
PAPER
COMPUTER NETWORK SIMULATION MODELING BASED ON AN OBJECT ORIENTED PETRI NET

Computer Network Simulation Modeling Based
on an Object Oriented Petri Net

http://dx.doi.org/10.3991/ijoe.v12i02.5039

CHEN Xinhua, SUN Ya-ni
Sichuan Information Technology College, China

Abstract—This paper first briefly introduces a Petri net, and
then studies it in detail according to the selected object-
oriented Petri net modeling method. This paper improves
the object-oriented Petri net modeling method and studies
the modeling and operation steps in detail. Finally, this
paper builds a computer network TCP/IP protocol model
based on an object-oriented Petri net. The model proves to
be a good simulation of the computer network and the im-
proved modeling method is also a valid method for further
object-oriented Petri net modeling.

Index Terms—Computer Network, Simulation Modeling,
Petri net.

I. INTRODUCTION
Petri net is a graphical representation of a combination

model. It has advantages such as being available and easy
to understand and has easy usability. Compared to other
networks, Petri net has a unique advantage in the field of
description and analysis. At the same time, Petri net is a
strictly defined mathematics object [1-3]. With the aid of
the mathematical development of Petri nets analysis
methods and techniques, it can be used for static structural
analysis as well as for dynamic analysis of the behavior.
Petri net modeling technology can be used to simulate
systems with concurrency, asynchrony, distributed, and
uncertain parallelism features. Petri net has become the
most promising modeling tool [4].

II. THE CATAGORY OF OBJECT-ORIENTED PETRI NET
Object-oriented Petri nets can be roughly divided into

three categories.
Treat token as an object, which has identification, prop-

erties and methods. When the change is ignited, the corre-
sponding method on the token will be called [5].

The internal behavior of the object can be represented
by Petri net, such as G-CPN (G-colored Petri net). In this
method, the Petri net identifies the current state of the
object. Methods can connect to changes or libraries that
make up the system communication. When the relation-
ship between objects is defined statically, the global mod-
el of the system can be defined.

The third method combines with the characteristics of
the first two methods. In this case, the token of the system
net was treated as an object. The object can be a Petri net
that is used to describe the behavior of the token. Addi-
tionally, the token in the subnet can also be a Petri net and
recursive, such as OPN (Object Petri Nets).

According to the different needs, the object-oriented
method combined with Petri nets vary in forms, such as
OPNets, COOPN / 2, G - Net.

III. OOPN MODEL
The OOPN model belongs to the whole system. In ob-

ject-oriented Petri nets, the relationship between objects is
very vivid. The whole system is composed of multiple
layers and the message translates between different lay-
ered controller objects.

A. The external structure of the object in the system
An objects’ external structure is mainly used to receive

messages from the controller or be sent to the controller
interface. In the interface of In and Out, if different objects
are sending the same message to an object at the same
time, the object of the message is received in the interface
automatically from an a priority message queue; the object
accordingly reaches a priority order of execution. Similar-
ly, a message being sent in the interface is likely to pro-
duce a message queue (this is not a priority message
queue, priority of the message object or other additional
information is described by the following) given by the
control structure.

B. The Internal Structure of the Object in the System
The internal structure of the object is its own attributes

and its method of processing the data, shown in Figure 1.
An object's properties are determined by the place. The
properties can be a specific data type (such as integer,
character, etc.) or an abstract data type (such as a data
structure, etc.). Methods are represented by the transition.
When represented in a computer, only get and sent in an
object-oriented Petri net system are the parent class of all
the objects. In this class, the properties of tokens and tran-
sitions get through the sent and get methods. Other objects
inherit this class to implement their own function. For
example, message objects inherit class, and receive mes-
sage objects instantiate the message class after reconstruc-
tion to get the message in the message receiving object
implemented in time.

Figure 1. The Structure of the Object

iJOE ‒ Volume 12, Issue 2, 2016 25

PAPER
COMPUTER NETWORK SIMULATION MODELING BASED ON AN OBJECT ORIENTED PETRI NET

C. Control Structure of Objects
By adding a control structure in each level of the sys-

tem, the control structure is responsible for all objects or
the lower layer control structure of forwarding messages.
If the received message belongs to this layer, then this
layer’s control structure is responsible for the processing
of the message (similar to the message processing in
TCP/IP protocol). Furthermore, the control structure will
add some additional information to the message, such as
forwarding destination (i.e., to make a request to which
object), priority coefficient and message sender (in this
model, message transmission between objects is also a
kind of object), or else the message will automatically
forward to the next layer. All additional information about
all operations is done by the controller structure of the
message sender layer. Each other control structure in the
process of message transfer only verifies or forwards the
message, shown in Figure 2.

With such processing, it reflects object-oriented low
coupling between modules to make each object’s respon-
sibilities clearer. The modify business process does not
need to modify the program source code. For example, if
you need to add a business process, you only need to add a
class for class place, unless each object method of pro-
cessing the data needs to be changed when the class place
must be modified. But then you only need to modify the
class without making changes to the business logic code.
An object-oriented Petri net model, therefore, to a great
extent will improve the scalability of the system. This is a
general description of the system through a hierarchical
description method, narrowing the scale of the system
modeling and decomposing the complexity of the model,
as shown in Figure 3. In this kind of practice with some
object-oriented language such as a C++ programming
process, the designers first focus on the structure of the
local individual classes and objects and then look at the
whole design of the application process.

IV. OBJECT-ORIENTED PETRI NET MODELING PROCEDURES
AND STEPS

A. Object-Oriented Petri Net modeling procedure
The overall modeling procedure is shown in Figure 4.
First of all, we must make clear the user requirements

and the main function of the system.
Because we want to use object-oriented Petri net, which

is a modular layered approach to system modeling, it is
necessary to decompose the requirements of the users and
divide the system in logic.

In order to use the grammar of the object-oriented Petri
net for modeling, we must break down the object-oriented
Petri net for its syntax, presentation and build.

A Petri net method has the most prominent advantages
for establishing the model for syntax analysis, and it is
helpful for minimizing the loss caused by errors. So the
next step is model analysis by analyzing the validity of the
model outputs and integrity and other features.

Design system in detail or turn to (3) to further optimize
the model.

B. Object-Oriented Petri Net Modeling Steps
The process is roughly divided into the following six

steps:

Figure 2. The relationship between Objects and Controller

Figure 3. The Structure of the Controller

Figure 4. System Modeling Process

(1) Build the hierarchical model. Divide the research
system into several subsystems and determine the rela-
tionship of each subsystem. Then describe the relationship
with the roots, trunk, and base class as a tree structure
hierarchical model.

(2) Establish the object model. According to all levels,
list the names of the objects, characteristics, methods, and
messages (the operation). In the discussion level, each
subsystem is an object.

(3) Establish object relationship tables. According to
the specific details of each subsystem, establish the event
list within the system and through analysis of the event,
establish the object relationship tables.

26 http://www.i-joe.org

PAPER
COMPUTER NETWORK SIMULATION MODELING BASED ON AN OBJECT ORIENTED PETRI NET

(4) Establish event tables. Through the object model
analysis of the conditions and consequences of each event,
create the event tables

(5) Determine the initial identification of the system.
Determine the instance of each object. To determine the
initial state of the instance, put each token into a place
corresponding with its initial state.

C. OOPN System Operational Steps
When the system is running, first by an external issue

order send a message to the controller with the initial
identification; as this step is completed, the rest of the
operations are automatically completed by each object.
Generally go through the following steps:

(1) With the initial identification of the controller, ana-
lyze the received message is sent to the corresponding
object and then transfers control to the current object.

(2) As each object receives the message, put the mes-
sage in the corresponding input message queue interface
and form an input message queue.

(3) The objects get messages from the message queue,
according to the priority order, and change the state of the
object.

(4) When step (3) is completed, put the corresponding
message in the message output interface, form an output
message queue list, and send it to the controller of the
current level.

(5) The controller first adds additional information
(such as priority, level, time property, etc.) to the received
message, and at the same time decides whether the desti-
nation of the sending is the current level. If it is, the con-
troller will send it to the corresponding object or forward
it to the next level controller. It needs to be emphasized
that the additional information the controller adds to the
message is restricted to the controller of the object’s level.
The inter-median controller only forwards the message,
and the receiving controller analyzes the additional mes-
sage (such as time, priority of the message object, mes-
sage sending objects, etc.). Eventually the message will be
sent to the destination (message receiving object). When
implemented with a computer, useful information can be
put into the object table in the database, and the system
can analyze the long term data in the database on a system
optimization basis.

(6) The system will repeat the steps described above,
until the task is complete.

V. THE TCP/IP PROTOCOL OBJECT PETRI NET MODEL
TCP/IP protocol provides the network with a reliable,

end-to-end byte stream communication transport layer
protocol, which has become a universal standard for net-
work communication. TCP/IP protocol relies on a mes-
sage confirmation response mechanism and timeout re-
transmission mechanism to guarantee packet delivery to
an application layer in order by a sliding window to con-
trol a message’s sending and receiving traffic. Thus, the
TCP/IP protocol has four sub models: receiving model,
sending model, sliding window control module, and
timeout resending model. Only the "APP layer entry",
"APP layer export", "IP layer entry", and "IP layer export"
are externally visible. Other ports are only used for inter-
nal sub models to communicate information and interact.
The receiving and sending models work together to com-

plete the message confirmation and response mechanism.
The whole process, including connection request, answer,
set up, and transmission, of the TCP/IP protocol can be
seen in Figure 5 and Figure 6.

Base on the TCP/IP protocol OOPN receiving and
sending model, the TCP/IP protocol OOPN model is
shown in Figure 7 and Tables I and VI.

Figure 5. TCP/IP Protocol Receiving OOPN model

Figure 6. TCP/IP Protocol Sending OOPN Model

TABLE I.
DEFINITION OF PLACES IN TCP/IP PROTOCOL RECEIVING OOPN MOD-

ULE

Place Definition Place Definition

1p
Receiving port 7p

Connection
Nonexist Message

2p
Message 8p

Receiving Cache

3p
Connection Request Message 9p

APP Layer

4p
Connection Response Message 10p

Timer

5p
Connection Release Message 11p

Sending Cache

6p
Connection Exist Message

TABLE II.
DEFINITION OF TRANSITIONS IN TCP/IP PROTOCOL RECEIVING OOPN

MODULE

Transition Definition Transition Definition

1t
Message identification 5t

Release Connection

2t
Distinguish Connection
Message 6t

Increase Cache

3t
Upload to APP Layer 7t

Decrease Cache

4t
Process Connection
Response Message

iJOE ‒ Volume 12, Issue 2, 2016 27

PAPER
COMPUTER NETWORK SIMULATION MODELING BASED ON AN OBJECT ORIENTED PETRI NET

TABLE III.
DEFINITION OF PLACES IN TCP/IP PROTOCOL SENDING OOPN MODULE

Place Definition Place Definition

1p
Sending Message
Port 6p

Sending Ready

2p
Receiving Message
Port 7p

Sent Cache

3p
Cache 8p

Cache Available

4p
Cache Available 9p

Sending Message
Port

5p
Clear Message

TABLE IV.
DEFINITION OF TRANSITIONS IN TCP/IP PROTOCOL SENDING OOPN

MODULE

Transition Definition Transition Definition

1t
Check Sending
Cache 4t

Decrease Sending
Cache

2t
Receiving Message
Classify 5t

Increase Sending
Cache

3t
Cache 6t

Sending Ready

TABLE V.
DEFINITION OF PLACES IN TCP/IP PROTOCOL OOPN MODEL

Place Definition Place Definition

1p
APP Layer Entry 8p

IP3

2p
IP Layer Entry 9p

IP0

3p
Cache 10p

IP Layer Exit

4p
Sending Cache 11p

Timer

5p
OP1 12p

Redeay to resent

6p
IP2 13p

APP Layer Exit

7p
IP

TABLE VI.
DEFINITION OF TRANSITIONS IN TCP/IP PROTOCOL OOPN MODEL

Transition Definition Transition Definition

1t
Process APP
server 6t

Define TCP
Package

2t
Process IP
message 7t

Resent

3t
Send Connection 8t

Processing
Module

4t
Increase Sending
Cache 9t

Timer

5t
Receive Con-
netion 10t

Sent to APP
Layer

Figure 7. TCP/IP protocol OOPN model

VI. THE CONCLUSION
For a large, advanced and complex network control sys-

tem, modeling and performance analysis is very difficult.
Given that Petri net is a systematical graphical language
with powerful function to describe and analyze complex
systems, this paper used an object-oriented Petri net to
model and analyze a computer network. With the im-
proved modeling method proposed in this paper, a TCP/IP
protocol OOPN model was built. It proved the validity of
the modeling method and the effectiveness of the TCP/IP
protocol OOPN model.

REFERENCES
[1] Bukowiec, A., & Doligalski, M. (2013). Petri net dynamic partial

reconfiguration in fpga. Lecture Notes in Computer Science, 436-
443. http://dx.doi.org/10.1007/978-3-642-53856-8_55

[2] Cheng Li, Zhang Jianxin, & Zhao Hailong (2013). The
method of simulation based on stateflow. Computer simulation, 30
(2), DOI:10.3969/j.issn.1006-9348.2013.02.087. 378-382.

[3] Dmitry A. Zaitsev. (2013). A small universal petri net. Eprint
Arxiv, 128, 190-202. http://dx.doi.org/10.4204/eptcs.128.22

[4] Fang Huan, Fang Xianwen, & Wang Lili (2014). Review of
the research on the reliability analysis of Petri net. Computer sci-
ence, 41 (7), 40-44.DOI:10.11896/j.issn.1002-137X.2014.07.007.

[5] Li Xiaozhong, & Zhang Delong (2013). The Petri system
based on object oriented BPM net. Journal of Jiangsu University:
Natural Science Edition, 34 (3), DOI:10.3969/j.issn.1671-
7775.2013.03.010. 298-303.

AUTHORS
CHEN Xinhua is with the Sichuan Information Tech-

nology College, CO 628040, China.
SUN Ya-ni is with the Sichuan Information Technolo-

gy College, CO 628040, China.
Submitted 17 September 2015. Published as resubmitted by the au-

thors 23 January 2016.

28 http://www.i-joe.org

