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PAPER

Biofeedback-Based Method for Real-Time Fatigue 
Monitoring of Knee

ABSTRACT
This paper introduces and implements a method to monitor muscle fatigue in real-time 
using a wearable biofeedback system to improve muscle rehabilitation treatments. The bio-
feedback system consists of an electromyography (EMG) sensor to capture muscle activity 
and two motion sensors to track knee angles. The proposed method for monitoring muscle 
fatigue involves three steps: (1) recognition of the movement phases during the knee exten-
sion exercise; (2) clipping of the EMG signal and calculation of fatigue-related metrics; and 
(3) normalization of metrics through a calibration process. An experimental session was per-
formed with 10 healthy subjects performing 50 repetitions of the knee extension exercise. 
Processed data revealed changes in fatigue-related metrics, which align with existing liter-
ature. A comparison was also made between real-time and computer processing using raw 
data. While minor differences were noted between the two processing methods, the mobile 
app closely mirrored the trajectory of processed data in the cloud, ensuring reliability and 
consistency. This study advances remote muscle rehabilitation by quantifying muscle fatigue 
during treatment sessions. Thus, health professionals can tailor treatment plans based on 
individual patient characteristics, optimizing treatment duration, and reducing injury risk.
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1	 INTRODUCTION

Over the past few decades, life expectancy has increased significantly in many 
parts of the world, including Europe and particularly in Portugal. This increase in 
life expectancy can be attributed to advances in health, technology, living conditions, 
and better access to education. As a result, the elderly population has also grown, 
significantly impacting society and health systems [1].

As the proportion of older adults increases, the demand for primary and long-
term health services grows, especially those related to chronic conditions and 
age-related diseases. For example, the gradual decline in functional capacity due 
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to aging is a natural progress common to all living beings, requiring constant care 
to preserve an active and dignified life [2]. Thus, rehabilitation treatments face a 
critical accessibility problem that tends to get worse.

A study [3] was carried out in 2019 to assess the demand for rehabilitation ser-
vices globally and their impact on the health system. The estimates reveal that one 
in every three people in the world, approximately 2.4 billion individuals, needs such 
services. The authors highlight that this result counters the common view that just a 
few people need rehabilitation.

The concern about the delay in finding the necessary treatment is addressed by 
the World Health Organization (WHO) in their report on healthy aging for the decade 
between 2021 and 2030 [2]. The report highlights the significance of improving 
functional capacity to promote more independent aging and suggests data-driven 
solutions to achieve scalable and accessible answers.

Remote rehabilitation is a concept that has gained significant attention in recent 
years. It involves delivering rehabilitation services to patients in their homes using 
technology such as videoconferencing, mobile apps, and wearable devices. The 
main advantage of remote rehabilitation is the potential to support changes in 
patient behavior, improving active participation and living independently with less 
need to travel for face-to-face sessions. It can improve the quality of health service 
delivery, especially for patients with difficulty accessing traditional rehabilitation 
services [4].

The NanoStim project (https://nanostim.pt) aims to develop a remote rehabil-
itation solution. The project proposes a set of technologies that allow patients to 
perform electrostimulation treatment at home. The goal is to provide a personalized 
rehabilitation plan that adapts to each patient’s individual needs. The Nano Stim 
project desires to improve access to rehabilitation services, reduce waiting lists and 
costs, and increase patient engagement.

Over the past three years, the project has achieved significant progress. Starting 
with developing a system architecture with a strategy to handle sensitive data, ensur-
ing data protection, and mapping out how systems communicate to guarantee suc-
cessful treatment at home [5]. One of the main developments is creating a wearable 
device capable of collecting data from an electromyography (EMG) sensor and per-
forming electrostimulation simultaneously [6]. This wearable device communicates 
with a mobile app that serves as a technological interface to guide patients through 
the treatment session steps, storing data, and communicating with the cloud [7]. 
In addition, two inertial measurement units (IMU), also known as motion sensors, 
have been implemented into the wearable device, allowing recognize the knee angle 
movement during the treatment session [8].

Monitoring muscle fatigue is crucial for muscle rehabilitation treatments, 
allowing healthcare professionals to adjust treatment protocols and prevent over-
exertion or injury. Muscle fatigue is the inability of a muscle to generate or sustain 
a given level of force, leading to decreased performance, increased risk of injury, 
and delayed recovery [9]. By monitoring muscle fatigue, healthcare professionals 
can assess patient progress, determine if the current treatment plan is effective, and 
adjust treatment intensity and frequency according to the patient’s muscle response.

In muscle rehabilitation treatments, patients usually perform exercises targeting 
specific muscles, such as the knee extension exercise, which focuses on recovering 
quadriceps muscle, especially the vastus medialis and vastus lateralis. These exer-
cises are usually repeated several times, and the intensity and duration can gradually 
increase over time, leading to muscle fatigue [10]. In traditional clinical settings, 
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healthcare professionals closely monitor patients and adjust exercises as needed. 
However, in remote rehabilitation, this level of interaction is more difficult, despite 
advances in remote rehabilitation, making it crucial to have a system that can mon-
itor muscle fatigue in real-time during a treatment session.

This paper proposes and implements a method to monitor muscle fatigue in real-
time using biofeedback, which can contribute to the remote rehabilitation field and 
align with the goals of the Nano Stim project. A method is presented to extract the 
EMG signal from biofeedback sensors to estimate muscle fatigue more accurately. 
This method includes three steps: (1) recognition of the movement performed during 
the knee extension exercise through the IMUs sensors, (2) clipping of the EMG signal 
concerning the most relevant movement phases to calculate fatigue metrics, and 
(3) normalize metrics through a calibration process.

A test was conducted with 10 healthy subjects using the wearable Nano Stim 
to validate the fatigue monitoring method. The test simulated a treatment session 
for muscle rehabilitation with the knee extension exercise, with the movement per-
formed 50 times to cause minimal fatigue. The collected data were processed in 
real-time in the mobile application and compared with a later analysis of the raw 
data in Python.

This paper is organized into five more sections. Section 2 describes related 
works that build systems using EMG and IMU sensors in conjunction with muscle 
rehabilitation purposes. Section 3 describes the biofeedback system, including the 
flow from data collection to cloud recording. Section 4 describes the method to 
extract real-time muscle fatigue metrics. Section 5 explores the data generated in 
the tests and describes the comparative analysis of mobile app processing vs. cloud 
processing. Section 6 reports the main conclusions and future work.

2	 RELATED	WORKS

The use of wearable technologies in muscle rehabilitation has been increasingly 
explored in recent years [11]. Several studies have focused on developing systems that 
use EMG and IMU sensors to monitor muscle activity and movement patterns during 
rehabilitation exercises. This section will discuss three studies that successfully built 
wearable systems that can provide biofeedback about the patients, improving their 
performance and motivation during rehabilitation.

The authors in [12] developed a wearable for EMG acquisition to detect muscle 
fatigue in real-time while pedaling a bicycle. The wearable system comprises a 
microcontroller (MCU) and an EMG signal acquisition circuit. The wearable system 
sends the collected data to a mobile application that displays information about the 
exercise and the level of muscle fatigue. The raw and processed data are sent to the 
cloud when the exercise ends.

The authors use the median frequency (MedFreq) value to stimulate muscle 
fatigue, a metric commonly used in sports. The MedFreq correlates with muscle 
fatigue when the measured values show lower frequencies during the exercise. 
The study involved 20 participants who pedaled an exercise bike at different 
speeds to validate the developed system. With the data collected, the mobile app’s 
performance was compared with the computer for estimating fatigue. The results 
showed similar performance between the two systems, with root mean square 
(RMS) values between 2.86 ± 0.47 Hz. The article [12] has a methodology similar to 
that used in the present article, especially in comparing systems to evaluate fatigue.
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In [13], the authors used four wearable devices to test a methodology that remotely 
evaluates the quality of rehabilitation exercises. The wearable device set consisted of 
two EMG signal acquisition systems and two motion acquisition systems. The study 
involved 17 participants who performed two movements commonly prescribed in 
physical therapy programs while wearing the devices in different body positions.

The methodology demonstrated involves two data segmentation and preparation 
approaches: manual segmentation by an expert and machine learning algorithms. 
The resulting dataset comprised clipped EMG and IMU data and a label indicating 
whether the exercise was performed correctly or incorrectly. Using machine learning 
algorithms, the authors could evaluate exercise quality with an average accuracy of 
96%. These results demonstrate the practicality of using motion and EMG sensors to 
provide valuable information for remote physiotherapy.

The article [14] discusses a real-time knee extension monitoring and rehabilita-
tion system. The monitoring system consists of a wearable with two EMG sensors, an 
angle sensor, and a processor capable of transmitting data via Wi-Fi to a computer 
on the network. The software that receives the data can display the participant’s 
muscle response and knee angle in real-time. In addition, the software can save the 
collected data and organize it into sessions.

After the sessions are saved, the software analyzes the performed exercises and 
calculates the mean absolute value (MAV) and RMS from the EMG signal and the 
maximum angle reached. Raw data and calculated metrics are available in the cloud 
for an expert to analyze. Although the software does not provide real-time data anal-
ysis, the system improves the tracking of muscle recovery progress and enables the 
specialist to intervene to improve rehabilitation.

In summary, the related works presented in this section have similarities and 
differences with the proposed fatigue monitoring system. The authors in [12] pre-
sented a real-time fatigue monitoring system that did not use an IMU sensor focus-
ing on cycling. The authors in [13] developed a wearable with EMG and IMU sensors 
to verify the quality of rehabilitation exercises, while the proposed system focuses 
on monitoring fatigue. The authors in [14] presented a fatigue monitoring system 
similar to the one proposed. However, they use the computer as an interface and do 
not use the information processed in real-time to help the treatment session. Finally, 
related works showed the potential of using wearable devices in remote rehabilita-
tion and served as a reference in the development of the present study.

3	 BIOFEEDBACK	SYSTEM

Creating a treatment scenario and system architecture for remote rehabilitation 
is a challenging task involving designing processes that ensure a simple and user-
friendly experience for the patient and the healthcare professional. Furthermore, as 
the system will collect and process clinical data, it is crucial to ensure the security 
and privacy of patient information. This section describes how the proposed remote 
rehabilitation treatment session is conducted, focusing on where biofeedback is 
collected, processed, and stored at the end of each treatment session.

The biofeedback system that will be presented consists of a wearable system and 
a mobile app, which are part of a system architecture developed by the Nano Stim 
project. The complete architecture has two more essential components: a website 
for managing patients and treatments online and a cloud infrastructure. Figure 1 
illustrates a simplified version of the system architecture used in this paper.
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Fig. 1. System architecture (adapted [5])

Briefly, the cloud infrastructure is comprised of three APIs: (1) a single-sign-on 
(SSO) authentication service; (2) a clinical service that manages health-related data 
such as biofeedback data; and (3) a management service that stores personal infor-
mation such as names and addresses. The article [5] describes the other particu-
larities of the systems architecture, especially communications between systems, 
databases, and data protection strategies.

The wearable system comprises four main components that work simultane-
ously during the muscle rehabilitation session. The first component is the functional 
electrical stimulation (FES) circuit. The FES component creates electrical impulses to 
stimulate the nerves that control the muscles, causing muscle contractions and move-
ment. FES aims to restore or improve the function of muscles that have been damaged 
or weakened due to injury or illness. This component is the only one of the wearable 
systems that will not be used in this study and has no influence on the tests performed.

The second component is a signal acquisition system and the EMG electrodes. 
This system can measure the electrical activity of a muscle with electrodes under 
its surface. The result is an analog signal at a frequency of 1000 Hz measured in 
mV. The wearable system sends every 200 ms a packet with EMG raw data to the 
mobile app. The EMG signal is the main data that will be used to calculate the met-
rics related to fatigue.

The third component of the wearable system contains two IMU motion sensors 
that use accelerometers and gyroscopes to detect movement and orientation at 
100 Hz. In our scenario, one sensor is placed on the patient’s thigh and the other 
on the shin. With this, the system calculates the knee angle and sends a data packet 
every 10 ms.
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The last component is the ESP32 microcontroller, which can operate all other 
components and communicate via Bluetooth low energy (BLE) with the mobile app. 
All these components are integrated into a printed circuit board (PCB) developed 
by the Nano Stim project. This PCB has a protective case made in a 3D printer that 
attaches a battery. This wearable system can be charged via a USB cable and easily 
transported. Articles [6] [8] can supplement the content on the wearable system.

The positioning of the biofeedback system components on the vastus medialis 
muscle in the human leg model is demonstrated in Figure 2. One of the EMG elec-
trodes is placed on the knee bone to function as a reference, while the other two 
EMG electrodes and FES electrodes are positioned on the top of the targeted muscle. 
The motion sensors, on the other hand, can be positioned at any height on the thigh 
and shin while facing the front of the body.

Fig. 2. Sensors of wearable system

The mobile application used in this article was developed for Android and can be 
used by patients and health professionals to perform rehabilitation treatment. The 
application was developed to manage the sessions, including operating the wear-
able system via BLE and storing the data received from the sensors. An article about 
this mobile app has been published [7], describing the steps required to perform a 
session and how the raw data is saved and transmitted.

The access profile that will be addressed is the health professional, in which 
it is possible to operate all the functionalities of the wearable system during the 
treatment session. Thus, this study assumes that the mobile app has the following 
capabilities already implemented:

1. Pair via BLE with the wearable system
2. Start and end data collection through the interface
3. Receive and store raw data from the EMG signal
4. Receive and store data from IMU sensors (knee angle)
5. Send collected data to the cloud

With this, the data considered in real-time used in this study are the data received 
by the mobile app according to the frequencies previously described, and then data 
processing is started. All collected raw data is stored in files in the app and uploaded 
to the cloud when a collection is complete. Thus, the data considered in the cloud are 
the raw data processed in Python using the Jupyter Notebook tool.
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4	 FATIGUE	MONITORING	METHOD

The fatigue monitoring method comprises three essential steps to evaluate muscle 
fatigue in patients submitted to knee extension exercises. The first step involves rec-
ognizing the movements performed during the exercise through the knee angle. For 
the movement to be considered correct, it is necessary to go through a set of phases 
determined by thresholds in the correct order.

In step 2, the acquired EMG signal is processed. Initially, the data are clipped 
according to the relevant phases detected in step 1. After that, a high- and low-pass 
filter is applied, and the signal is converted to mV. With the resulting signal, a series 
of procedures are applied to extract three metrics related to muscle fatigue: average 
frequency (avgFreq), MedFreq, and root mean square.

The last step is normalization, which involves a calibration process to ensure con-
sistency between patients. This calibration process is performed at the beginning of the 
treatment session, where the patient must perform three knee extension movements. 
The values obtained are used as a reference to normalize the metrics in percentage.

4.1	 Knee	extension	movement

The knee extension exercise is fundamental in muscle rehabilitation treatment, 
specifically for the quadriceps muscle group. This exercise involves extending the 
knee joint and activating the quadriceps femoris, the largest muscle group in the 
thigh. Reinforcing the quadriceps is crucial to maintain knee joint stability and 
promote gait patterns [15].

To perform the knee extension exercise, the subject sits in a chair or on a knee 
extension machine with the knees bent at a 90-degree angle and the feet flat on the 
floor or footrests. The exercise is started by straightening the knees and raising the legs 
until they are parallel to the floor or fully extended. The movement is considered com-
plete when the subject’s leg returns to the ground again. Figure 3 shows the data col-
lected by the biofeedback system of a subject performing the knee extension exercise.

Fig. 3. Data collected during knee extension exercise
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The knee angle illustrated in Figure 3 passes through several parabolas with the 
concavity facing upwards, representing each time the knee extension movement 
was performed. It is also possible to visualize the EMG signal synchronized with the 
movement, with an increase in the signal amplitude when the leg begins to rise and 
a decline in amplitude when the leg begins to descend, representing the muscle acti-
vation required by the vastus medialis muscle to perform the movement.

In this method, the knee extension movement was segmented into four dis-
tinct phases, systematically defined by two threshold lines. The first threshold line 
determines the minimum angle the knee angle must go through to be considered 
the start of the leg rise. The value for the first threshold was determined from exper-
iments as 20°. The second threshold line represents the minimum angle the knee 
angle must go through for the knee extension movement to be considered sufficient. 
The physiotherapist should adjust this value for each patient since the full knee 
extension range can be reduced in a muscle rehabilitation context. However, in this 
study, it was defined as 60º.

From the threshold lines, the four phases are determined from the following 
intervals: The first phase represents the upward movement, starting with values 
above the first threshold and ending at the second threshold; for example, the leg left 
20º and reached 60º. The second phase is when the movement is already considered 
sufficient. It can be categorized when the knee angle is above the value of the second 
threshold, that is, values above 60º. The third phase represents the downward move-
ment of the leg, which can only happen if phase 1 and 2 have occurred previously. It 
can be categorized as descending when the values are between the first and second 
threshold, equal to phase 1. Finally, phase 4 represents the leg at rest, classified when 
the knee angle values are below the first threshold, for example, values below 20º.

Fig. 4. Classification of movement between the four phases
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In this way, as the mobile application receives the knee angle data, the current 
state of movement is classified based on this system of rules, as illustrated in Figure 4.  
Similar to a state machine, it is considered that the subject managed to perform the 
knee extension movement correctly once when the four phases were performed in 
sequence. When the sequence is complete and the movement is considered correct, 
it is considered in this study that the subject performed a contraction. Thus, it is pos-
sible to visualize four recognized contractions in Figure 4.

The EMG signal used to analyze each contraction in this system is obtained by 
cutting the corresponding EMG signal between phases 1, 2, and 3 of the knee exten-
sion movement, excluding phase 4. This cutting method focuses on capturing only 
the most significant part movement, omitting the rest time between contractions. The 
decision to exclude phase 4 is based on the understanding that this phase, character-
ized by leg rest, contains less representative information for analysis. Additionally, it 
is likely to introduce positioning noise and prolonged periods with minimal muscle 
activity, which can impair the accuracy of the analysis.

When the knee extension movement fails to go through all four phases, it is 
classified as an incorrect contraction. For example, the subject started to lift the leg, 
failed to reach the second threshold, and returned to the resting position, keeping 
phases 2 and 3 missing. In these cases, the corresponding EMG signal is disregarded 
for analysis.

In order to provide a user-friendly interface, a screen in the mobile application 
was developed to supply real-time visualization of knee angle movement. This 
dynamic design represents the subject’s knee movement, allowing users to monitor 
knee extension in real-time.

The interface also displays the current phase of contractions, the description of 
the current angle, and the total number of contractions recognized. In addition, the 
physiotherapist can adjust the second limit, described as “Min Angle,” using intuitive 
buttons on the interface, as illustrated in Figure 5.

Fig. 5. Phases of contraction recognition interfaces

4.2	 Fatigue	metrics

This section describes the operations performed on the EMG signal clipped to 
calculate three relevant metrics in the context of muscle fatigue. Two metrics are 
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related to the signal spectrum: the average and median frequencies. These metrics 
provide information about the frequency characteristics of the EMG signal and can 
indicate changes in muscle fiber activation. Specifically, a shift in activation from 
fast-twitch (type 2) fibers to slow-twitch (type 1) fibers indicate muscle fatigue. This 
shift is reflected in the signal spectrum by a leftward skew of the mean and median 
frequencies, resulting in lower frequency values [16].

In addition, RMS is calculated to quantify the amplitude of the EMG signal. The 
RMS value indicates the level of muscle activation. Higher RMS values correspond 
to greater muscle activation, while lower values indicate less muscle activation. 
Monitoring RMS over time makes it possible to assess changes in muscle activation 
levels, which can help evaluate muscle fatigue [16].

The EMG surface electrodes analogically capture the difference in electrical 
potential generated by the motor units activated at that moment. This analog signal 
is then transformed into a digital signal with 12 bits of resolution, producing an 
integer vector that discretely represents the sum of the motor unit electrical activity 
recorded. Since the frequency is set at 1 KHz, the size vector corresponds to the 
duration of the contraction in 1 ms.

To restrict the signal frequency between the most relevant ranges, a low-pass 
filter and a high-pass filter are applied. The low-pass filter will attenuate frequencies 
above a cutoff frequency of 500 Hz, allowing only the lowest frequency components to  
pass through. On the other hand, the high-pass filter will attenuate frequencies 
below a cutoff frequency of 20 Hz, allowing only the highest-frequency components 
to pass through [17].

In this study, Welch’s method [18] was applied to estimate the power spectral 
density (PSD) of the EMG signal, which is required for calculating the avgFreq and 
MedFreq. This method divides the signal into overlapping segments with a hop size 
determined by the overlap factor, which must be between 0 and 1. The periodogram 
of each segment is computed using the Fast Fourier Transform (FFT) algorithm. Thus, 
the PSD estimate using the Welch method is obtained by averaging the periodograms 
from all segments.

Transform the signal to millivolts. The EMG signal is transformed from raw to 
millivolts (mV) using Formula 1.

 signalEMG
signalRAW

t

t�
�2048

4096
 (1)

Where signalRAWt represents the raw EMG signal at time t, and 2048 and 4096 
correspond to the values that scale the signal to the 12-bit resolution.

Compute the segments. The window size M for each segment was determined 
as 1024 elements. This choice ensures an appropriate balance between frequency 
resolution and computational efficiency. Given an EMG signal sampling frequency 
of 1000 Hz, the resulting frequency resolution is approximately 0.97 Hz.

An overlap factor parameter α was defined as 0.1 to minimize potential spectral 
leakage. Each segment will overlap the previous segment by 10% of its length. The 
overlap helps capture transient information and improves the overall accuracy of 
the PSD estimate. The number of segments L was computed based on Formula 2.

 L �
�
�

�
N M

M * ( )1
1

�
 (2)

where N is the length of the signalEMG.
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The vector S of size L can be defined as a collection of segments from the 
signalEMG, denoted as Si = signalEMG[ai : bi] where ai and bi represent the initial and 
final indices used to extract the segment from signalEMG.

The vector S can be constructed using Formula 3 as follows:

 
a i

b a M
i

i i

� � �

� � �

( )1

1

* ( * )M M�
 (3)

Apply Hanning window. This study employs a Hanning window in signal 
processing to mitigate the effects of spectral leakage and reduce aliasing [19]. The 
equation used to create the Hanning window is defined in Formula 4.

 W
n

M
n

n
� �

�
�

�
�

�

�
� �0 5 0 5

2

1
0 1 2. . * cos , , , ,

�
�� �M 1  (4)

where n represents the index and M is the length of the window.
The windowed signal E is a vector of segments obtained by element-wise mul-

tiplication of the vector S with the Hanning window as W. The definition of each 
segment is expressed by Formula 5.

 
E W i

j

ij ij
� �

�
*S 1

1

ij
L

M

0 1 2

0 1 2

, , ,

, , ,

��

��

�

�
 (5)

where i represents the segment window index and j is the segment window index.
Compute the power spectral density estimated. The FFT algorithm is 

applied to each signal segment to compute the PSD estimate. The result of the FFT 
algorithm is a complex-valued spectrum that includes both positive and negative 
frequencies.

In this way, only the positive frequencies are considered in the subsequent anal-
ysis to extract meaningful information and avoid redundancy. Thus, the frequency 
vector is constructed by taking the positive frequencies from the FFT result.

The frequency vector consists of evenly spaced frequency values ranging from 
0 Hz to the Nyquist frequency, which is half the sampling frequency. Thus, to match 
the response of the FFT algorithm applied to E, the length of the frequency vector is 
equal to half the window size, defined as V.

Each point in the frequency vector represents a specific frequency component 
of the signal. The frequency values in the vector can be computed using Formula 6:

 F
k

f k V
sk M

� � �* 0 1 2 1, , , ,�  (6)

where k represents the index of the frequency vector F, and fs represents the 
sampling frequency.

The periodogram of the segments is computed using the FFT algorithm according 
to Formula 7.

 

X
i i

ik

ik

FFT E i L

P
X

M
k V
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( ) , , , ,

, , , ,

0 1 2 1

0 1 2 1

2

�

�
 (7)
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where Xi represents the result obtained from each segment Ei using the FFT 
algorithm, and k denotes the index of the corresponding frequency.

The averaged PSD estimate of the entire signalEMG defined as T, is then computed 
using Formula 8:

 T
L

P
k

i

L

ik
�

�

�1

*
0

1

�

 (8)

Average frequency computation. The AvgFreq is computed by weighting the 
frequency values by their corresponding PSD values and calculating their average. 
Thus, the formula required to obtain this value is described below:

 AvgFreq
T

T

k

k

�
F
kk

V

k

V

*�

�

�

�

�
�

0

1

0

1
 (9)

Median frequency computation. In order to calculate MedFreq, it is necessary to 
create the cumulative power vector of the estimated PSD. These values are obtained 
by summing the values of T cumulatively. The cumulative potency Ck and the total 
potency CT are obtained from Formulas 10 and 11.
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The MedFreq is the frequency value at which the cumulative power equals half 
of CT. It is determined by finding the frequency bin Fk that satisfies the conditions 
in Formula 12:

 C
CT
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where Ck represents the cumulative power at frequency bin Fk.
Root mean square computation. The RMS value is calculated by taking the 

square root of the mean of the squared values of the signal samples. Let signalEMG 
represent the signal obtained in step 1. The RMS value is calculated by:

 RMS n
n

N

�
�

1

N
signalEMG* ( )

1

2�  (13)

where N represents the length of the signalEMG.
By following these steps, it becomes feasible to calculate the three metrics 

(AvgFreq, MedFreq, RMS) employed in this system to evaluate muscle fatigue. All steps 
were developed from scratch within the mobile app except for the FFT algorithm. 
The FFT algorithm utilized in the app was imported from the Apache Math3 library 
in the Kotlin language. The library SciPy signal of the Python language was used for 
the data processed in the cloud.
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4.3	 Normalization	and	calibration

This section emphasizes the importance of normalizing the EMG data within the 
context of fatigue monitoring. Ensuring reliable and consistent measurements is 
crucial for accurately assessing muscle fatigue levels. The EMG signal exhibits inher-
ent variability in signal amplitude due to factors such as electrode positioning and 
individual physiological characteristics. Consequently, comparing EMG data between 
sessions and subjects becomes challenging without appropriate normalization [20].

In order to address this challenge, a calibration method composed of a sequence 
of steps has been developed to establish a baseline reference for subsequent mea-
surements. The reference values obtained in calibration will be used to transform 
the fatigue metrics into a percentage scale relative to each individual’s initial state. 
This normalization approach establishes a standardized metric for evaluating mus-
cle fatigue, enabling meaningful comparisons and accurate monitoring of fatigue.

The most usual method in comparative EMG signal studies is to apply normalization 
based on the maximum contraction volume. This method involves determining the 
greatest amplitude of the EMG signal generated during the performance of contractions 
by applying all possible forces [21]. However, this approach often requires assistance 
from a physiotherapist or specialized equipment, making it impractical for imple-
mentation in home settings, as the Nano Stim project aims to achieve.

Instead, an alternative method will be utilized, involving the average of three 
contractions performed without any associated weight. These contractions represent 
the baseline level of electrical muscle activity considered natural or normal during 
the knee extension movement. The sequence of steps for calibration comprises 
six intuitive screens within the mobile app, divided into three main processing steps. 
The terminology “Initial Evaluation” is used instead of “Calibration” to improve the 
user experience, as illustrated in Figure 6.

Fig. 6. Screens of the calibration process

1. Standing evaluation: The first screen of instructions directs the patient to sit 
comfortably in a chair, establishing the starting point for the calibration process. 
The second instruction screen guides the patient to stand up and remain standing. 
In the first calibration step, the app records the thigh and shin angle to minimize 
the positioning error of the IMU sensors and saves one second of raw EMG data.

2. Seated evaluation: The third screen of instructions asks the patient to sit down 
again, moving on to the second calibration step. During this step, the mobile app 
saves the thigh and shin angles from the IMU sensors and records one second of 
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raw EMG data again. With this, it is possible to understand the knee angle’s initial 
position, which is not usually perpendicular.

3. Contractions: The fourth screen of instructions provides information on per-
forming a contraction and knee extension movement. The fifth screen features 
an interface designed for physiotherapists. It includes intuitive buttons for the 
physiotherapist to indicate the start and end of each patient’s contraction. This 
information allows the physiotherapist to better understand the patient’s full 
knee extension range. This interface can be adapted without buttons for patient 
profiles. The unique parameter required is the minimum angle to recognize a 
contraction, a value that the physiotherapist can predefine. In the final calibra-
tion step, the app saves the data for all three contractions, including the duration 
of each contraction, calculated fatigue metrics, maximum angle reached, and the 
entire raw data.

Finally, the sixth screen presents the values obtained to the physiotherapist, pro-
viding an overview of the calibration results. This screen allows the physiothera-
pist to assess whether the calibration has been performed correctly and ensures the 
accuracy of the measurements for the fatigue monitoring system. After each session, 
processed values and raw calibration data are saved to the cloud. This data can help 
us to improve the system later and allows for a reassessment of the raw data.

5	 EXPERIMENTAL	VALIDATION

This section aims to evaluate the performance and effectiveness of the imple-
mented fatigue monitoring method. An experiment with ten healthy subjects was 
conducted, employing a biofeedback system under the guidance of a physiotherapist 
to accurately place electrodes on the vastus medialis muscle, ensuring a 2 cm sepa-
ration between electrodes. This experiment evaluated the system’s ability to monitor 
muscle fatigue during an exercise protocol.

In addition, a comparison will be made between the values obtained in the mobile 
application and the raw values processed in the cloud. This comparison provides 
information about the accuracy, reliability, and difficulties of real-time processing.

The exercise protocol consisted of performing the knee extension exercise with 
50 contractions. In order to ensure the standardization of the exercise, the subjects 
were asked to spend two seconds in each phase of the contraction, being two 
seconds to lift, two seconds sustaining the raised leg, and ending with a downward 
movement of two seconds, aiming to result in an average duration of six seconds.

The experimental session was conducted under the supervision of a physio-
therapist and was approved by the Ethics Committee of the Instituto Politécnico de 
Bragança (IPB), Portugal (No 504143). The test included the participation of five men 
and five women researchers from IPB. Only one man did not participate in regular 
physical activities; all others reported visiting the gym at least four times a week 
and engaging in leg exercises at least once a week. Table 1 shows the average and 
standard deviation of participants’ anthropometric data.

Table 1. Anthropometric data of the subjects

Sex Age IMC Gym

M 27.0 ± 3.3 24.0 ± 2.7 4x ± 2.3

F 27.4 ± 2.2 24.8 ± 3.6 5x ± 0.4
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Generally, the testing sessions lasted around 10 to 15 minutes, with half of this 
time spent on positioning the equipment on the subject and the other half actually 
performing the 50 contractions. No subject reported difficulty in performing the 
exercise, and overall, no significant fatigue was reported.

The graph in Figure 7 displays the subject’s knee angle during each of the 
contractions that were recognized by the developed system. As can be seen, there 
was variation in the duration of contractions between subjects, with an average of 
five seconds for each contraction, with an average of two seconds to raise the leg, 
one second remaining at the top, and two seconds on the way down.

The maximum angle reached was 77° on average across all subjects. It was also 
noted that the majority of subjects increased the maximum angle reached with each 
contraction, resulting in the maximum peak between contractions 30 and 40.

Fig. 7. Knee angle variations between recognized contractions

5.1	 Fatigue	metrics	evaluation

This section presents a statistical analysis of three metrics related to muscle 
fatigue: AvgFreq, MedFreq, and RMS. These metrics were obtained from the EMG 
signal derived from the segment identified by recognizing contractions based on 
knee angle and subsequently calculated as described in section 4.2.

The calibration process described converts these metrics into percentages 
relative to the initial state of the test, which is crucial for monitoring the session’s 
progression. However, to compare across multiple subjects, the data still needs to be 
standardized due to variations in EMG signal strength. Thus, the data were normal-
ized as standard deviations from the mean.

Additionally, due to some failures in reading the EMG signal from the wearable 
system, it was necessary to remove up to 3 contractions from some subjects. 
Consequently, the reported values represent a moving average with a window size 
of five across 45 contractions. For subjects without signal discrepancies, the initial 
5 data points were excluded. This methodology offers insights into the trend of met-
ric values throughout the session.

Figures 8 and 9 illustrate the trends of metrics related to signal frequency, AvgFreq 
and MedFreq for each subject, and the average trend among the entire group. The 
average trend decreases as contractions progress. Eight out of 10 subjects ended the 
session with values for these metrics below what they started with.
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This decline in frequency indicates a decrease in muscle fiber conduction velocity, 
which is consistent with the expected physiological response to fatigue. As the partic-
ipant becomes fatigued, the muscle’s ability to generate force decreases, resulting in 
a slower conduction velocity of the muscle fiber, shifting the signal power spectrum 
to lower frequencies [16].

In some cases, there was a constancy or even an increase in the AvgFreq and 
MedFreq metrics until the half of the session. This can be understood as a period of 
adaptation to the movement that the subject went through. These results demon-
strate similarities with those presented in [12], where MedFreq went through several 
waves with a negative slope until the end of the exercise.

Fig. 8. Trend of the AvgFreq metric during the session

Fig. 9. Trend of the MedFreq metric during the session

In contrast to the frequency metrics, the average trend of the RMS metric illus-
trated in Figure 10 does not exhibit a sharp decrease. In general, the predominant 
behavior was an increase until halfway through the session and then a decrease. This 
observation suggests that the subject added strength until halfway through the ses-
sion, potentially adapting to the movement and compensating for the onset of fatigue. 
Afterward, there are two most likely possibilities. The first is that the RMS decreases, 
indicating fatigue with a lack of ability to generate more force to sustain the movement, 
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as demonstrated by the authors in [22]. The second option is when RMS stabilizes or 
increases, indicating that the subject calmly endured the exercise until the end.

Fig. 10. Trend of the RMS metric during the session

The joint analysis of spectrum and amplitude (JASA) is a method that seeks to 
understand muscular responses by simultaneously considering the MedFreq and 
RMS metrics in a Cartesian plane. The JASA method aims to distinguish the changes 
observed in the EMG signal between the effects of muscle fatigue and variations in 
muscle force that occurred during exercise [16].

Fig. 11. JASA method apply to experimental test
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These quadrants of the Cartesian plane represent different physiological 
scenarios: the increase in RMS and the displacement of MedFreq to the right indicate 
a possible increase in muscular force (Q1); the decrease in RMS and the displace-
ment of MedFreq to the left suggests a probable reduction in muscular force (Q3); 
the increase in RMS and the shift of MedFreq to the left indicate muscle fatigue (Q4); 
the decrease in RMS and the shift of MedFreq to the right indicate recovery from 
previous fatigue (Q2).

Figure 11 illustrates the application of the JASA method to the contractions 
recognized by the entire group. The dots were colored in a gradient from red to 
green, indicating the first contractions as redder to the last ones as greener. Thus, it is 
possible to see that despite the varied start, the average progression of the muscular 
response during the session was a decrease in force and some cases of fatigue.

This is an expected muscular response for healthy subjects who practice phys-
ical activity regularly. Contributing again to an interpretation that there was some 
challenge at the beginning of the session to adapt to the movement, and then there 
was a control of force until the end of the session.

Using the chosen fatigue metrics allows a comprehensive assessment of muscle 
fatigue. While frequency metrics reflect physiological changes associated with 
fatigue, RMS provides information about participant exertion levels. The integra-
tion of these metrics improves the understanding of the progression of fatigue and 
facilitates the identification of different stages of muscle fatigue, as exemplified 
using the JASA method. Furthermore, other parameters related to muscle fatigue 
extracted from the EMG sensor can be used, as described in [16], once the data has 
been properly cut and processed with motion recognition by the inertial measure-
ment units.

It is essential to emphasize that the interpretation of these findings must be the 
responsibility of the physiotherapist, who has the necessary knowledge about the 
patient’s pathology. It is essential to recognize that different pathologies may present 
different fatigue behaviors compared to healthy individuals. Therefore, the phys-
iotherapist plays a crucial role in analyzing these metrics and making informed 
decisions based on understanding the patient’s condition.

5.2	 Mobile	data	vs.	cloud	data

In order to evaluate the consistency and accuracy of the fatigue monitoring 
method in real-time, this session compares the data processed in the mobile app 
with the data processed on the computer from the raw data. With this, it is possi-
ble to obtain information about the performance and reliability of data processing 
algorithms.

Two metrics were used to perform the comparative analysis between the 
systems, namely, mean absolute error (MAE) and root mean square error (RMSE). 
These metrics seek to parameterize the difference between the data obtained in each 
system, interpreted as our error.
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Fig. 12. Comparison between systems of the AvgFreq metric

Fig. 13. Comparison between systems of the MedFreq metric

Fig. 14. Comparison between systems of the RMS metric
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Figures 12, 13, and 14 present comparative charts showing the average error 
between real-time processing performed by the mobile application and cloud pro-
cessing for calculating fatigue metrics for all subjects. These charts also provide 
insights into the average post-application error resulting from the implementation 
of a moving average with a window size of 5, as previously discussed. The vertical 
lines associated with each data point in the charts represent the standard devia-
tion calculated across all subjects, allowing a deeper understanding of the data 
distribution.

From these charts, it is evident that the metrics related to frequency (AvgFreq 
and MedFreq) had more errors than the RMS metric. The most plausible explana-
tion for the divergence between the systems lies in the calculations related to the 
transformation of the signal in the frequency spectrum and not in how the sensor 
data is cut and synchronized. Otherwise, the RMS metric would also present average 
errors similar to AvgFreq and MedFreq. Also, these calculations were one of the few 
parts within the mobile system that was not programmed from scratch, especially 
the Fourier transform algorithm. Given the use of different programming languages 
in implementing the method, variations such as differing variable precision may 
contribute to this effect.

While the standard deviation may appear relatively high in some instances, the 
application of the moving average substantially reduces the values. This demonstrates 
that there are some points with significant errors that can be suppressed by neighbor-
ing data, making the average error low. Furthermore, the emphasis of this system lies 
in monitoring the oscillation trajectories of metrics associated with muscle fatigue, 
thereby introducing linearity through aggregated values by the moving average.

Table 2 illustrates the assessment metrics on the fatigue metrics.

Table 2. Assessment metrics on fatigue metrics

Metric Max MAE RMSE

AvgFreq 10.36 ± 6.35 2.61 ± 0.95 3.41 ± 1.38

AvgFreq MA 4.15 ± 1.34 1.46 ± 0.63 1.78 ± 0.71

MedFreq 16.67 ± 4.58 3.5 ± 0.77 5.35 ± 1.16

MedFreq MA 5.9 ± 1.53 1.96 ± 0.33 2.48 ± 0.45

RMS 2.72 ± 1.8 0.69 ± 0.4 0.93 ± 0.55

RMS MA 1 ± 0.54 0.34 ± 0.2 0.43 ± 0.25

Table 2 puts into numbers through the assessment metrics the difference in 
the application of the moving average with a window of size 5. The values of the 
frequency metrics AvgFreq and MedFreq have similar mean errors and standard 
deviations to each other, with the AvgFreq metric having the best precision. The 
RMS metric has a MAE of less than 1%; this indicates that the mobile system could 
execute the proposed method in real-time, similar to the late processing of the raw 
data in Python.

The application of the moving average managed to improve the MAE metric, 
reducing the average error by more than 40% and the standard deviation by 50%. 
The RMSE metric also has similar improvements to the MAE metric. However, in 
particular, the maximum has the most significant error reduction when applying 
the moving average, approximately 60% improvement.
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In summary, the mobile application has successfully implemented the real-
time fatigue monitoring method with some variations. The metric with the highest 
accuracy in real-time processing was RMS, while the metric with the highest devi-
ation was MedFreq. Applying the moving average provided considerably smaller 
errors and could make the system more efficient in monitoring muscle fatigue 
during knee extension exercises. The mobile app could closely track the trajectory 
of data processed in the cloud, providing similar insights to the physiotherapist in 
real-time via the app.

6	 CONCLUSION

This article presented a three-step method to monitor fatigue in real-time 
using a wearable biofeedback system. This method was implemented in a muscle 
rehabilitation mobile application built to deliver a treatment session remotely. In 
order to validate the implemented method, an experimental session was carried out 
with ten healthy subjects and with the help of a physiotherapist. The results show that 
the mobile app could recognize the movement performed and consistently calculate 
metrics related to muscle fatigue with similar results presented in the literature.

The collected fatigue metrics can provide valuable information about muscle 
activity and fatigue during the treatment session, allowing physiotherapists to 
evaluate and adapt treatment according to individual patient characteristics. The 
development of the method in the mobile app was important to bring intuitive and 
simple interfaces to the user. Despite requiring many processes to carry out a session, 
there was no difficulty on the part of the physiotherapists in using the application, 
facilitating the realization of the experimental session.

The knee extension exercise was chosen because it is a traditional exercise in the 
treatment of muscle rehabilitation using electrostimulation. However, it is possible 
to expand the interpretation of the method to other muscles and any movement. 
For this, it will be necessary to know the limits to classify the phases of the chosen 
movement to cut and normalize the EMG signal precisely.

Despite the fact that real-time processing presents some discrepancies in the cal-
culation of fatigue metrics, the mobile app could closely follow the trajectory of the 
data processed in the cloud. Overall, this fatigue monitoring system demonstrates 
potential in muscle rehabilitation, offering valuable real-time muscle fatigue infor-
mation and supporting personalized training and rehabilitation programs. With 
continued advances and refinements, this technology can significantly contribute 
to enabling remote rehabilitation treatment, promoting greater well-being, and 
increasing accessibility.

In future work, the focus is on developing a robust strategy to classify muscle 
fatigue into distinct levels. One proposed approach involves integrating user-friendly 
forms into the app, allowing patients to report their subjective levels of fatigue. This 
integration will facilitate a direct link between the patient’s self-reported sensations 
and the corresponding muscular responses measured by the system, promoting a 
more comprehensive understanding of the patient’s physiological condition.
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