, the dataset sizes of different clients are unlikely to be 
the same. When a client hoards a large amount of data, they will have less privacy 
concerns about sharing the mean and standard deviation information because these 
values tell a lot less about the individual data samples when the dataset size is large. 
This is quite convenient for us since the μk and σk values shared by these clients 
also have a larger impact on the global μ and σ. An alternative solution is simply to 
ditch the standardization for the sake of privacy. We will investigate the effect of this 
choice in the results section. 

3.3	 Blockchain

In this study, the primary blockchain platform of choice is Ethereum due to its 
popularity and extensive tooling support. The Solidity programming language was 
chosen for the development of the smart contract. To interact with the Ethereum 
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blockchain, a Python interface was utilized, which is provided by the web3.py 
library. Given that running this project on the actual Ethereum network would 
be quite expensive, the eth-tester tool suite was employed to simulate the block-
chain network.

To ensure a modular implementation of this blockchain platform, the EthPlatform 
module was developed to facilitate communication with the Ethereum ecosystem. 
This structure allows for easy replacement of the EthPlatform module and the pro-
vision of a DummyPlatform module, which can emulate the functions of the former 
without interacting with an actual blockchain network. This feature not only helps 
to bypass the runtime performance cost of blockchain but also benefits users who 
seek to test the FL component without installing any blockchain libraries.

In solidity, the model’s state is represented as bytes. This is accomplished by 
aggregating all the model parameters in IEEE 754 floating-point representation to 
obtain the corresponding byte representation. This byte data can then be used by 
interpreting the byte buffer as an array with the appropriate data type and shape. 
Figure 1 demonstrates this process in Python.

Fig. 1. Representing the model as bytes in Python

In the implemented design, the global model, as well as the mean and standard 
deviation data, are stored as properties within the smart contract. Conversely, the 
local counterparts of these values are managed using events in Solidity, as illus-
trated in Figure 2. This design choice is well-suited for the specific use case, as 
events offer a more appropriate mechanism for handling and tracking local updates. 
Additionally, this decision helps to minimize the gas fees incurred by the clients, as 
events are less costly compared to direct on-chain storage. Alternatively, an option 
exists to allow clients to transmit their local updates to the server outside the block-
chain. Some clients may prefer this approach, particularly due to the limited privacy 
protections offered by Ethereum or the most open blockchains in general [20]. In 
the proposed setup, this hybrid configuration is also feasible, where some clients 
communicate through the blockchain while others utilize external channels. This 
flexibility accommodates the privacy preferences of clients and acknowledges the 
constraints imposed by the blockchain system.

One advantage of an all-blockchain approach is that it allows for third-party veri-
fication of the server’s correct execution of the model averaging process. By conduct-
ing all interactions within the blockchain network, external entities can scrutinize 
and validate the integrity of the model averaging performed by the server. This 
transparency enhances the trust and accountability associated with the FL system, 
fostering confidence among participants.

https://online-journals.org/index.php/i-joe
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Ensuring that only the server (specifically, the contract owner in Solidity) per-
forms the global updates is of paramount importance to maintaining the integrity 
and security of the system. To address this concern, a modifier named “Owner Only” 
is implemented. This modifier serves as a safeguard, allowing only the contract 
owner to execute the global updates. By restricting the update functionality to the 
authorized server, the risk of unauthorized modifications or tampering with the 
global model is mitigated.

The combination of utilizing events for local updates, providing flexibility 
for clients to communicate inside or outside the blockchain, and enforcing the 
“Owner Only” modifier contributes to the robustness, privacy, and security of the 
blockchain-based FL system. These design decisions address key considerations in 
the implementation, promoting the effectiveness and integrity of the training process 
while accommodating privacy preferences and facilitating verifiability within the 
decentralized network.

Fig. 2. FL data in solidity

Relevant parts of the code are given in Figure 2. This might seem to create a 
single point of failure, but since the transactions are in the blockchain, anyone can 
take the latest (or a previous) version of the model and create a new contract. At first 
glance, this approach may appear to introduce a single point of failure, as the model 
and its associated data are stored within a single smart contract. However, due to 
the transparent nature of blockchain transactions, any participant can access the 
latest version of the model or even a previous version and create a new contract 
based on that information. The decentralized and immutable nature of the block-
chain ensures that all transactions, including updates to the model, are recorded 
and publicly available. This transparency empowers any participant within the 
network to retrieve the latest model state and initiate the creation of a new contract 
based on that information. By leveraging the blockchain’s inherent transparency 
and immutability, the risk of a single point of failure is mitigated. In the event of a 
failure or loss of access to the existing contract, participants can rely on the recorded 
transactions and the availability of the model’s latest version to recreate the system. 
This ability to recreate the contract based on historical data allows for continuity 
and resilience in the face of potential failures or other adverse events.

Furthermore, the openness of the blockchain network enables a diverse 
set of participants to validate and verify the model’s integrity. By examining the 
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transactions and data stored on the blockchain, any interested party can inde-
pendently recreate the model and assess its accuracy and reliability. This decentral-
ization of verification helps to enhance trust and mitigate the risks associated with 
a single point of failure.

Fig. 3. Owner only modifier in solidity

Enums are employed to maintain a record of the training stage, as depicted in 
Figure 4. The server assumes the role of orchestrating the training process by trans-
mitting global mean and standard deviation data and updates to the clients.

To ensure clarity and simplicity, the implementation of the learning system on the 
blockchain focused solely on the core FL functionality and disregarded other poten-
tial transactions that may occur between the clients and the server. Nevertheless, 
incorporating additional features into the system is relatively straightforward, given 
the foundational framework of blockchain-based federated learning. For instance, it 
is conceivable to introduce mechanisms where the server compensates the clients 
for their local updates and the reporting of local μk and σk values. This compensa-
tion mechanism serves the dual purpose of addressing privacy concerns and provid-
ing a financial incentive for clients to actively participate in the training process. By 
enabling such supplementary features, the system can address the privacy concerns 
associated with federated learning, as clients may be hesitant to share sensitive data 
without adequate safeguards. Compensating clients for their contributions can help 
alleviate these concerns by creating a sense of trust and incentivizing their contin-
ued engagement in the training process. Moreover, introducing a financial incentive 
promotes active participation from clients, potentially enhancing the overall effec-
tiveness and efficiency of the FL system.

While this study primarily focuses on the foundational aspects of blockchain-based 
federated learning, the extensibility of the system allows for the inclusion of addi-
tional features to address practical considerations and incentivize participation. 
Future research and development can explore the integration of financial incentives 
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and privacy-enhancing mechanisms to further optimize the blockchain-based 
FL system and promote its adoption in real-world scenarios.

Fig. 4. Training stages in sol

3.4	 Federated learning on blockchain

The utilization of FL on the blockchain introduces specific challenges that require 
a customized approach to address them effectively. One of the primary challenges 
pertains to the gas fees associated with storing byte-sized data on the blockchain. 
Gas fees serve as incentives for maintaining efficient use of blockchain resources, 
but they also impose limitations on the size of models that can be practically con-
structed and trained on the blockchain network.

To tackle the challenge of gas fees, an approach was implemented in the FL sys-
tem to modify the precision level of the model stored on the blockchain. This mod-
ification enables clients to employ high-precision double floating-point numbers 
during local updates while transmitting the results to the blockchain in compressed 
formats such as 32-bit or even 16-bit floating-point representations. By doing so, 
the gas fees associated with training the model on the blockchain network are sig-
nificantly reduced. This precision modification option allows for more efficient 
use of blockchain resources while maintaining an acceptable level of accuracy for 
the FL model.

In addition to the financial incentives related to smaller model sizes on the block-
chain network, there are already several other reasons in the field of ML to keep 
model sizes small. These reasons include preventing overfitting, which occurs when 
a model becomes too complex and fits the training data too closely, leading to poor 
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generalization on new, and unseen data. Additionally, smaller model sizes facilitate 
faster training times, allowing for more efficient use of computational resources.

Consequently, the integration of FL on the blockchain necessitates a more 
nuanced and careful approach to model development and training. It requires strik-
ing a balance between the size of the model, its accuracy, and the associated gas 
fees. This calls for a thoughtful consideration of various factors, such as the specific 
requirements of the FL application, the available computational resources, and the 
constraints imposed by the blockchain network.

Last but not least, leveraging FL on the blockchain poses unique challenges due 
to gas fees associated with storing data. To overcome these challenges, the precision 
level of the model can be modified, allowing for reduced gas fees while maintaining an 
acceptable level of accuracy. The advantages of smaller model sizes in machine learn-
ing, such as preventing overfitting and achieving faster training times, further reinforce 
the need for a careful and nuanced approach when incorporating FL on the blockchain.

4	 RESULTS

4.1	 Blockchain limitations

To assess the limitations of the blockchain system, a testing script was developed 
to measure the gas fees associated with various model sizes. The script evaluated 
the gas fee required to perform one global and ten local updates, which equates to 
approximately one round of updates, on a test blockchain setup. Table 1 presents the 
gas fees for different byte sizes and their corresponding ratios to the gas fee for one 
byte. It is important to note that the gas fees impose a significant constraint on the 
maximum model size that can be stored on the blockchain. The table also includes 
the ratio of each gas fee to the base gas fee, which is set at a value of 736,795 Gwei 
for a byte size of 1. The following is a breakdown of the table:

•	 Byte Size: This column represents the size of the data in bytes.
•	 Gas Fee (Gwei): It denotes the associated gas fee, measured in Gwei, for each spe-

cific byte size. Gas fees are typically used in blockchain networks to compensate 
miners or validators for executing transactions or computations. 

•	 Ratio to Base Gas Fee: This column illustrates the ratio of each gas fee to the base 
gas fee of 736,795 Gwei for a byte size of 1. For instance, a ratio of 1.0016 means 
that the gas fee for a byte size of 10 is 0.16% higher than the base gas fee.

The table reveals that as the byte size increases, the gas fee tends to rise. For 
example, a byte size of 10 incurs a slightly higher gas fee compared to a byte size 
of 1, as indicated by the ratio of 1.0016. As the byte size further increases, the gas 
fee escalates significantly. At a byte size of 100, the gas fee is 1.1426 times the base 
fee, and at a byte size of 1,000, it rises to 2.2110 times the base fee.

The trend continues, with larger byte sizes resulting in considerably higher gas 
fees. At a byte size of 10,000, the gas fee jumps to 14.1934 times the base fee, and at a 
byte size of 20,000, it surges to 27.5460 times the base fee. This pattern persists until 
a byte size of 50,000, at which point the system runs out of gas, as indicated in the 
table. Overall, the table showcases the relationship between byte size and gas fees, 
illustrating how the gas fee increases proportionally to the size of the data being 
processed, up to a certain limit where the system becomes unable to handle the 
transaction due to insufficient gas.
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Table 1. Byte size vs. gas fee

Byte Size Gas Fee (Gwei) Ratio to Base Gas Fee

1 736795 1.0000

10 737983 1.0016

100 841886 1.1426

1000 1629055 2.2110

10000 10457631 14.1934

20000 20295764 27.5460

30000 30004373 40.7228

40000 39810720 54.0323

50000 Out of gas Out of gas

In the test system, all accounts were initially endowed with a substantial amount 
of 1,000,000 ETH, which is approximately equivalent to 1.2 billion dollars at the time 
of writing. The experimental outcomes revealed that once the model size reached 
50,000 bytes, it became impractical to execute even a single round of updates on 
the blockchain with the given amount of ETH. These results highlight the critical 
importance of considering the limitations imposed by the blockchain system when 
designing and implementing FL models.

To ensure the financial viability of the model, it becomes necessary to carefully 
manage its size and associated costs. For instance, consider a model comprising 100 
inputs (features), a single hidden layer with 50 neurons, and 10 outputs (classes). 
This model would necessitate 100 × 50 + 50 × 10 = 5,500 weights and 50 + 10 = 60 
biases, resulting in a total of 5,560 floating-point numbers. If 16, 32, or 64-bit floats 
are utilized, the byte size of the model would be 11,120, 22,240, and 44,480, respec-
tively. It is worth noting that gas fees for communicating means and standard devi-
ations tend to be significantly lower since they involve one-dimensional data with 
a length equal to the number of features. This reduction in complexity compared to 
the model itself helps mitigate the gas fees associated with transmitting these statis-
tical values in the blockchain network.

Considering the substantial costs associated with gas fees, it becomes imperative 
to optimize the model size and communication strategies within the FL framework. 
This optimization can involve techniques such as parameter compression, quanti-
zation, or other model size reduction methods to reduce the overall byte size with-
out compromising the model’s performance. By carefully managing the size of the 
model and its associated communication overhead, researchers and practitioners 
can ensure the financial viability and practicality of FL models within blockchain 
systems. For instance, in our scenario, the gas fees for communicating means and 
standard deviations tend to be a lot less since it’s just 1D data with its length equal to 
the number of features.

4.2	 Experiments and findings

In this study, the dataset provided in reference [11], consisting of 25,192 labeled 
samples, was employed for the experiments. The dataset encompasses 41 features, 
including 3 categorical variables, and comprises two classes: anomaly and normal. 
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To establish the training and validation datasets, an 80%/20% split was applied, 
resulting in approximately 20,000 samples allocated for training. These training 
samples were randomly assigned to 10 clients, adopting a learning rate of 0.01, 
unless specified otherwise.

Initially, a single hidden layer with 50 neurons and a rectified linear unit (ReLU) 
activation function was employed. The validation set achieved a maximum accuracy 
of 99.17% under the settings of C = Cpre = 1, 10 global epochs, 5 local epochs, and a 
batch size of 32.

During the course of the experiments, it was observed that modifying the pre-
cision level of the model on the blockchain, whether using 16-bit, 32-bit, or 64-bit 
floating-point numbers, did not yield a significant impact on the results. This alter-
ation solely influenced how the model was communicated, not its internal represen-
tation, which consistently utilized 64-bit floating-point numbers. Specifically, clients 
obtained the global model from the blockchain in 16-bit floating-point format, con-
verted these values to 64-bit floats, performed gradient descent, and reported their 
updates back to the blockchain using 16-bit floating-point numbers.

Furthermore, it was noted that the configuration of the hidden layers had min-
imal influence on the final results. Through progressively simplifying the model, a 
single linear layer with an output of 2 neurons, represented as Ax + B, was employed. 
Despite the simplicity of this model, it achieved an accuracy of 97.28%. The resulting 
byte size was 952 when using 32-bit floats, or 476 when using 16-bit floats.

These findings underscore the resilience of the FL approach in the face of pre-
cision changes and model simplification. They demonstrate that the accuracy of 
the model can be maintained while reducing the byte size on the blockchain. Such 
observations provide insights into the potential optimization of model representa-
tion and communication in blockchain-based FL systems. Lastly, the experimental 
results highlight the robustness of the implemented approach in the intrusion detec-
tion domain. The findings contribute to understanding the impact of different pre-
cision levels and model architectures, suggesting avenues for further investigation 
and optimization in blockchain-based FL scenarios.

Fig. 5. Accuracy vs. epoch plots with varying Cpre

In this study, it was found that data standardization was crucial for achiev-
ing high accuracy on the given dataset, as the accuracy significantly dropped to 
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50% without it. Various hyperparameters and learning rates were tested, but none 
were successful in improving accuracy without data standardization. Moreover, the 
use of 16-bit floats resulted in NaN values without standardization. To further inves-
tigate the effects of data standardization, the learning rate was decreased to 0.0001, 
and the number of global epochs was increased to 16 while experimenting with 
different Cpre values while keeping other parameters constant. The results showed 
that even when only one client shared the mean and standard deviation data, the 
accuracy was nearly as high as the case where all clients shared the data, indicating 
the significance of data standardization. However, this may not hold true for non-IID 
data, which is typical in real-world scenarios. The Cpre value was then fixed to 0.5, 
and different C values were tested, but the differences were negligible. Finally, the 
model was evaluated on 10% of the larger and more complex KDD Cup 1999 dataset 
with 23 class labels. Despite the increased size and complexity of the dataset, the 
single-layer linear model still achieved 98% accuracy on the validation set, as long 
as the data standardization step was performed.

5	 CONCLUSION

This study encompasses an exploration of Ethereum, Solidity, and blockchain 
technologies, along with the incorporation of FL techniques. While our contribu-
tion to FL is limited, we have identified a unique aspect of the data standardization 
stage that is absent from existing literature. Furthermore, we have addressed chal-
lenges arising from applying FL within a blockchain system, specifically model size 
restrictions. By adjusting a single configuration parameter, we achieved a halving 
of model size on the blockchain without significant accuracy loss. Although ini-
tially focused on intrusion detection, our project can be readily adapted for diverse 
blockchain-based FL applications. Moreover, our modular platform structure allows 
for the development of alternative blockchain backends. In conclusion, this research 
expands our understanding of Ethereum, Solidity, and blockchain while advancing 
FL methodologies. Future investigations in this domain hold potential for enhancing 
privacy, scalability, and efficiency in decentralized ML systems.

6	 REFERENCES

	 [1]	 Z. Wang and Q. Hu, “Blockchain-based federated learning: A comprehensive survey,”  
arXiv preprint arXiv: 2110.02182, 2021. https://doi.org/10.48550/arXiv.2110.02182 

	 [2]	 J. Alzubi, A. Nayyar, and A. Kumar, “Machine learning from theory to algorithms: An 
overview,” Journal of Physics: Conference Series, vol. 1142, p. 012012, 2018. https://doi.
org/10.1088/1742-6596/1142/1/012012

	 [3]	 H. Yan, Y. Liu, Z. Zhang, and Q. Wang, “Efficient privacy-preserving certificateless public 
auditing of data in cloud storage,” Security and Communication Networks, vol. 2021, no. 1, 
pp. 1–11, 2021. https://doi.org/10.1155/2021/6639634

	 [4]	 A. Vennala, M. Radha, M. Rohini, M. Anees Fathima, and P. D. Lakshmi, “Efficient privacy- 
preserving certificateless public auditing of data in cloud storage,” J. Eng. Sci., vol. 13, 
pp. 532–541, 2022. https://www.hindawi.com/journals/scn/2021/6639634/

	 [5]	 N. A. Akbar, A. Muneer, N. ElHakim, and S. M. Fati, “Distributed hybrid double-spending 
attack prevention mechanism for proof-of-work and proof-of-stake blockchain consen-
suses,” Future Internet, vol. 13, no. 11, p. 285, 2021. https://doi.org/10.3390/fi13110285

https://online-journals.org/index.php/i-joe
https://doi.org/10.48550/arXiv.2110.02182
https://doi.org/10.1088/1742-6596/1142/1/012012
https://doi.org/10.1088/1742-6596/1142/1/012012
https://doi.org/10.1155/2021/6639634
https://www.hindawi.com/journals/scn/2021/6639634/
https://doi.org/10.3390/fi13110285


iJOE | Vol. 20 No. 11 (2024)	 International Journal of Online and Biomedical Engineering (iJOE)	 29

Federated-Learning Intrusion Detection System Based Blockchain Technology

	 [6]	 Y.-N. Liu, Y.-P. Wang, X.-F. Wang, Z. Xia, and J.-F. Xu, “Privacy-preserving raw data collec-
tion without a trusted authority for IoT,” Computer Networks, vol. 148, pp. 340–348, 2019. 
https://doi.org/10.1016/j.comnet.2018.11.028

	 [7]	 M. Kamran and A. A. A. Almaghthawi, “Case-based reasoning diagnostic system for 
antenatal research database,” International Journal of Online & Biomedical Engineering, 
vol. 18, no. 7, pp. 176–187, 2022. https://doi.org/10.3991/ijoe.v18i07.30353

	 [8]	 D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, and A. Y. Zomaya, “Federated 
learning for COVID-19 detection with generative adversarial networks in edge cloud 
computing,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 10257–10271, 2022. https://
doi.org/10.1109/JIOT.2021.3120998

	 [9]	 D. Li, Z. Luo, and B. Cao, “Blockchain-based federated learning methodologies in smart 
environments,” Cluster Computing, vol. 25, no. 4, pp. 2585–2599, 2022. https://doi.org/ 
10.1007/s10586-021-03424-y

	[10]	 L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,” 
Computers & Industrial Engineering, vol. 149, p. 106854, 2020. https://doi.org/10.1016/ 
j.cie.2020.106854

	[11]	 A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A performance evaluation 
of federated learning algorithms,” in Proceedings of the Second Workshop on Distributed 
Infrastructures for Deep Learning, 2018, pp. 1–8. https://doi.org/10.1145/3286490.3286559

	[12]	 S. Agrawal et al., “Federated learning for intrusion detection system: Concepts, chal-
lenges and future directions,” Computer Communications, vol. 195, pp. 346–361, 2022. 
https://doi.org/10.1016/j.comcom.2022.09.012

	[13]	 S. K. Wagh, V. K. Pachghare, and S. R. Kolhe, “Survey on intrusion detection system using 
machine learning techniques,” International Journal of Computer Applications, vol. 78, 
no. 16, pp. 30–37, 2013. https://doi.org/10.5120/13608-1412

	[14]	 W. Li, W. Meng, and M. H. Au, “Enhancing collaborative intrusion detection via 
disagreement-based semi-supervised learning in IoT environments,” Journal of 
Network and Computer Applications, vol. 161, p. 102631, 2020. https://doi.org/10.1016/ 
j.jnca.2020.102631

	[15]	 B. Cetin, A. Lazar, J. Kim, A. Sim, and K. Wu, “Federated wireless network intru-
sion detection,” in 2019 IEEE International Conference on Big Data (Big Data), 2019,  
pp. 6004–6006. https://doi.org/10.1109/BigData47090.2019.9005507

	[16]	 O. Alkadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, “A deep blockchain frame-
work-enabled collaborative intrusion detection for protecting IoT and cloud networks,” 
IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9463–9472, 2020. https://doi.org/10.1109/
JIOT.2020.2996590

	[17]	 B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in Artificial Intelligence 
and Statistics, 2017, pp. 1273–1282. http://proceedings.mlr.press/v54/mcmahan17a?ref= 
https://githubhelp.com

	[18]	 A. Muneer, R. F. Ali, A. Alghamdi, S. M. Taib, A. Almaghthawi, and E. A. A. Ghaleb, 
“Predicting customers churning in banking industry: A machine learning approach,” 
Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 1, p. 539, 2022. https://doi.org/10.11591/
ijeecs.v26.i1.pp539-549

	[19]	 H. Anysz, A. Zbiciak, and N. Ibadov, “The influence of input data standardization method 
on prediction accuracy of artificial neural networks,” Procedia Engineering, vol. 153, 
pp. 66–70, 2016. https://doi.org/10.1016/j.proeng.2016.08.081

	[20]	 S. Tikhomirov, “Ethereum: State of knowledge and research perspectives,” in Founda­
tions and Practice of Security, (FPS 2017), in Lecture Notes in Computer Science, A. Imine, 
J. Fernandez, J. Y. Marion, L. Logrippo, and J. Garcia-Alfaro, Eds., Springer, Cham., 
vol. 10723, 2018, pp. 206–221. https://link.springer.com/chapter/10.1007/978-3-319- 
75650-9_14

https://online-journals.org/index.php/i-joe
https://doi.org/10.1016/j.comnet.2018.11.028
https://doi.org/10.3991/ijoe.v18i07.30353
https://doi.org/10.1109/JIOT.2021.3120998
https://doi.org/10.1109/JIOT.2021.3120998
https://doi.org/10.1007/s10586-021-03424-y
https://doi.org/10.1007/s10586-021-03424-y
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1145/3286490.3286559
https://doi.org/10.1016/j.comcom.2022.09.012
https://doi.org/10.5120/13608-1412
https://doi.org/10.1016/j.jnca.2020.102631
https://doi.org/10.1016/j.jnca.2020.102631
https://doi.org/10.1109/BigData47090.2019.9005507
https://doi.org/10.1109/JIOT.2020.2996590
https://doi.org/10.1109/JIOT.2020.2996590
http://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
http://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://doi.org/10.11591/ijeecs.v26.i1.pp539-549
https://doi.org/10.11591/ijeecs.v26.i1.pp539-549
https://doi.org/10.1016/j.proeng.2016.08.081
https://link.springer.com/chapter/10.1007/978-3-319-75650-9_14
https://link.springer.com/chapter/10.1007/978-3-319-75650-9_14


	 30	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 20 No. 11 (2024)

Almaghthawi et al.

7	 AUTHORS

Ahmed Almaghthawi is with the Department of Computer Science, College 
of Science and Art at Mahayil, King Khalid University, Abha 62529, Saudi Arabia 
(E-mail: aalmaghthwi@kku.edu.sa). 

Ebrahim A. A. Ghaleb is with the Department of Computer and Information 
Sciences, University Teknologi PETRONAS, Seri Iskandar 32160, Malaysia.

Nur Arifin Akbar is with the Department of Computer and Information Sciences, 
University Teknologi PETRONAS, Seri Iskandar 32160, Malaysia.

Layla Asiri is with the Department of Computer Information System, Applied 
College at Mahayil, King Khalid University, Abha 62529, Saudi Arabia.

Meaad Alrehaili is with the Department of Computer Sciences and Artificial 
Intelligence, Collège of Computer Science, and Engineering, University of Jeddah, 
Jeddah, Saudi Arabia.

Askar Altalidi is with the Department of Information Science, College of Science 
& Art at Mahayil, King Khalid University, Abha 62529, Saudi Arabia.

https://online-journals.org/index.php/i-joe
mailto:aalmaghthwi@kku.edu.sa

