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PAPER

AdaptiveMesh: Adaptive Federated Learning 
for Resource-Constrained Wireless Environments

ABSTRACT
Federated learning (FL) presents a decentralized approach to model training, particularly 
beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces 
AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in hetero-
geneous wireless environments. Through dynamic adjustment of training parameters based 
on client performance metrics, including central processing unit (CPU) utilization and accu-
racy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. 
Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s 
effectiveness in improving model accuracy, stability, and training efficiency. Results indi-
cate a significant impact on CPU adaptation in preventing client overloading and mitigat-
ing overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) 
and regression analysis highlight significant differences in CPU usage, accuracy, and epochs 
between devices with varying levels of hardware capabilities. These findings underscore the 
algorithm’s potential for practical deployment in real-world edge computing environments, 
addressing challenges posed by heterogeneous device capabilities and resource constraints.

KEYWORDS
adaptive federated learning (FL), embedded machine learning, wireless mesh networks

1	 INTRODUCTION

Federated learning (FL) has emerged as a promising paradigm for decentralized 
model training, particularly in scenarios where data privacy is important, such as 
healthcare [1]. FL facilitates collaborative model training across distributed clients 
while centralizing model updates on a server. This approach addresses data privacy 
concerns by keeping sensitive data local to the clients [2]. While FL offers significant 
advantages in terms of data privacy and decentralized training, optimizing its per-
formance in heterogeneous environments remains a challenge [3]. In such environ-
ments, the data available to each edge device contributing to the model can vary in 
quantity and quality, depending on factors such as device location and individual 
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user patterns (e.g., different numbers of training samples). Additionally, the process-
ing power of these resource-constrained devices can differ based on their hardware 
capabilities or if they are running other applications simultaneously. In a wireless 
environment, the limitations in network bandwidth, either because of the device’s 
location or due to dynamic network conditions, as well as battery consumption, may 
cause delays in how fast the overall model learns [4], [5].

The importance of addressing these challenges lies in the increasing deployment 
of FL in real-world applications, particularly in healthcare, where data privacy 
and resource optimization are crucial. Effective FL implementations can lead to 
improved healthcare outcomes by enabling the use of sensitive patient data without 
compromising privacy. This study proposes the AdaptiveMesh algorithm, designed 
to optimize training efficiency in heterogeneous wireless environments by dynami-
cally adjusting training parameters based on client performance metrics, aiming to 
improve efficiency and accuracy in such settings [6], [7].

The objective is to develop an adaptive design for the FL clients that leverages 
the inherent heterogeneity of the participating devices (CPU, memory) and wire-
less network (bandwidth, etc.). [8], [9]. Specifically, this study employs an adaptive 
mechanism for FL clients to assess whether adjustments to the training parameters 
(training images, model accuracy) are necessary. To optimize training efficiency, the 
adaptive algorithm continuously monitors accuracy, CPU, and memory utilization 
between rounds. It analyzes trends in both model performance (accuracy history) 
and CPU usage to determine if adjustments are necessary. If detects issues, like per-
formance stagnation related to the accuracy or rising CPU usage above a predefined 
threshold, intervenes by initially reducing the training images. This adaptive mech-
anism, by dynamically aligning resource allocation with the model’s evolving needs, 
ensures that training progresses efficiently among the clients.

The main contributions of the paper are:

1. To exploit the heterogeneous environment of clients, this study investigates the 
design and development of the AdaptiveMesh-adaptive FL algorithm that deter-
mines at each round the workload capacity of each client for model training in a 
determined time slot. The adaptive behavior of AdaptiveMesh calculates the differ-
ence in CPU utilization between consecutive training rounds and assesses model 
performance and CPU utilization trends to determine if adaptation is required.

2. The proposed adaptive FL algorithm is evaluated by deploying it on real-world, 
heterogeneous low-capacity devices integrated within a wireless mesh network.

To better understand the impact and effectiveness of the AdaptiveMesh algorithm, 
this study aims to address the following research questions:

1. How does algorithm optimization enhance FL efficiency in heterogeneous wire-
less environments?

2. What impact does algorithm optimization have on CPU utilization, network 
bandwidth, and model accuracy in resource-constrained devices?

3. How does the adaptive adjustment of training parameters based on client perfor-
mance metrics improve model convergence and resource utilization in FL?

2	 RELATED	WORK

In this section, existing studies on adaptive FL for devices with limited capacity 
are reviewed, and methods to protect data privacy are highlighted, which is crucial 
when handling confidential personal health information during training.
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The study FedTCR [10] addresses communication inefficiencies and straggler 
problems in FL by constructing logical computing clusters and implementing an 
intra-cluster collaborative training mechanism. This reduces communication costs 
and ensures even the slowest devices contribute effectively to the training pro-
cess. While FedTCR focuses on reducing communication overhead and balancing 
participation among devices, AdaptiveMesh emphasizes real-time adaptability and 
resource management. This ensures optimal resource usage and prevents overheat-
ing, thus improving model convergence and stability across heterogeneous devices.

Similarly, FedAdapt: Adaptive offloading for IoT devices in FL by [11] introduces 
an adaptive offloading framework designed to enhance local training efficiency by 
offloading deep neural network (DNN) layers to servers. FedAdapt uses reinforce-
ment learning-based optimization and clustering techniques to dynamically identify 
the optimal layers for offloading for each device. This approach significantly reduces 
training time and adapts to fluctuating network conditions. While FedAdapt focuses 
on offloading DNN layers to servers to reduce training time and adapt to network 
conditions, AdaptiveMesh extends this by dynamically adjusting training parameters 
like the number of images and epochs based on real-time client performance met-
rics such as CPU utilization and accuracy trends. This additional adaptability helps 
prevent client overloading and overheating, ensuring optimal resource usage and 
improving model convergence.

Another study [12] introduces Fed-RAC, which uses resource-aware clustering to 
optimize training and communication efficiency among diverse devices. By dynam-
ically determining the optimal number of clusters using Dunn Indices, Fed-RAC 
adapts to varying heterogeneity levels, ensuring efficient model training and aggre-
gation. It employs a master-slave technique through knowledge distillation, enhanc-
ing the performance of lightweight models within clusters. While Fed-RAC focuses 
on resource-aware clustering to optimize training among heterogeneous devices, 
AdaptiveMesh adapts training parameters dynamically based on client performance 
metrics to improve resource utilization and model convergence. Fed-RAC enhances 
low-configuration models using master-slave techniques, whereas AdaptiveMesh 
prevents client overload by real-time parameter adjustments.

Furthermore, [13] introduces FL as a communication-efficient approach to 
training deep neural networks over distributed sources of data while preserving 
data privacy, which is foundational for collaborative model training in distributed 
environments.

Regarding adaptive behavior in FL systems, an optimization algorithm tailored 
for FL systems is proposed in [14]. The work dynamically adjusts learning rates and 
other hyper-parameters based on client characteristics and network conditions, 
leading to improved model convergence and performance. This study also takes into 
consideration network parameters such as bandwidth.

Another significant contribution is [15], which addresses leveraging data from mul-
tiple medical institutions while ensuring privacy and security. The study introduces 
adaptive client sampling (ACS), and the authors aim to optimize the selection of clients 
for model training in each iteration. This method considers client performance and 
data characteristics, enhancing the efficiency and effectiveness of the FL process. The 
research contributes to the ongoing efforts in developing efficient and scalable ML solu-
tions for healthcare, ultimately improving patient care while safeguarding sensitive 
medical data. In this study, healthcare data consisting of chest X-ray images are utilized.

Moreover, a novel approach [16] proposes an adaptive distribution of resources 
for cost-effective FL at the wireless network edge, which ensures minimal latency and 
high performance when learning. By leveraging Lyapunov stochastic optimization 
techniques, the authors dynamically optimize radio parameters and computation 
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resources to strike the best balance between energy consumption, latency, and 
learning performance. The recommended method is customized to federated least 
mean squares (LMS) estimation, and numerical experiments indicate that it is effec-
tive in providing cost-effective, minimal latency federated machine learning at the 
wireless network edge.

Another study [17] introduces an approach to enhance FL through adaptive 
client-side hyperparameter optimization. The key elements of their approach 
include dynamic adjustment: hyper-parameters such as learning rate and batch size 
are dynamically adjusted for each client based on their computational resources 
and data characteristics.

In addition, RingSFL [18] proposes an adaptive FL system designed for 
environments with heterogeneous clients, similar to our environment. The system 
addresses the challenges posed by varying data distributions and performance 
capabilities among clients through innovative methodologies. RingSFL leverages a 
ring-based architecture to organize clients hierarchically, facilitating efficient com-
munication and coordination within a distributed network. The adaptive client sam-
pling technique dynamically selects clients based on their data characteristics and 
performance metrics, ensuring optimal participation in global model training. In 
terms of communication optimization and data privacy, clients in this study partici-
pate in the training process based on their CPU, memory, and bandwidth resources.

In the context of medical images, [19] addresses the challenges of FL applied to medi-
cal image analysis. They propose FedRSMax, a novel aggregation method that enhances 
the collaborative model aggregation process in FL scenarios. The key innovation of 
FedRSMax lies in its dynamic aggregation strategy, which optimizes the contributions 
of locally trained models from distributed medical institutions. Unlike conventional 
FL approaches that use uniform averaging or simple aggregation methods, FedRSMax 
dynamically adjusts aggregation weights based on the performance metrics of each 
local model. This adaptive weighting mechanism ensures that more accurate and reli-
able models contribute proportionally more to the final aggregated model.

Additionally, [20] introduce a novel approach to FL specifically tailored for wire-
less mesh networks. The authors address the challenges associated with training ML 
models in decentralized environments with limited resources and intermittent con-
nectivity. They propose a server-side adaptive mechanism where the central server 
dynamically adjusts the training process based on network conditions and client 
capabilities. This adaptive approach optimizes resource utilization and enhances 
model convergence in wireless mesh network settings. The authors demonstrate the 
effectiveness of their approach in improving model convergence and reducing com-
munication overhead.

Recent studies mentioned above have explored adaptive algorithms to optimize 
performance. However, these approaches do not adequately consider the variability 
in network conditions and device capabilities. In addition to the concepts presented 
in these studies, the research focuses on adapting to node heterogeneity through 
dynamic workload capacity adjustments. This involves allocating more work to 
faster nodes, aiming to improve the overall performance of the global model.

3	 	ADAPTIVEMESH	ALGORITHM

The AdaptiveMesh algorithm highlighted in Algorithm 1 optimizes FL by 
dynamically adjusting training parameters based on client performance metrics. 
AdaptiveMesh algorithm is initially configured with key parameters such as global 
and local learning rates, number of epochs, number of images, batch size, and other 
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training-related parameters. The following steps outline the key components of the 
algorithm:

1. Client registration: Initially, the clients are registered within the system to par-
ticipate in the collaborative training process.

2. Initial configuration: The server distributes initial configurations to heteroge-
neous clients (min_epochs = 1). Prior to each training round, a time limit is set to 
ensure training does not exceed a predefined duration.

3. Training and monitoring metrics: During each round, CPU utilization, 
memory utilization, and accuracy metrics are monitored and stored for subse-
quent analysis.

4. Adaptive mechanism activation: After three rounds of training (round > 3), an 
adaptive mechanism is employed to assess whether adjustments to the training 
parameters are necessary.

5. Adaptation process: The adaptive part calculates the difference in CPU utiliza-
tion between consecutive training rounds and assesses model performance and 
CPU utilization trends to determine if adaptation is required. The minimum num-
ber of training images is six (min_images = 6).
a) When adaptation is required (case: resources are available), and resources are 

available, a threshold-based approach is employed. For example, if the CPU 
utilization is below 80%, the number of trained images is adjusted accordingly, 
with the maximum number of sample images potentially increasing to 234.

b) When adaptation is required (case: resources are not available), i.e., the trained 
images are decreased in the clients having CPU utilization > 80%.

The adaptive decision-making process of the AdaptiveMesh algorithm is crucial 
for optimizing model performance across heterogeneous clients in wireless mesh 
environments. This adaptive mechanism guarantees that resource allocation is 
dynamically adjusted at the clients in order to meet the evolving demands of model 
training. Also, the way the algorithm sets up parameters for FL shows a thoughtful 
way of coordinating shared learning, which is important for improving distributed 
machine learning in practical applications.

Algorithm 1: AdaptiveMesh: Client-side Adaptive Federated Learning  
for Resource-Constrained Wireless Environments
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Fig. 1. AdaptiveMesh algorithm flowchart

4	 EXPERIMENTAL	SETUP	AND	RESULTS

4.1	 Experimental	setup

The experimental setup includes physical IoT devices interconnected via a wire-
less network. Figure 2 highlights the wireless testbed used for the experiments. Two 
types of nodes are identified: the server and clients. The server acts as the central 
orchestrator, which distributes initial configurations to clients. As a server, use a lap-
top with an Intel(R) Core (TM) i5-8250U CPU, equipped with 8 GB of RAM, running 
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the Windows 11 operating system (OS). The clients consist of four distinct devices: 
1) a MiniPC NEO Z83-4 device featuring an Intel Atom x5-Z8350 CPU, 4 GB DDR3 
RAM, and Windows 10 OS, 2) a laptop with an Intel(R) Core (TM) i5-1035G1 CPU, 8 GB 
RAM, and Windows 11 OS, and 3) two Raspberry Pi 4 Model B units, namely RPI4 
and RPI5, each equipped with a Quad Core Cortex-A72 CPU, 8 GB RAM, 128 GB stor-
age, and running the Linux Ubuntu 22.04.4 LTS OS. In this setup, the server orches-
trates the FL process issuing instructions to the client devices. After each training 
round, the server combines the knowledge gathered from each client to create a 
collective learning output. The server sends this output back to the clients along with 
instructions for the next learning round. Clients autonomously regulate their work-
load acceptance thresholds (see Algorithm 1), thus deviating from the conventional 
uniform instruction dissemination paradigm.

Fig. 2. Testbed nodes used for the experimentation

4.2	 Dataset

For the experiments, this study used a dataset of 5,863 JPEG X-ray images from 
[21]. The images are divided into two categories: pneumonia and normal. These 
images were taken from young patients aged one to five years old at the Guangzhou 
Women’s and Children’s Medical Center in China. The objective is to train a 6-layer 
convolutional neural network (CNN) using this chest X-ray dataset for the adap-
tive FL task.

4.3	 Experiments

The experimentation assesses how the adaptive client design affects FL in a real-
edge wireless environment. Initially, CPU and memory utilization experiments are 
conducted to demonstrate the system’s adaptive behavior. Subsequently, accuracy 
and loss tests are performed, illustrating the variation in the number of images 
trained on each device following the application of adaptive behavior. The final sec-
tion discusses the findings.
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4.4	 Results

Figure 3 shows the CPU utilization of the four different clients. Figure 3 reveals 
that model training necessitates substantial computational power. However, 
the algorithm’s CPU adaptation has led to optimization in training. Upon the 
CPU usage surpassing 80%, the algorithm optimizes the training process for  
clients by reducing computational loads in the next rounds, thus preventing client 
overburdening.

Fig. 3. CPU utilization in different training rounds

Figure 4 shows the RAM memory utilization for different clients. Figure 4 indi-
cates that clients managed memory demands well, utilizing it relatively steadily 
across different rounds.

Fig. 4. Memory utilization in different training rounds

Figure 5 illustrates the comparison of achieved accuracies during training 
across different rounds. It is observed that as the rounds increase, the accuracy also 
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increases until round 50. Specifically, the laptop achieves 98% accuracy, MiniPC 
83%, RPI4 82%, and RPI5 79%.

Fig. 5. Accuracy in different training rounds

Figure 6 indicates that clients initially experience high losses, which gradu-
ally decrease as the rounds increase. This shows that model training is improving 
over time.

Fig. 6. Losses in different training rounds

Figure 7 shows the number of epochs (local iterations) performed in each round 
by different clients. Figure 7 reveals that epochs increase gradually as rounds 
increase. After round 10, in clients reaching the threshold of their CPUs (e.g., RPI4, 
RPI5), the number of epochs decreases due to the adaptive behavior of the algorithm, 
i.e., devices with more CPU resources (laptop, miniPC) tend to perform more epochs 
during training, and vice versa. By round 50, the laptop client reaches 48 epochs, 
the MiniPC reaches 18 epochs, the RPI4 reaches 16 epochs, and the RPI5 reaches 
12 epochs.

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 14 (2024) International Journal of Online and Biomedical Engineering (iJOE) 31

AdaptiveMesh: Adaptive Federated Learning for Resource-Constrained Wireless Environments

Fig. 7. The number of epochs for various clients reached in different training rounds

Regarding the trained images per client, Figure 8 shows that the number of images 
increases gradually as rounds increase. However, after round 10, some clients with 
lower performance cannot cope with the workload of image samples and epoch 
increase, as their CPU usage exceeds 80%, consequently, these clients request less 
workload, thereby monitoring CPU performance. When the CPU usage falls below 
80% they request an increase in the number of images. Conversely, the laptop client, 
with higher capacity, consistently demands an increase in the number of images, 
reaching the maximum allowable values.

Fig. 8. The number of trained images per client

Figure 9 reveals that the training time for clients increases after the third round 
due to the beginning of their adaptation, where each client requires an increase 
in the number of training samples and the number of epochs according to their 
workload capacity. Also, it can be seen that the training time to time increases and 
sometimes decreases due to the loading of clients based on their CPU usage. When 
the CPU utilization is above 80%, clients reduce the number of samples and epochs, 
leading to reduced training time and reduced computational load that helps prevent 
device overheating.

https://online-journals.org/index.php/i-joe


 32 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 14 (2024)

Shkurti and Selimi

Fig. 9. Training time increases as adaptation begins, adjusting image samples/epochs based on workload

5	 STATISTICAL	RESULTS

In the context of this study, conducting statistical methods like ANOVA (analysis 
of variance) allows us to assess whether there are statistically significant variations 
in CPU usage, accuracy, training images, and epochs among different types of client 
devices used in FL. By exploring these differences, the goal is to identify differences in 
performance metrics based on device types, which can provide important informa-
tion about how well FL implementations work across heterogeneous environments.

Table 1 compares CPU performance across different devices, including laptops, 
MiniPCs, Raspberry Pi 4 (RPI4), and Raspberry Pi 5 (RPI5). The F-value from the one-
way ANOVA test indicates significant differences in CPU performance among the 
devices (F = 26.428, p < 0.01).

Table 1. Results of one-way ANOVA regarding the differences in CPU by device

Device N Mean Std. Deviation F Sig.

Laptop 50 46.528 19.6844

26.428 0.001
MiniPC 50 71.334 15.9116

RPI4 50 71.224 17.8005

RPI5 50 74.268 17.6564

Table 2 presents Tukey’s honestly significant difference (HSD) results. Significant 
differences exist between laptops and other device types. According to these differ-
ences, laptops exhibit lower CPU usage compared to the other three types.

Table 2. Results of multiple comparisons regarding the differences in CPU by device

(I) device_id (J) device_id Mean Difference (I–J) Sig.

Laptop MiniPC −24.8060* 0.000

RPI4 −24.6960* 0.000

RPI5 −27.7400* 0.000
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Table 3 presents the results of a one-way ANOVA regarding the differences in 
accuracy by device type. The observed value of F = 18.820, p < 0.01 shows that there 
is a significant difference in accuracy by device type.

Table 3. Results of one-way ANOVA regarding the differences in accuracy by device

Device Mean Std. Deviation F Sig.

Laptop 0.84032 0.188054

18.820 <0.001
MiniPC 0.68696 0.140836

RPI4 0.69128 0.141145

RPI5 0.62826 0.108582

Table 4 presents the results of the Tukey test regarding the differences in accu-
racy by device type. Significant differences exist between laptops and other device 
types. According to these differences, laptops exhibit higher accuracy compared to 
the other three types. Mini PC is the device that shows the least difference in accu-
racy compared to laptops, followed by RPI4, and then by the RPI5 device.

Table 4. Results of multiple comparisons regarding the differences in accuracy by device

(I) device_id (J) device_id Mean Difference (I–J) Sig.

Laptop MiniPC 0.153360* 0.000

RPI4 0.149040* 0.000

RPI5 0.212060* 0.000

Table 5 presents the results of a one-way ANOVA regarding the differences in 
epoch by device types. The observed value of F = 35.648, p < 0.01, shows that there is 
a significant difference in epoch by device type.

Table 5. Results of one-way ANOVA regarding the differences in Epoch by device

Device Mean Std. Deviation F Sig.

Laptop 23.56 14.479

35.648 <0.001
MiniPC 11.36 4.810

RPI4 10.24 4.128

RPI5 8.76 3.146

Table 6 presents the results of the Tukey test regarding the differences in epoch 
by device type. Significant differences exist between laptops and other device types. 
According to these differences, the laptop exhibits higher epochs compared to the 
other three types. Mini PC is the device that shows the least difference in epochs 
after the laptop, followed by RPI4, and then by RPI5.

Table 6. Results of multiple comparisons regarding the differences in Epoch by device

(I) device_id (J) device_id Mean Difference (I–J) Sig.

Laptop MiniPC 12.200* 0.000

RPI4 13.320* 0.000

RPI5 14.800* 0.000

https://online-journals.org/index.php/i-joe


 34 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 14 (2024)

Shkurti and Selimi

Table 7 presents the results of a one-way ANOVA regarding the differences in 
training images by device types. The observed value of F = 2.059, p > 0.05 shows that 
there is not a significant difference in training images by device type. The laptop has 
the highest average of training images, followed by the MiniPC and RPI4, while the 
RPI5 has the lowest average.

Table 7. Results of one-way ANOVA regarding the differences in training images by device

Device Mean Std. Deviation F Sig.

Laptop 95.44 33.276

2.059 0.107
MiniPC 90.04 31.219

RPI4 86.08 30.028

RPI5 80.64 28.584

5.1	 Regression	analysis

Table 8 examines the impact of accuracy, epoch, and CPU on the number of train-
ing images. The results reveal that all three independent variables—accuracy, epoch, 
and CPU have a statistically significant impact on the number of training images. 
Specifically, higher accuracy (β = 214.302, t = 35.069, p < 0.001) and CPU utilization 
(β = 0.407, t = 15.452, p < 0.001) are associated with increased training images. In 
summary, accuracy, epoch, and CPU utilization significantly influence the number 
of training images, with higher accuracy and CPU utilization correlating with more 
training images.

Table 8. Results of regression analysis

Dep. Variable β t p

Accuracy 214.302 35.069 <0.001

epoch −1.223 −12.446 <0.001

CPU 0.407 15.452 <0.001

Note: R = 0.973, Ad j.R2 = 0.945, F = 1150.364, p < 0.001.

6	 DISCUSSION

The AdaptiveMesh algorithm is designed to address challenges in decentral-
ized model training, particularly in heterogeneous environments. By dynamically 
adjusting training parameters based on client performance metrics, such as CPU 
utilization and accuracy, the algorithm optimizes resource allocation and improves 
model convergence. Experimental results demonstrate enhanced training efficiency, 
with clients adapting workload demands to prevent overheating and optimize 
training processes. One notable observation from the experiments is the substan-
tial impact of CPU adaptation on training optimization; the algorithm dynamically 
adjusts computational loads for clients, particularly when CPU utilization exceeds 
80%. Regarding model performance, the experimental findings demonstrate nota-
ble improvements in accuracy as training progresses. The adaptive FL algorithm 
facilitates this improvement by dynamically adjusting training parameters based 
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on client performance metrics, thereby optimizing model convergence and enhanc-
ing overall accuracy. The experiments also highlight the dynamic nature of work-
load allocation, particularly in terms of the number of epochs and training samples 
assigned to each client. Experiments illustrate the gradual increase of epochs and 
images across rounds, with clients adapting their workload demands based on CPU 
utilization and performance metrics. Clients with higher computational capacity 
consistently request an increase in workload, while those with lower performance 
dynamically adjust workload demands to prevent overheating and optimize train-
ing efficiency.

Further, the statistical results of one-way ANOVA demonstrated significant differ-
ences in CPU usage, accuracy, and epochs between laptops and other device types, 
with laptops showing lower CPU usage, higher accuracy, and a greater number of 
epochs. The regression analysis revealed that accuracy and CPU significantly impact 
the number of training images and a number of epochs. Higher accuracy and higher 
CPU usage correlate with more images and a larger number of epochs. Overall, the 
experimental results confirm the effectiveness of the adaptive FL algorithm in opti-
mizing model training and resource utilization in heterogeneous environments. 
The algorithm showed promising results in improving model accuracy and stability 
across diverse client environments, highlighting its potential for practical deploy-
ment in real-world scenarios.

7	 CONCLUSIONS	AND	FUTURE	WORK

Federated learning offers a decentralized approach to collaborative model train-
ing, ensuring data privacy while harnessing the collective intelligence of distributed 
clients. This study’s contributions include the development of a novel adaptive mech-
anism for FL, the introduction of a dynamic resource allocation strategy, and a com-
prehensive evaluation demonstrating significant improvements in efficiency and 
scalability. AdaptiveMesh algorithm enables dynamic adjustments to training param-
eters, enhancing model performance across heterogeneous wireless environments. 
This adaptive mechanism guarantees that resource allocation is dynamically adjusted 
at the clients in order to meet the evolving demands of model training. By providing 
a detailed overview of the FL system and its adaptive mechanism, this paper contrib-
utes to the understanding and advancement of decentralized machine learning. The 
findings could be relevant and useful in various resource-limited edge environments. 
The focus is on expanding the implications of these results to embedded IoT devices 
such as TinyML, where the analyzed design could effectively tackle significant limita-
tions in computing and communication resources. Future work will involve explor-
ing the integration of more advanced machine learning models and larger datasets 
to assess the scalability and robustness of the algorithm across diverse FL scenarios.
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