
NEOS: NEUCHÂTEL ONLINE SYSTEM

NeOS: Neuchâtel Online System
H. Sturzrehm, F. Aubert, P. Kropf and R. Corfu

University of Neuchâtel, Switzerland

Abstract—Most online courses include training assignments
and offer various forms of tests to evaluate the students’
performance. Some courses, in particular computer sciences
courses, require elaborate hands-on training experiences.
The NeOS Framework presented in this paper proposes an
e-learning tool developed supporting in particular hands-on
training through programming exercises. The user locally
develops his code in an editor-like user interface and then
tests his program code on a well secured remote machine. In
the case of programming exercises, the NeOS Framework
supports computer aided evaluation as well as the cross
check of solutions submitted. Furthermore, it offers several
security measures at the system level by securing in
particular the lab machines from being affected by attacks
from the outside, and at the usage level by reducing the
cheating opportunities.

Index Terms—Virtual Lab, Computer Aided Evaluation,
Cross Check.

I. INTRODUCTION
Due to the sustained advances in computer and

networking technologies, Internet services and networked
applications have become widely available and largely
deployed. Leveraging from these developments, e-
learning has become more and more important in modern
education. With the use of e-learning systems, it is no
more necessary for students and teachers to stay at the
same place at the same time, and the course contents and
objectives may be easily customized and adapted to
individual needs and goals. Furthermore, the world wide
knowledge is growing everyday, and is, most importantly,
widely and rapidly available. Virtual classrooms and e-
learning in general heavily support the lifelong learning

process necessary to participate in the steep and
continuous increase of knowledge.

Since the year 2000, the Swiss Virtual Campus [1]
initiative promotes learning over the Internet at the Swiss
institutions of higher education. Currently, there are 82
courses online, covering a wide range of domains. Among
these courses is the Operating System Laboratory OSLab
[2] shortly presented in this paper.

Several companies are offering a large variety of online
e-learning platforms. The WebCT platform (Web Course
Tools) [3] from Blackboard has been chosen for the Swiss
Virtual Campus (SVC) online courses. In order to simplify
the access to the SVC courses, a unique nation-wide user
management has been deployed. All Swiss universities
and other institution of higher education are members of
SWITCHaai [4], the Swiss wide Authentication and
Authorization Infrastructure. This federated identity
management enables course providers to use identity
information across security domains including multiple
universities (Fig. 1). Furthermore, it deals with issues such
as interoperability, liability, security, privacy and trust.
This large scale identity management allows students to
attend SVC courses at any university in Switzerland.

A. OSLab
The Operating System Laboratory, OSLab, is an online

course to teach students the principles of computer
operating systems. OSLab is using a constructionist and
problem-oriented learning approach. We thus focus on
hands-on training experience of the students. The course is
designed for university undergraduate students and can be
used as an integral coursework or as a complement to
traditional lectures.

Authorization Resource Credentials

University A

University B

Stud. Admin

Web Mail

E-Learning

Research DB

E-Learning

without SWITCHaai
University A

University B

SWITCHaai
Stud. Admin

Web Mail

E-Learning

Research DB

E-Learning

with SWITCHaai

User Administration / Authentication

Figure 1. Features of SWITCHaai

iJOE – Volume 4, Issue 2, May 2008 17

NEOS: NEUCHÂTEL ONLINE SYSTEM

The course shows a modular structure where each
module covers one particular topic in a self-contained
manner. The tutor responsible for the course can select
modules according to particular learning objectives and
needs. Furthermore, the flexible structure easily allows
adding new modules to the course. Prior to the OSLab we
have developed a similar e-learning course called VITELS
(Virtual Internet and Telecommunications Laboratory of
Switzerland) [5]. Experience with the use of VITELS
revealed the need for a unified architecture for the hands-
on assignments. As it is proper to courses in computer
science, assignments typically include programming tasks
or results obtained from executing programs. Solutions to
assignments can thus be well-defined. In contrast to the
evaluation of free-text solutions requiring interpretation
for assessing them, automatic computer aided evaluation
may be introduced. Taking into account these
particularities, the following requirements have been
identified within the OSLab project for the development
of the NEOS (Neuchâtel Online System) Framework:

• Compatibility with the WebCT based
VITELS course. Integration into the deployed
course work architecture and existing course.

• Authenticity. Decrease of the possibilities to
cheat.

• Computer aided evaluation. Automated
evaluation of hands-on tasks in a way the tutor
only needs to verify the (automated)
evaluation results.

• Flexibility. Platform independence of the
evaluation tool and generic customizable
deployment.

• Ease of evaluation. Support for a quick cross
check of the solutions.

II. DESIGN AND IMPLEMENTATION
The presentation of the NeOS Framework design and

implementation follows the order of the above
requirements list. First, we describe the architecture which
is compatible with the VITELS course and WebCT. Then,
our authenticity solution and the computer aided
evaluation are discussed. At the end of this section, we
finally present the implementation of the NeOS tools.

The framework consists of three principal components:
(1) the NeOS Frontend applet, (2) the NeOS Backend
server, and (3) the NeOS Tutor Tool that provides the
interface for evaluating the assignments.

Shibboleth Web Server with
NeOS Frontend applet

Lab machine
with NeOS Backend server

SWITCHaaiUser PC

Figure 2. Architecture for NeOS

A. Architecture
The VITELS course as well as the OSLab course

development is a collaborative effort including several
partners. The hands-on assignment environment had been
individually developed by the partners in the case of
VITELS. As a consequence, a great variety of methods and
technologies had been used for the hands-on tasks. Some
modules of the course used Java applets, others had the
need of a direct connection to the lab computers only
accessible with a Java implemented SSH console, and still
others used Java applications running with the Java Web
Start utility. However, all have in common the
deployment on an Apache Tomcat Web server [6] which
used a Shibboleth [7] called plug-in to support the
authentication architecture of SWITCHaai.

When planning the new OSLab modules, we realized
that, in this course, most of the hands-on assignments
would include programming tasks, which could not be
supported by the existing implementations from the
former course. On one hand, there are simulators which
need some program fragment (e.g. a user written Java
method) as input. These simulators are commonly too
large to be efficiently loaded via the Internet for local
execution, which calls for other approaches. On the other
hand, students shall develop Java programs to be tested on
the distant lab machines. As these machines are firewall
protected, the students needed to upload them through a
secure SSH connection. While this is certainly a viable
solution, it does not prevent students from uploading and
executing malicious codes.

Taking into account these constraints, two new
components have been added to the existing system
architecture as shown in Fig. 2: the NeOS Frontend applet
and the NeOS Backend server. Both components are
implemented in Java [8]. The NeOS Frontend applet
serves as user interface for the students and is deployed on
the Web server already used in VITELS. Within this
applet, the students may program and then submit their
implementation to the NeOS Backend server, which is
located on one of the lab machines. On this computer the
(Java) program code of the student is executed in a
sandbox or a simulator is launched together with the
student’s program fragment.

The communication protocol used in this architecture is
depicted in Fig. 3. First, the user has to access the Web
page on the Shibboleth enabled Web server where the
NeOS Frontend applet is stored (Fig. 3, A). If he is not
authenticated, he will be redirected to SWITCHaai to do
so (Fig. 3, B). After successful authentication he may
download the NeOS Frontend applet into his browser and
execute it there (Fig. 3, C). When the applet initializes
itself, it establishes an SSH connection via the Shibboleth
Web server to the NeOS Backend server (Fig. 3, D)
running on the lab machine. This step concludes the set-up
phase and the user can now solve his task within the NeOS
Frontend applet. If the student wants to test his solution,
the NeOS Frontend applet submits the solution directly
via the SSH tunnel to the NeOS Backend server (Fig. 3, E)
where it will be executed. This last phase (E) can be
repeated as often as the user wants to.
1) Frontend View

The previous section described the overall architecture
of the NeOS. This section presents the user’s view when
working with the system. To start, the user must

18 http://www.i-joe.org

NEOS: NEUCHÂTEL ONLINE SYSTEM

authenticate at SWITCHaai to access the WebCT course
portal where the OSLab course is located. From the course
portal the user starts the hands-on session by clicking on a
hyperlink. The NeOS Frontend applet (see Fig. 6 for the
graphical user interface) is then started and the user can
modify the program code template. When his program
code is ready for processing, he submits it to the NeOS
Backend server. The applet then receives and presents the
result obtained for the task submitted. The result may be
either a compilation error, an execution error, or the
program output together with the automatically computed
evaluation grade. In case of negative feedback (errors), the
student must resubmit a modified version. When a task
was completed successfully, the user may still resubmit a
new improved version which might give him a better
grade. Once the task will be successfully solved to the
student’s satisfaction, he has to copy a unique data set (see
Section B. Fingerprint) to the WebCT portal. This
concludes the assignment submission.
2) Backend View

The processing chain at the NeOS Backend server is
illustrated in Fig. 4. Since we aimed at achieving high
flexibility, the method invocations shown in the diagram
have to be implemented by the course developer
according to the requirements of the tasks to be solved. If
there is no need for one of these functionalities the
corresponding method can remain void. After the
reception of a task submission from the NeOS Frontend,
the server invokes the method createEnvironment() which
is necessary, if a setup phase is required for that task, e.g.,
creating folders or copying additional files. In the next
step, the appropriate compile() method for the submitted
task is invoked (e.g. a Java compiler or a method to
process instructions for a simulator). In case the method
returns errors, these are transmitted to the NeOS Frontend.
Otherwise, the execute() method is called. This method
allows executing the user’s executable code (obtained
from the previous step), the reference executable, or a
simulator with the user’s input and the reference input.

A

B

C

D

E

User PC SWITCHaai
Shibboleth Web Server

with
NeOS Frontend applet

Lab machine
with

NeOS Backend server

Figure 3. Communication Protocol

A more detailed description of this process including
reference executables and inputs is given in II.C. When
the execution returns without any error, the results are
evaluated in the method evaluate(). This method
implements the evaluation based on the principles
described in II.C. If the evaluation grade reaches a certain
threshold defined by the course creator, the server invokes
the encrypt() method. The goal of this method is to create
an encrypted unique data set as described in the next
section.

B. Fingerprint
There are always students who cannot resist passing

easily by just copying from their mates or cheating in
some other way. These problems are even accentuated in
an e-learning system, because of the lack of face-to-face
interaction between students and tutors, the relative
anonymity and the locality independence.

In the VITELS course, the plain text output of a
program or the program code itself had to be copied into
the course portal. This made it very easy to manipulate the
result. In order to satisfy the requirement of authenticity,
while still preserving compatibility, we devised an
authenticity test in a way the user still may copy his
solution into the course portal.

For this purpose, we included an RSA/DES encryption
of the user data (see Fig. 5). This ensures that the students
cannot change their results before copying them to the
portal.

receiveData()

createEnvironment()

compile()

hasCompileError()

execute()

evaluate()

encrypt()

hasExecuteError()

hasPassTest()

false

true

false

return result

false

true

true

Figure 4. Process Chain of a Submission

iJOE – Volume 4, Issue 2, May 2008 19

NEOS: NEUCHÂTEL ONLINE SYSTEM

RSA encrypted
(public key)

NeOS Fingerprint

DES encrypted

ZIP compressed

User dataDES key

Figure 5. NeOS Fingerprint

The encrypted user data includes the user name as
provided by SWITCHaai in order to create a user specific,
unique fingerprint. In addition, all input data needed to
reproduce the student’s results are included. This enables
the tutor to verify and compare the submitted solution
using the computer aided evaluation described in the
following section.
The user data encrypted in the Fingerprint consists of:

• User name. This makes the fingerprint unique
for each user.

• User modified files (program code or code
fragments) and any other files generated for
this test run. This enables the tutor to
reproduce the results.

• Results of the computations. This enables the
tutor to assess the solution.

• Computer aided evaluation grade. The
automatically generated grade assists the tutor
in evaluating the submitted solution. .

For security reasons the public key has to be stored on
the lab machine and the private key is only distributed to
the tutors of the course. The fingerprints in the course
portal can only be downloaded by the authorized tutor.

C. Computer Aided Evaluation
It is very complex to fully check the correctness of a

program. We thus restrict the control to verify partial
correctness, only. Partial correctness is defined here as
follows: the output of the execution of a program for a
certain input must be correct. A reference implementation
producing correct output for the test inputs is used to
compare with the output obtained from the student's
solutions. According to Hoare [9] a task is correctly
solved by two different programs respectively executions,
if they produce equal outputs with the same input. This
simple method for evaluating the correctness of the
solutions submitted by the students can be formally
described as follows:

⎩
⎨
⎧ =

=
otherwise

OO
SRe BA

:0
:1

),((1)

with
{ } { }AORI

{ } { }BOSI

I - Input
R - Reference Program
S - Student Program

BA OO , - Outputs

The output of both programs has to be significant. For
this reason one must avoid that the check will only be
successful for one particular input. The input for the
program must therefore be randomly chosen out of a
certain interval. The user can thus not manipulate his
program to create a static output that would match the
output of the reference program, thereby falsely resulting
in a positive evaluation.

Hoare's logic allows us with the rule of composition (2),
to cut a program into several sequential pieces Pi.

{ } { } { } { } { } { }
{ } { }OPPPI

OPOOPOOPI

n

nn

;;;
,,,

21

122111

K

K − (2)

With this rule, we are able to create a fine grained
evaluation of a program. When adding certain checkpoints
into the program, it is possible to generate an output at
these points for the comparison. By creating the median
over all steps a value between 1 and 0 is obtained as
shown in (3).

},10|{),(

),(
),(1

ℜ∈≤≤∈

=
∑
=

xxxSRE
n

SRe
SRE

n

i
iii

 (3)

This value can then be used for the Computer Aided

Evaluation to match it to the locally used grading scale.

D. NeOS Frontend
The NeOS Frontend applet in the NeOS is the principle

user interface. The screenshot in Fig. 6 shows an example
with a common use case where the student develops a
program fragment as input for a simulator. In order to
satisfy the requirements of ease of use as well as of
flexibility (i.e. the tool must be able to handle multiple
diverse use cases), we decided to create a multi layer
tabbing area allowing for every part to be accessible with
less than three clicks. The structure of the tabs can be
easily changed by a configuration file located at NeOS
Backend server.

The first tab layer (Fig. 6, A) consists of five tabs. The
program code tab on the left-hand side is the area where
the user may access a text area (Fig. 6, C). This area may
be editable or not depending on the access rights of the
file associated with the area. The second tab layer in Fig. 6
labeled B shows an example with four tabs referencing
different Java class files. Among those, only the first one
is an editable Java class, while the other three are just Java
interfaces which may be read but not modified.

The second first layer tab provides a console where the
output from the NeOS Backend server will be presented.
This includes all error messages (e.g. compiler error
messages) not concerning the results of a simulation or the
execution of the user implemented program. The grade the
student would achieve for his program is also displayed in
this window.

The third tab shows to the user the random input with
which the user’s code and the reference implementation
were executed. This allows the user to assess the output of
his program.

The next tab refers to the simulator output. It shows the
output of both, the user specified and the reference

20 http://www.i-joe.org

NEOS: NEUCHÂTEL ONLINE SYSTEM

simulation run. Depending on the use case, it is also
possible to display different output views, e.g. standard
output or error output. These different views are then
available through the second layer tabs. These will thus
change as compared to the situation shown in Fig. 6.

The last tab in the first layer, the pass code, displays the
fingerprint in the text area C as soon as the task is
successfully completed. This can then be copied and
pasted to the WebCT portal, thus concluding the
assignment.

The tab area at the bottom of the window (Fig. 6, D)
contains the send button to activate the submission and
execution on the NeOS Backend server, a cancel button to
stop the execution, the help button for further information
and a reset button to restore the initial state of the applet.

E. NeOS Backend
The NeOS Backend server is the heart of the NeOS

system. It consists of core and task specific modules
which are loaded at startup. Thus, for each task a new
instance of the NeOS Backend server needs to be started.
We created the following interfaces to adapt the NeOS
Backend server to the actual task in an easy way:

• Compiler interface: Implements compilation tasks.
• Simulator interface: Implements the execution of user

and reference programs or the execution of the
simulator with both program fragments and the random
input.

• Evaluation interface: Implements the computer aided
evaluation.

Each interface contains methods which have to be
implemented depending on the actual task. Furthermore, a
configuration file has to be adapted to the task context.
The configuration feature allows adapting the applet, to
set the path to the working directory, and to define the
NeOS Backend server implementation to be used.

Since our NeOS Backend server is written in Java, all
simulations should be started as an external process via
the ProcessBuilder included in Java. This process starter
provides the ability to start any other program or script
written in any programming language. If the simulation
software is written in Java, it is also possible to use the
Java internal security manager to restrict the accessibility.
This includes access to the hard disk or access to the
network connectors. If non-Java programs are used, the
executed program must be wrapped into an external
sandbox.
Since a program that compiles correctly does not
necessary terminate upon execution, an internal control
mechanism is needed. Therefore, we implemented a
possibility to automatically stop the simulation process
after a certain time specified by the actual configuration.
Infinite loops will thus not disturb the system. Note, that
the user can always cancel an execution from within the
applet
.

Figure 6. NeOS Frontend applet

iJOE – Volume 4, Issue 2, May 2008 21

NEOS: NEUCHÂTEL ONLINE SYSTEM

Currently, the compiler interface supports the Java
compiler. The other two interfaces concerning the
simulator and the task evaluation depend on the particular
tasks. A number of example implementations as well as
some templates are available for these two interfaces. An
implementation of the evaluation interface typically
requires a method to compare the user program and the
reference program outputs as described in Section II.C. As
an example, if eight out of ten output values are correct, a
grade of 5 on a scale of 1 to 6 might be assigned (see Fig.
7).

F. NeOS Tutor Tool

The NeOS Tutor Tool is intended to assist the tutor in
evaluating the student's solutions. For every student, the
tutor can review the program code submitted as well as
the input and output data. All this data are available
through the students fingerprint as described in Section
II.B. Furthermore, the tool presents the results of the
automatic evaluation. Fig. 7 shows an example of the
NeOS Tutor Tool user interface for a scenario with the use
of a simulator.

The results of the computer aided evaluation for a task
are presented in a table (A in Fig. 7). The tutor may now
proceed to the final evaluation (tutor grade) by
considering the grades provided automatically, by
inspecting the program code submitted, the input
respectively the output data, and by checking similarities
between the different solutions of all the students.

 For evaluating a student's solution, the tutor has to
double click on the corresponding UserID, which opens
up the user window (Fig. 7, B). There, he has the
possibility to grade the student and confirm it through the
save button (Fig. 7, C). In the user window, all the details
stored in the fingerprint can be reviewed through the tabs:
the program code of the user, the test input used for the
simulation and the simulation outputs (Fig. 7, D).

The different colors (or gray scales) in the UserID row
(Fig. 7, E) are a hint for the tutor that there are some parts
in the solution of that student which are equal to the
solutions of other ones. At the moment there are two
colors (gray scales), red (dark) for a complete match and
yellow (light) for a partial match. The checking is done
file by file against all other submitted student solutions
and the reference files. More details about this comparison
can be obtained through the Similarities tab available in
the user window (Fig. 7, D). An example of such a
detailed view for the UserID "Sabina" is given in Fig. 8.
This view can be easily adapted to the tutor's needs, since
it is just an implementation of an interface as in the case of
the ones of the NeOS Backend server. So far, we just
implemented a simple comparison which cuts out all non
relevant parts of the program code like spaces, tabs or
braces. The similarities tab displays for each file the
UserID of the matches in a tree like representation. The
example in Fig. 8 reveals similarity matches between
Sabina’s program “HelloWorld2” and the one’s of Silvia
etc.

Figure 7. NeOS Tutor Tool

22 http://www.i-joe.org

NEOS: NEUCHÂTEL ONLINE SYSTEM

Figure 8. Similarity Tab of the NeOS Tutor Tool

III. CONCLUSION AND FUTURE WORK
In this paper, we have presented the NeOS Framework,

which is an e-learning tool developed to support in
particular hands-on training experiences. It consists of an
applet, a server and an assessment tool for the tutor, all
implemented in Java. These tools allow a user to locally
program in an editor-like user interface and then test his
program on a well secured remote machine. The NeOS
Framework is configured to work in the SWITCHaii and
WebCT environment. However, it would be easy to adapt
the NeOS Framework to any other e-learning environment
as long as it provides a user authentication mechanism.

An advantage of the NeOS Framework is the computer
aided evaluation for programming tasks as well as the
cross check of the student's solutions for detecting
plagiarism. Both features are meant to assist the tutor in
his task to evaluate the student. Furthermore, the
framework offers several security measures at the system
level by securing the lab machines from being affected by
attacks from the outside, and at the usage level by
reducing the cheating possibilities.

Based on further experiences in using the OSLab
course, we will further evaluate the system to identify
which parts might be enhanced. Already in development is
a single server solution, such that one instance of the
NeOS Backend server can handle multiple tasks. There is
of course plenty of room to improve the computer aided
evaluation functions by applying sophisticated heuristics.
We finally also note that the present framework is
restricted to tasks related to programming. However,
because of the openness and flexibility of the design of the
NeOS architecture, its application in other contexts could
be envisaged as well.

REFERENCES
[1] Swiss Virtual Campus, http://www.virtualcampus.ch/, 2007.
[2] OSLab, http://www.oslab.ch/, 2007.
[3] Blackboard, http://www.blackboard.com/, 2007.
[4] SWITCHaai, http://www.switch.ch/aai/, 2007.
[5] VITELS, https://www.vitels.ch/, 2007.
[6] Apache Tomcat, http://tomcat.apache.org/, 2007.
[7] Shibboleth, http://shibboleth.internet2.edu/, 2007.
[8] Java, http://java.com/, 2007.
[9] C. A. R. Hoare, “An axiomatic basis for computer programming.”,
Commun. ACM, 12(10):576--580, 1969.

AUTHORS
H. Sturzrehm is with the Department of Computer

Science, University of Neuchâtel, Switzerland
(e-mail: heiko.sturzrehm@unine.ch).

F. Aubert is with the Department of Computer Science,
University of Neuchâtel, Switzerland
(e-mail: frederic.aubert@unine.ch).

P. Kropf is with the Department of Computer Science,
University of Neuchâtel, Switzerland
(e-mail: peter.kropf@unine.ch).

R. Corfu is with the Department of Computer Science,
University of Neuchâtel, Switzerland
(e-mail: randoald.corfu@unine.ch).

Manuscript received 04 April 2008. This work was supported by the
Swiss Virtual Campus under Grant CVS-IP-4-019 in cooperation with
the University of Bern, the University of Fribourg and the University of
Distant Learning Hagen.
Published as submitted by the authors.

iJOE – Volume 4, Issue 2, May 2008 23

