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REVIEW

General Super-Resolution Techniques: 
A Literature Review

ABSTRACT
Super-resolution (SR) is a technique aimed at improving the resolution of images. In blood 
cell imaging, it aids in the accurate identification and classification of cells. Improving the 
analysis process of microscopic images is necessary to achieve better disease diagnoses, 
especially the image quality, so that health professionals can reach a diagnosis closer to the 
ideal. For those aiming to implement SR algorithms to analyze microscopic blood cell images, 
it is crucial to determine which algorithms are in use, their intended purposes, future trends, 
and current gaps. No review of SR techniques focusing on blood cells was found in the liter-
ature. Therefore, this paper presents various techniques to improve the resolution of blood 
images. Data screening and inclusion followed the PRISMA method. Articles were grouped 
into four subtopics: generic (25.0%), vascular imaging (28.1%), cell imaging (9.4%), and blood 
cell imaging techniques (37.5%). Results revealed that more research efforts on cell imaging 
techniques would be required to achieve a more balanced distribution. This study contrib-
utes to knowledge by reviewing the most used techniques, their purposes, and applications, 
helping researchers find the best technique for their studies, especially for pathological 
researchers involved in image enhancement.
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1	 INTRODUCTION

The scientific literature addresses various needs in the health sector, particularly 
in the analysis of blood cells using advanced equipment to achieve highly accurate 
diagnoses. Blood is composed of four main components: red cells, white cells, 
platelets, and plasma. Red cells, or erythrocytes, are responsible for oxygen transport 
in the body. White cells, or leukocytes, are essential for the body’s defense. The 
platelets are responsible for acting on blood clotting. Finally, the plasma is the liquid 
in which the cells are immersed [1–3].
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The correct functioning of blood cells is essential for overall health, making blood 
testing crucial for diagnosing diseases [2]. However, identifying and classifying 
cells is an arduous and laborious task. It requires a skilled health professional and 
several hours of analysis (involving the study, preparation, and observation) by a 
pathologist, a physician specialized in the study of the human body’s fluids.

Specifically, for blood cell analysis, a hematopathologist identifies and classifies 
each cell, noting any abnormalities that could indicate diseases that may occur [4]. 
However, a major challenge in this process is the suboptimal image resolution, 
which complicates the identification and classification of cells [5] (see Figure 1).

Fig. 1. Images with different resolutions (A has a lower resolution than B)

In this context, laboratories, startups, and other health-related area companies 
are searching for technologies to develop state-of-the-art systems and equipment 
(both hardware and software) to improve image resolution and classification, thus 
enabling more accurate and faster diagnosis. However, the ideal system should 
offer good value for money, being highly technological yet affordable in terms of 
acquisition and maintenance [6], [7].

The search for artificial intelligence increased, offering automated work with 
high precision and short computational time compared to the health professional, 
therefore lowering costs [8–10]. Therefore, several techniques focus on improving 
the resolution of microscopic images, known as super-resolution (SR) methods 
(see Figure 2). For instance, there are generic techniques, such as those using Fourier 
equations [11], [12]. Other methods stand out for micro vessel images [13] or blood 
flow [14] and, mainly, methodologies for cells [15], especially in blood cells [16–18].

Fig. 2. Super-resolution generic operation

The most used techniques are convolutional neural networks (CNN) (6), 
structured illumination microscopy (SIM) (3), and stimulated emission depletion 
(STED) (3), which will be explained in the section “Literature Analysis and Review” 
with different applications, however, aimed at improving the image. Microscopic 
image quality is critical for an accurate diagnosis, making SR techniques essential 
for enhancement.

The process of developing computer applications will at some point involve 
learning techniques whose knowledge needs to be acquired. Systematic literature 
reviews are important for synthesizing available research in a given field. Searches 
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carried out on the main search engines did not return a comprehensive review of 
SR techniques applied to the area of blood cells. Therefore, a novice developer may 
have to lengthen their learning curve. Helping the beginner developer to shorten 
his/her learning time by focusing on the most promising SR techniques is therefore 
the motivation behind this work. Therefore, the primary purpose is to help other 
researchers determine the most appropriate SR technique in blood cell analysis.

This study reviewed SR techniques applied in blood cell imaging, categorizing 
and comparing them. Articles considered for inclusion must either explain the SR 
methods or cite their use. The focus is on blood and blood cells, but this work also 
discusses possible future applications of SR techniques to recent studies.

2	 METHODS

The review’s theoretical foundation was the PRISMA methodology (see Figure 3), 
which aimed to address SR techniques in health, especially blood cell analysis.

Fig. 3. PRISMA flowchart
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Before determining the query terms for the review, the most appropriate, frequent 
terms for this subject were investigated. Thus, in the Web of Science database, 
the following query was used: “((“Super Resolu*”) AND (“Blood” OR “Hemo*” OR 
“Blood*”))”. This query yielded a total of 224 records, with one result excluded 
because it was not in English and there were no duplicates. After reading the titles 
and abstracts of the remaining 223 articles, 191 were excluded for being out of 
scope. Thus, 32 articles that were tangent (27) or within the scope (5) remained. After 
a thorough reading, they were analyzed, summarized, and later grouped by similar 
techniques to extract the main features.

2.1	 Literature analysis and review

Table 1 summarizes the techniques used in all the articles. The initial column 
starts by identifying the article, followed by the application theme or category, then 
the name of the method and whether it is used in microscopic applications for 
blood cells.

The 32 articles were divided into four categories: generic techniques, which 
are different from each other and do not fit into a single specific group; vascular 
imaging techniques, which focus on the micro-vessel part without actually focusing 
on the blood cells; cell imaging techniques, which highlight methods for imaging 
cells, not necessarily blood cells, and blood cell imaging techniques, which focus on 
SR techniques to improve blood cell imaging.

Some articles provide better descriptions and details regarding SR algorithms, 
such as presentations of tables, pseudocodes, images, formulas, equations, or graphs. 
These articles received extra emphasis on information presentation, leading to a 
better understanding of the techniques and procedures.

2.2	 Generic techniques

In this category, eight articles were presented that used generic microscopy 
methods. For example, some works [6], [7] used holographic techniques, while others 
[11], [12] used approaches with Fourier equations. In addition, three other articles used 
different methods to apply in abnormal cells [19], spherical shape for the retina [20], 
and 3D imaging for hemodynamics [21]. Furthermore, another used binary masking 
for images in general [22]. All these studies had the same objective of improving the 
resolution of the images regardless of their application, being in different circum-
stances without having a specific area, presenting different techniques with their 
purposes, and helping the researcher to choose depending on the application area.

Li et al. [11] developed an SR-based method that measures the elasticity of the 
red blood cell (RBC) membrane in real time. In this way, the resolution is defined 
by the noise of the image (being independent of the optical resolution of the light 
microscope), which uses a maximum adaptive weighted averaging (MAWA) filter 
to minimize the noise standard deviation and, together with an SR algorithm, to 
convert a single low-resolution image to a high-resolution image. Furthermore, the 
authors stated that the method allowed the measurement of RBC parameters under 
different conditions. In their article, the authors compared the proposed method 
with the restoration method of using only a single frame. The proposed technique 
can obtain complementary information from a set of different images beyond that 
obtained from a single one, thereby improving the performance of the restoration.
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Table 1. Article overview regarding microscopic application for blood cells

Article Theme Technique Aplies?

[11] Fourier MAWA Yes

[12] Fourier FPM –

[6] Holographic – Yes

[7] Holographic – –

[19] 3D SIM & STED –

[20] Abnormal cell STED –

[21] Spheres WSSA –

[22] General SR – –

[23] General vascular – –

[13] Vascular MRA –

[24] Vascular/ultrasound SUSHI –

[25] Animal vascular OMAG –

[26] Vascular – –

[27] Vascular ULM –

[28] Vascular PAM –

[14] Vascular mULM –

[29] Vascular – –

[15] Platelets SIM & STORM –

[30] Non-blood cells STED –

[31] Blood SIM Yes

[32] Blood PAM –

[33] Blood – Yes

[17] Blood Yes

[34] Blood – Yes

[18] Blood CNN Yes

[35] Blood – Yes

[16] Blood SROFM Yes

[36] Blood CNN & SISR Yes

[37] Blood CNNSR & ELMSR Yes

[38] Blood – Yes

[39] Blood CSRNet & FSRCNN Yes

[40] Blood SISR & CNN Yes

Sun et al. [12] used the Fourier ptychographic microscopy (FPM) method to 
improve the resolution based on the illumination of the top of numerical apertures 
(NA), known as enhanced resolution Fourier ptychographic microscopy (REFPM). 
This technique uses low-resolution images to produce high-resolution images that 
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are the space bandwidth product. Their investigation proves that REFPM improves 
resolution by demonstrating images (not blood) with the highest resolution.

The studies of Li et al. [11] and Sun et al. [12] used techniques applying Fourier 
equations. However, they are very complex and require different equations for better 
results. Nevertheless, their solutions confirmed the better quality of the images.

Mudanyali et al. [6] developed a technique based on super-pixel resolution in 
microscopy that does not use lenses and a portable system. The method is performed 
using an iterative pixel SR algorithm based on the acquisition of several spatially 
obtained frames, which recover in high resolution the holograms of the objects. 
These holograms, captured without lenses, are sequentially digitally placed together, 
retrieving a hologram of the highest resolution object. In addition to the technique, 
the authors discussed the use of a wetting film to help improve experimental results 
concerning signal-to-noise (SNR) up to four times, verifying that the wetting film 
allowed stability and repeatability to enhance the ability of holographic methods 
(lens less and portable) in the microscopic area, as it preserved the specimens’ char-
acteristics. As a final remark, the article could verify high-resolution images, and red 
blood and other types of cells could be detected.

Greenbaum et al. [7] developed a device for on-chip microscopy that does not have 
lenses based on holography. The device records the object’s shadow, or “hologram” 
to be reconstructed. It uses the SR per pixel method to generate a high-resolution 
image based on sets of low-resolution images combined with different computa-
tional techniques. The article details the SR method used, even though it focuses on 
Pap smears, not blood tests. It illustrates the device development process through 
flowcharts and demonstrates the improvement of images with SR techniques.

Mudanyali et al. [6] and Greenbaum et al. [7] present how holographic methods 
can improve image quality. However, both articles showed shadows or holograms of 
cells, not typical images obtained from microscopes, as microscopes and their lenses 
are costly. So, the authors point out that the systems are made without the need for 
lenses, making the equipment cheaper and easier to produce. The system is used for 
highlighting both RBCs and Pap smear images, respectively.

York et al. [21] explained the diversities between STED and SIM, claiming that the 
latter could achieve better results faster. The article made the analog application of 
the SIM technique, which achieved twice the spatial resolution (with more details to 
be observed) of a fluorescent microscope without affecting speed (to show results), 
phototoxicity (change the image), or field of view (the angular extent of an environ-
ment that is seen at any given time). The paper focused only on hardware, using 
multiple lenses, which resulted in better resolution with the technique without 
employing algorithms. Additionally, there was no emphasis on blood cell microscopy, 
only on 3D images (fast and non-invasive) and hemodynamics.

Becatti et al. [19] highlighted the biological area, using an SR technique to find 
similar parameters in abnormal cells. They used the STED method, which could 
identify changes in fiber diameter and clot porosity. The technique was only stated 
without introducing the codes, and no images of blood cells were investigated.

Cai et al. [20] detailed the wavelet-based spherical segmentation algorithm 
(WSSA) for spherical images, intended to be a segmentation method for identifying 
spherical patterns. The technique performs the segmentation differently, as it 
does not require training, which is a highlight. The authors state that, to succeed 
in learning deep learning algorithms, it is necessary to study the characteristics of 
data over the network and have quality in the data groups for training. The authors 
stated the main contribution as the framework’s use of an iterative strategy with the 
flexibility to adapt according to the data types and resources (e.g., Earth or retina 
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images), with different kinds of “ripples” tested and implemented in the framework. 
The article demonstrates that spherical images (like the globe) were used for testing, 
and then the eyeball test recreated the micro vessels observed in the retina. This 
way, the equations, graphs, and pseudocodes demonstrate the WSSA algorithm’s 
steps. However, the algorithm focused on spherical shapes rather than blood cells, 
which is the focus of this review.

Zalevsky et al. [22] prepared the article emphasizing the geometric SR technique, 
which uses matrices and binary masks to achieve better image resolution. This 
method adds a random binary mask (because it reduces the dependence on manu-
facturing tolerances) with the low-resolution image. This mask aims to overcome the 
geometric resolution reduction resulting from the non-ideal sampling of pixels, using 
equations as adjustments to generate a “super-resolved” reconstruction after matrix 
inversion. The article has equations and images demonstrating that it achieved the 
expected results. However, blood cell images are not used.

The last four articles showed various techniques, from algorithms focusing on 
spherical structures (analysis and identification) [20] and abnormal cells [19] to the 
detection and categorization of (2D) images in general [22] and even 3D images [21]. 
Thus, the focus was only on improving the resolution of images in general.

Even though all eight articles used SR methods, most codes were applied to images 
that did not focus on blood cells. Some articles employed qualitative parameters for 
image analysis, whereas others used different parameters (e.g., noise variance or SR 
factor) to verify an improvement in image resolution. This difference compromises 
the comparison of the articles, as they do not use the same qualitative parameters. 
Nevertheless, all of the results showed improvements in the desired image quality.

2.3	 Techniques for vascular imaging

The articles introduced in this section deal with the vascular part of the blood 
(not focusing on the cells). They are methods for analyzing hemodynamics or micro 
vessels. Most techniques fall under the ultrasound theme [23–25], not examining the 
blood slide. Others focus more on the biological part [26], such as the reconstruction 
of blood vessels [13], [27], and some also emphasize the physical area, verifying the 
speed and volume of blood passing through the vessels [14], [28], [29].

In the article by Lavina and Gaengel [26], different techniques were explained 
to analyze the vascular part of humans and animals (the article was used to better 
understand this area), not the microscopy of blood cells. This work reviews different 
techniques, but all are for the vascular part and are aimed at the biological part 
without having many parameters to compare with other articles.

Cai et al. [13] showed the segmentation “framelet” technique to automatically gain 
as much detail as possible and appropriately for tubular structures in real time. The 
results exhibit the method’s efficacy in segmenting tubular structures, presenting 
speed, and extracting exact and smooth limits or surfaces. Furthermore, the article 
exposes formulas, images, and pseudocode to achieve accurate, smooth boundaries 
or surfaces of tubular structures such as blood vessels. However, despite the detailed 
explanations, their work does not aim at blood cells, which is the focus of this review.

Piepenbrock et al. [25] used ultrasonic localization microscopy (ULM) with 
microbubbles (MB). This method depends on the location of the subwavelength of 
individual MB for microvasculature reconstruction to occur (at least one MB must 
cross the micro vessel). Thus, the article discussed scarcity-based SR ultrasound 
hemodynamic imaging (SUSHI), which is being used in fluorescence-activated photo 
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localization microscopy (fPALM) in combination with contrast-enhanced ultrasound 
(CEUS) to achieve high-resolution (vascular) images. This method was combined with 
algorithms (Gauss, depth-dependent point scattering functions (PSFs)) to verify the 
accuracy. In conclusion, techniques that use high levels of MB and simulated PSFs 
that depend on depth should be preferred to the ideal Gauss kernel because it is more 
appropriate to use such techniques to achieve greater efficiency in computational 
capacity when using algorithms that take advantage of deep learning. The article 
discussed the algorithm and the method used in detail. However, the technique is 
applied to ultrasound images, not blood cell microscopy.

Yousefi et al. [28] used the technique known as optical microangiography (OMAG), 
based on optical coherence tomography (OCT), to generate an SR spectral estimate 
to enable the observation of microvascular hemodynamics. The article used OMAG 
and OCT techniques to accelerate and enhance the observation of micro vessels 
and their hemodynamics. Equations and images (both black/white and color) that 
demonstrate the results are presented in the article, showing the blood dynamics in 
mouse ears and indicating the temperature and how it affects the velocity of micro 
vessels. Although the article includes all these details, the technique used in the 
article is used in CT scans and hemodynamics, not in blood cell microscopy.

Ackermann et al. [23] explained a method that uses the positions of individual 
MBs on ultrasound in micro vessels to achieve SR, estimates the blood flow velocity, 
and reconstructs the vessels (from the images). The article demonstrates how equa-
tions and functions identify MBs. The algorithm estimates simple MBs velocities 
and, afterward, the reconstruction of the vessel tree, giving the flow velocity in SR. 
However, the technique is used for micro vessels and hemodynamics, not blood cells.

Dencks et al. [24] described the ULM SR method, which uses MBs to estimate 
the relative blood volume and reconstruct the micro vessels more accurately and 
quickly than other methods. The technique also allows for acquiring information 
about blood speed and flow direction. However, ULM focuses on ultrasound images, 
which is inappropriate for blood cell microscopy.

Kim et al. [29] presented the localization photoacoustic microscopy (L-PAM) 
method based on “ultrasonic waves that are generated by the transient thermal 
expansion of molecules absorbing optical light.” Therefore, waves are used to 
recreate images of blood (from animals and humans) in vivo, making it possible 
to analyze the microvasculature and hemodynamics and discover the positions of 
endogenous contrasts to reconstruct the localized images. However, this technique 
aims to recreate blood (microvasculature) images and not detect blood cells.

Opacic et al. [14] exhibited the ultrasound localization microscopy model (mULM), 
an advanced screening method suitable for clinical settings, as an alternative SR 
technique distinct from CEUS. The mULM method can achieve SR images and obtain 
new parameters quickly and efficiently, making it easy to differentiate tumors with 
different vascular phenotypes precisely. In addition to informing the varied vascular  
textures of various tumors, this technique can determine the blood flow velocity 
through the vessels corresponding to arteries or veins. The technique discussed in 
the article uses MB for ULM, a method used for the ultrasound area, so it needed to 
be highlighted for microscopy, focusing on blood vessels and not on blood cells.

Kohler et al. [27] described the SR multi-frame technique that reconstructs a 
high-resolution image with enhanced SNR from low-resolution multi-frame videos to 
observe the retinal fundus. The technique’s main contributions are (i) the insertion of 
lighting correction for the photometric record to compensate for heterogeneous spa-
tial and temporal lighting, (ii) the evaluation of unreferenced quality to provide image 
quality scores, and (iii) the selection of parameters that perform the reconstruction 
automatically. Experimental verification occurs with the last contribution, revealing 
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the importance of diagnostic assistance using fundus video cameras. The article details 
equations, flowcharts, and tables that display performance percentage values along 
with images that confirm the resolution improvement at the bottom of the retina, 
highlighting the quality of the micro vessels. Once again, there is no focus on blood cells.

In summary, some articles highlighted the image textures, while others 
emphasized the speed and direction of blood flow. All nine articles focused on 
improving the image resolution of the structures of micro blood vessels, with results 
verifying the improvement as an essential area in medicine. However, none focused 
on blood cells.

2.4	 Techniques for cellular imaging

This section presents three articles focusing on SR methods in cell imaging, not 
necessarily blood cells. Westmoreland et al. [15] observed platelets, looking for any 
abnormal form. Pennanen et al. [30] described osteoclast structures (what they 
look like and how to recognize them), and Jiang et al. [31] clarified how to use high 
frequency to improve blood sample images.

Westmoreland et al. [15] demonstrated SR microscopy (SRM), aiming to reliably 
and practically diagnose the structural shape of platelets. The article uses the SIM 
technique to identify platelets from healthy individuals and abnormal platelets. 
Images and graphs verify the improved resolution, highlighting the results. However, 
it is preferable to use an algorithm that can identify all types of blood cells (RBCs, 
white blood cells, and platelets), not only one.

Pennanen et al. [30] used the STED technique to examine human osteoclasts 
cultured in vitro. The results showed a better image resolution of the curves and 
ramifications of osteoclasts compared to the images obtained by the microscope. 
According to the authors, STED provided new features of the variety of structures and 
dynamics of osteoclasts, and the SR results confirmed the greater precision achieved 
by the STED method for microscopy. In addition, the images show an improvement 
in resolution, although the focus is on osteoclasts, not blood cells.

Jiang et al. [31] discussed the frequency domain diagonal extension (FDDE) 
microscopy technique, which uses a “high-frequency component in the diagonal 
direction” to achieve better resolution. The FDDE microscopy technique records the 
image with a 2D sensor with pixels in a grid format. The article highlights the theory 
involved, the algorithm used, and the results achieved, revealing an improvement in 
the resolution of a blood sample, but once again, not the cells.

In short, all the articles explained the theory in depth, using different methods 
and results to prove the improvement. However, Westmoreland et al. [15] focused 
on only one type of blood cell, indicating a need to add or change the algorithm to 
identify the other blood cell types. Pennanen et al. [30] focused on osteoclasts, which 
are not one of the main blood cells (platelets, red, or white blood cells), requiring 
changes to the algorithm or the addition of a new one. Moreover, in Jiang et al. [31], 
a blood sample was improved but in its macro- and non-microscopic form with the 
primary blood cells highlighted.

2.5	 Techniques for blood cell imaging

This section displays articles that demonstrate SR techniques in blood cell micros-
copy. The articles described by Luo et al. [32], Bhandari et al. [17], and Kim et al. [33] 
show techniques that cannot be used with images obtained from a database, as they 
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are acquired differently or not by looking at the microscope slide to analyze the 
blood cells. In addition to developing new software and hardware, others [16], [18], 
[34], [35] showed that using complementary metal oxide semiconductor (CMOS) or 
on-chip imaging, moving shadows of the cells were observed, generating different 
images from those made by the microscopes that analyze the blood slide. Maiseli 
et al. [36], Huang et al. [37], and Ayas and Ekinci [38] focused on software, emphasiz-
ing the possibility of implementing CMOS or other components in hardware devices. 
Ma et al. [39] and Tom et al. [40] compared different CNNs, presenting SR algorithms 
that recognize and classify blood cells. They provided demonstrations to verify the 
algorithms’ accuracy.

Kim et al. [33] demonstrated a method known as photoacoustic imaging (PAI), 
which uses the ultrasonic waves generated by the transient thermal expansion 
of molecules that absorb optical light. The localization technique does not show  
limitations when using hardware components. However, it is necessary to use 
exogenous contrast agents (microspheres or MB) that are undesirable in clinical set-
tings. The article is focused on a new localization photoacoustic microscopy (PAM) 
free of contrast agents and equipped with a galvanometer scanner (L-PAM-GS), 
which improves temporal and spatial resolution through the localization process. 
Images and results demonstrate the analyses performed on the microvessels of 
small animals and humans in vivo as well as the hemodynamics of the mouse ear.

Luo et al. [32] detailed the super-pixel resolution technique, which is based on 
sweeping technical wavelength and uses low raw measurements captured at dif-
ferent wavelengths (in a narrow spectral range). Hence it is possible to reconstruct 
high-resolution images. The method is grounded (in the physical part) because of the 
“intense wavelength dependence of subsampled interference patterns in coherent 
or partially coherent diffraction imaging systems such as lensless or blurred holo-
graphic microscopy of lens-based imaging systems.” This technique makes image 
acquisition quicker and requires fewer measurements to achieve high resolution. 
Moreover, one can recreate color images without code changes. With such benefits, 
minimizing data storage and transmission costs is feasible, aiding telemedicine and 
remote reconstructions using the server. The article highlights images exhibiting the 
functions and results achieved in the on-chip hardware (and the built-in software).

Bhandari et al. [17] described the SR technique that uses photoacoustic waves to 
recognize and classify blood cells. The method uses the spectral characteristic in the 
Fourier domain (which uses frequencies for differentiation), as the photoacoustic 
waves effect converts electromagnetic energy to acoustic energy with information 
about dimensions and densities (depending on how it propagates), highlighting a 
differentiated acquisition mode that does not use the microscope.

Huang et al. [34] used single-frame SR CNN to generate high-resolution images 
from low-resolution cell shadow images, thus identifying, classifying, and perform-
ing blood cell counts. According to the authors, CNNs are used in deep learning to 
serve large image bases, and the CNN-based SR method (CNNSR) is fast and (compu-
tationally) efficient using minimal pre-processing or post-processing optimization 
(achieving improved usage). The device and process are explained through images, 
showing the functioning of a CMOS that does not need lenses to observe the cells. 
The device requires light and efficient software because it is developed in hardware 
with limited memory. The algorithm is the focus, presenting figures that verify the 
improvement in blood cell resolution.

Liu et al. [18] demonstrated the single-frame (SF) method with CNNSR, which 
processes cell shadows to identify, classify, and count. In addition to this method, 
a source-follower CNN (SF-CNN) algorithm was used to enhance images from low 
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to high resolution, mainly focusing on nuclei and edges of membranes performed 
in real-time, requiring less processing and done in a fast and practical way. Finally, 
schematics and figures with the acquired results are presented, highlighting the 
development of CMOS with the help of the CNN algorithm to classify and count 
different blood cells.

Li et al. [35] explained the development of an SR-based algorithm to recognize the 
oval shape of blood cells. The device is made with a CMOS image sensor (CIS) that 
does not contain lenses. It works by comparing diffraction and elliptocyte patterns 
automatically, without professionals needing to recognize the cells. The algorithm 
is divided and clarified into four parts: image segmentation, image pre-processing, 
SR, and judgment base for elliptocytes. This method must overcome specific difficul-
ties, such as the diffraction effect and low resolution. The process is explained with 
functions, images, and flowcharts to demonstrate each solution step.

Zheng et al. [16] developed on-chip hardware without lenses using a subpixel 
resolution optofluidic microscope (SROFM) based on an SR algorithm. Schematics, 
images, and graphics demonstrate the development process of hardware and 
software, highlighting methods to avoid the “aliasing” effect and how to improve 
image resolution quality. The developed equipment was able to identify healthy and 
infected blood cells (with the malaria virus), and the authors say that it is possible 
to mass-produce the portable microscope for commercialization, which focuses on 
recognizing diseases that cover diseases that affect the format of blood cells and 
water-borne parasites.

Ayas and Ekinci [38] detailed the single-image SR (SISR) method, using multi-
scale deep CNNs on low-resolution (microscopic) images to achieve high-resolution 
images. SISR recreates a high-resolution image from a low-resolution image by 
adding all the missing high frequencies. Soon after, the three-layer CNN processes 
the data and trains to achieve greater accuracy in recognizing the correct images 
and connecting to achieve a higher resolution. The results prove the improvement in 
the resolution of the blood samples, but they did not go further with the classification 
and identification of the cells.

Huang et al. [37] explained the development of a low-cost and practical CMOS 
device, which uses SR algorithms known as extreme learning machine-based 
SR (ELMSR) and CNNSR, which are machine learning algorithms based on SR 
single-frame. The algorithms are trained with an extensive database. Both are not 
computationally heavy and can be implemented on a chip. “Feed-forward” neural 
networks were used as this mode is more efficient and has little pre-processing 
or post-processing optimization, using low-resolution images to reconstruct a 
high-resolution image. With the device, it is possible to recognize and classify, from 
the shadow (without lenses), whether the cell is blood or a tumor cell. The article 
details both algorithms used and their advantages (e.g., extracting and aggregating 
patches of CNNSR are done as convolutional layers). Therefore, non-linear map-
ping and averaging, among others, are involved in filter optimization to obtain a 
higher quality of restoration and also to streamline the training process; ELMSR is 
more suitable) and disadvantages (ELMSR has more noise and blur compared with 
CNNSR). The process verifies that CNNSR obtained less noise than ELMSR, and the 
edges were not blurred, with a 9.5% improvement in quality over the other method.

Maiseli et al. [36] developed an algorithm that uses SR (though with an unre-
vealed method) to improve resolution, aiming to recognize normal and abnormal 
cells affected by malaria, enabling automated diagnosis. Flowcharts and procedures 
are explained to understand each step of resolution improvement and to compare 
low- and high-resolution images to detect malaria disease, verifying (with images) 
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that the algorithm managed to capture the infected cells better with the resolution 
improvement. Additionally, graphs and correlations demonstrate the algorithm’s 
accuracy level. In short, the article focuses on developing the SR algorithm and 
recognizing healthy and unhealthy RBCs.

Ma et al. [39] compared different algorithms for single-frame SR reconstruction 
based on CNNs. The article shows the equations, flowcharts with the steps, tables 
and images with the results, and how the CMOS was built (not highlighted). The cell 
SR network (CSRNet) method can transform low-resolution images (collected by a 
lensless detection device) into detailed, high-resolution images compared to other 
techniques. The article highlights techniques to compare the results of different 
algorithms to analyze which one achieves the best resolution in RBCs, verifying the 
results with the final images.

Tom et al. [40] allied SISR with CNN to obtain a SR network (SRNet) trained to 
reduce the loss of detail in the recreation between the actual images and the SR 
images. They also used relativistic visual Turing test (rVTT) networks to distinguish 
between real and SR images with a pair of real and SR spots selected from the 
region of interest to increase the accuracy of the nuclei and cytoplasm recognition 
algorithm, as well as to recover the texture of the cell parts. Images, equations, and 
tables detail the steps implemented in this algorithm for blood cell microscopy.

In summary, the 12 articles in this section used methods that addressed SR 
algorithms for blood cells. Some articles focused on hardware, others on software, 
but all detailed the ongoing processes. Emphasis was given to articles that com-
pared the performance of algorithms and devices with the results of other authors 
to verify the differences and improvements made. All articles aimed to improve the 
resolution of blood cell images, and some stand out for recognizing and classifying 
cells accurately.

3	 DISCUSSION

The search performed in this review discussed SR techniques in the blood area. It 
is assumed that the aforementioned search terms and the inclusive criteria did not 
introduce bias into the results. A broad range of works was considered, including 
those that only mentioned SR and blood. Thus, after reading the titles and abstracts, 
only articles that clearly stated to cover SR in the blood area were included in the 
review. Articles that did not emphasize or include these terms were discarded. 
Despite our efforts, we were unable to find a review of SR techniques in the litera-
ture. Therefore, this study makes a significant contribution to the knowledge base 
of a developer starting out in the application of SR techniques to blood cell images.

The results section highlighted aspects of particular interest, and discussion was 
held regarding the results available in the literature. However, this review has limita-
tions. The search was conducted only on the Web of Science, one of the largest article 
databases [41]. Additionally, the study focused on papers discussing SR algorithms 
only in the blood area. Therefore, SR techniques that might perform better but were 
not applied to blood or mentioned were excluded from the review.

However, in order to avoid biasing and help identify areas of application for 
the technique under review, considerations regarding SR in areas other than 
blood cells can be discussed, highlighting some aspects of studies that can benefit  
from incorporating SR in their solutions. Gharaibeh et al. [2023], Al-hazaimeh 
et al. [2023], and Al-Nawashi et al. [2024] demonstrate solutions that use images to 
classify different types of diseases, such as magnetic resonance images for detecting 
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Alzheimer’s disease, fundus images to identify the causes of diabetic retinopathy, 
and digital mammography images to confirm breast cancer, respectively [42–44]. 
These studies can jointly use SR techniques to obtain even better results, improve 
metric values, and further help healthcare professionals in making more accurate 
and correct diagnoses.

Gharaibeh et al. (2023) implemented a deep learning algorithm to identify and 
classify Alzheimer’s disease in MRI images [42]. The solution proposed by these 
authors consists of three parts. The first one is pre-processing, which has three 
levels inside: removing noise, removing uninteresting parts (non-brain tissues), 
and improving image quality to detect the disease. The second part, which imple-
mented the technique of Swin transformer-based segmentation using Modified 
U-Net and Generative Adversarial Network (ST-MUNet) to extract the main features, 
aims to improve classification accuracy and reduce complexity. The last part, which 
does the disease detection based on a multiscale feature pyramid fusion module 
(MSFP-VGG16) with the aim of increasing classification accuracy, can be classified 
into three stages: normal, Alzheimer’s disease, and mild cognitive impairment. For 
evaluation, the authors selected the metrics of accuracy, specificity, sensitivity, con-
fusion matrix, and positive predictive value, as well as presented pseudocodes for 
parts of the algorithm for greater understanding. Finally, the authors demonstrated 
that the proposed solution achieved better performance metrics than the previously 
mentioned approaches. The article uses deep learning algorithms; however, it does 
not focus on blood cell microscopy but on MRI.

Al-hazaimeh et al. (2023) applied image processing and artificial intelligence to 
detect diabetic retinopathy in fundus images [43]. The authors explain that diabetic 
retinopathy diseases such as exudates, retinal hemorrhage, and microaneurysms 
need to be identified and studied to detect the initial stage in order to have treatment 
as soon as possible, as diabetic retinopathy has 4 levels of severity. To identify these 
diseases, the authors created an architecture that ranged from pre-processing to 
extraction of disease characteristics and classification, using (in the last part) deep 
CNNs. To evaluate the performance of the solution, performance measures such as 
accuracy, specificity, and sensitivity were used. The authors also highlighted that the 
dataset size is a crucial factor in determining model performance, as larger data-
sets typically improve classification performance, whereas smaller datasets can 
result in overfitting. Finally, to ensure the accuracy of the results, the authors stated 
that ophthalmologists compared the results of the MATLAB simulation with those 
of experts. Thus, the test results demonstrate that the sensitivity, specificity, and 
precision are greater than 99.20%, 96.40%, and 98.80, respectively, demonstrating 
excellent results compared to other approaches. The article uses deep learning algo-
rithms; however, it focuses on fundus imaging rather than blood cell microscopy.

Al-Nawashi et al. (2024) employed CNNs to automatically classify digital mam-
mography images to detect breast cancer, as well as using preprocessing techniques 
on the images and choosing accuracy and precision metrics to evaluate model per-
formance [44]. Furthermore, the authors compared five algorithms (Random Forest, 
SVM, KNN, Naïve Bayes classifier, and logistic regression) to observe and analyze 
the results compared to the proposed solution. In the theoretical part, the authors 
state that detecting breast cancer at an early stage is crucial to receiving treatment 
as soon as possible, with different techniques, equipment, and algorithms available 
to identify it, each with its advantages and disadvantages. Finally, the authors 
compared the results of the proposed solution to those of different authors, obtain-
ing greater accuracy than those of the existing methods. The article uses machine 
and deep learning algorithms, not focusing on blood cell microscopy but on digital 
mammography images.
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These three articles used different methods to make the necessary classification 
of each disease different from each article; however, all of them can benefit from the 
application of SR, as they further increase the possibilities of detecting and identify-
ing each specific characteristic, improving analysis values, and facilitating the work 
of health professionals.

This review has the potential to help other researchers select the technique they 
would like to use. It was conducted as a feature of descriptive analysis, taking a closer 
look at the explanation and techniques without intending to influence the reader 
but helping them choose the best method depending on the application area. Even 
the features of techniques not discussed with blood cells were explained, detailing 
their pros and cons.

4	 CONCLUSION

The review discussed different techniques to improve image resolution, with 
32 articles reviewed using the PRISMA methodology. The articles were grouped 
into four main subtopics: generic techniques, with 25% of the total, with Fourier 
and holographic techniques, among others; vascular imaging techniques, with 
28.1% of the set, with most methods used for ultrasound; cell imaging techniques, 
with 9.4% of the group, with the majority using the SIM technique; and blood cell 
imaging techniques, with 37.5% of the whole, using mainly CNNs to achieve the 
best results. The division between categories was uneven, as few results were 
found on cell imaging techniques that do not focus on blood cells. This indicates 
that more research investigations on cell imaging techniques focusing on blood cells 
can help balance the distribution and provide more information on SR applications. 
The differential aspect of this study was to identify the most used techniques, their 
purposes, and applications aiding researchers find the best technique for their work, 
particularly benefiting pathological researchers and professionals involved in image 
enhancement.
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