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Abstract—Network capacity has been widely studied in 
recent years. However, most of the literatures focus on the 
networks where nodes are distributed in a two-dimensional 
space. In this paper, we propose a 3D hybrid sensor network 
model. By setting different sensor node distribution 
probabilities for cells, we divide all the cells in the network 
into dense cells and sparse cells. Analytical expressions of 
the aggregate throughput capacity are obtained. We also 
find that suitable inhomogeneity can increase the network 
throughput capacity. 

Index Terms—Network Capacity; Hybrid; Inhomogeneity; 
Wireless Sensor Networks 

I. INTRODUCTION 
Network capacity is one of the most important issues in 

wireless sensor networks. Gupta and Kumar initiate the 
study of network capacity in [1], they find that in a 
wireless network where all the nodes are randomly 
distributed, the per-node throughput capacity 

is ( )
log
W
n n

! , where W is the total bandwidth and n is 

the number of nodes. They prove that the per-node 
throughput will decrease to zero as the number of nodes 
goes to infinity, which is a pessimistic conclusion. 

Following this work, extensive studies have been 
conducted to achieve a tighter capacity bound [2-8]. 
Franceschetti et al. [2] apply percolation theory to obtain 
a per-node transmission rate higher than 1( )

n
! . 

Grossglauser and Tse [3] prove that network capacity can 
be increased with mobility of ad hoc nodes. They show 
that per-node transmission rate of ( )W! can be achieved 
when ad hoc nodes are mobile, while the transmission 
delay will go to infinity. 

Few researchers propose to add some base stations to 
increase network capacity, and they call this kind of 
networks ‘hybrid networks’ [9-11]. Liu et al. [9] study the 
capacity of hybrid networks where base stations are 
regularly placed. They prove that the per-node throughput 
capacity can be improved significantly with the help of 
base stations. Kozat et al. [10] consider the case that base 
stations are randomly placed and prove that the per-node 
throughput capacity is decided by the number of base 
stations. Zemlianov et al. [11] propose a network model 
where base stations are arbitrarily placed and they get a 
similar conclusion. 

However, most of the literatures focus on the 
homogeneous networks, where all the nodes are uniformly 
distributed. In most real cases, networks exhibit 
inhomogeneity. A few works have analyzed the capacity 
of inhomogeneous networks [12-14]. Perevalov et al. [12] 
study the capacity of a clustered wireless networks. 
Alfano et al. [13, 14] consider nodes are placed to a shot-
noise Cox process (SNCP). They obtain the upper bound 
and lower bound of their network model. 

The aforementioned works on inhomogeneous 
networks are based on the assumption that all the nodes 
are distributed in a 2D space. With the development of 
technology, the wireless networks are extending from 2D 
space to 3D space. To the best of our knowledge, few 
studies focus on the 3D wireless networks [15-16]. In [15], 
Gupta and Kumar study the transport capacity of 3D 
arbitrary networks and the throughput capacity of 3D 
random networks. Pan et al. [16] consider the case that the 
node spatial distributions are inhomogeneous. 

In this paper, we for the first time propose a 3D hybrid 
network model characterized by inhomogeneity and 
obtain the analytical expressions of network capacity. By 
setting different distribution probabilities for cells, we 
divide all the cells into dense cells and sparse cells. On 
this basis, we derive the capacity of dense cells and sparse 
cells respectively. Then we calculate the aggregate 
throughput capacity and analyze the results we obtain. We 
find that suitable inhomogeneity can increase the network 
capacity, which is an interesting conclusion. 

The remainder of this paper is organized as follows. In 
Section II, we present a 3D inhomogeneous hybrid 
network model. In Section III, we derive the aggregate 
throughput capacity of our network model and analyze the 
capacity we get. Finally, we conclude our studies in 
Section IV. 

II. NETWORK MODEL 

A. Network Architecture 
We consider a wireless sensor network with n sensor 

nodes and m base stations distributed in a three-
dimensional cube of unit volume. We assume that the base 
stations are regularly placed, hence the unit cube is 
divided into 3 3 3m m m! ! equal-sized cubelets, (we 
assume that 3 m is integer for simplicity of analysis). We 
label them 3{( , , ) : , , 1,..., }i j k i j k m= . Each base stations 
lies into the center of the cell where it is, as shown in fig.1. 
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The base station is connected by a wired network, hence 
we can assume that the bandwidth is not constrained.  

To make our network model exhibit inhomogeneity, we 
set different node distribution probabilities for each cell. 
Concretely, for cell k (1 k m! ! ), the probability that 
each node are distributed in it is kp , hence we 

have
1

1
m

k
k
p

=

=! . Then, for the sensor nodes in the same 

cell, we assume that they are independent and identically 
(i.i.d.). Though the distribution of sensor nodes in a 
certain cell is homogeneous, the overall node spatial 
distribution exhibits inhomogeneity. 

Specially, when 1 2
1... mp p p
m

= = = = , our network 

model is an homogeneous model. Thus, our results 
obtained is more usual than that of the homogeneous 
networks. 

B. Communication Model 
In this paper, we adopt the protocol model proposed in 

[1] as our communication model. Let r denote the 
transmission range of sensor nodes, node jX can receive 

the packets from node iX successfully if the following 
conditions are satisfied: 

(1) Node jX is under the coverage of node iX , i.e. 

i jX X r! " ; 

(2) For an arbitrary other node tX which is 
simultaneously delivering over the same channel, 

(1 )t j i jX X X X! " +# !  

where! defines the size of guard zone. 

C. Routing Strategy 
In our network model, there are two types of 

transmission modes: multi-hop mode and infrastructure 
mode. In multi-hop mode, the sensor nodes communicate 
with each other in a multi-hop fashion. In infrastructure 

  
Figure 1. Network Architecture 

mode, the source node delivers packets to the destination 
node with the help of base stations. 

In this paper, we use the 0-nearest-cell routing strategy. 
Concretely, if the source node and the destination node are 
in the same cell, they communicate with each other in 
multi-hop mode. If the source node and the destination 
node are in different cells, they communicate in 
infrastructure mode. 

We assume that the total bandwidth is W. According to 
the routing strategy, the total bandwidth is divided into 
three sub-channels: intra-cell sub-channels, uplink sub-
channels and downlink sub-channels. Let 1W , 2W and 3W  
denote the three types of sub-channels respectively, and 
we have 1 2 3W W W W+ + = . As the amount of packets 
over uplink sub-channels are the same with that over 
downlink sub-channels, we let 2 3W W= .  

III. NETWORK CAPACITY

A. Dense Cells and Sparse Cells 
In the passage above we have introduced our network 

model. To make our network model exhibit 
inhomogeneity, we set distribution probabilities for 
different cells. According to the asymptotic behavior of 
distribution probabilities, we divide all the cells into two 
types: dense cells and sparse cells. 

Definition 1: Dense cells. For cell k, if the node 
distribution probability (1 / )kp n=! , we say cell k is a 
dense cell. 

Definition 2: Sparse cells. For cell l, if the node 
distribution probability (1 / )lp o n= , we say cell l is a 
sparse cell. 

Consider cell k, let iY denote whether sensor node i 
(1 i n! ! ) and its destination node are both in cell k, i.e.  

1,    both in cell 
0,        otherwisei

k
Y !
= "
#

. 

For each node, the probability that it is distributed in 
cell k is kp , hence we have 2[ ]i kE Y p= . 

Let kN denote the number of source-destination pairs in 
cell k, then we have: 

                 2

1

1  as 
n

k
i k

i

N Y p n
n n =

= ! ! +"#                (1) 

Thus, if (1 / )kp n=! , we have 2lim kn
p n

!"
! +" , and 

if (1 / )kp o n= , we have (1 / )kp o n= . 
The analysis above implies that in dense cells, the 

number of source-destination pairs kN is not constrained 
as n goes to infinity, and in sparse cells, kN is constrained 
as n goes to infinity.  

B. Capacity Contributed by Multi-Hop Mode 
In this section we derive the throughput capacity 

contributed by multi-hop mode. Since 1W , 2W and 3W are 
different sub-channels, there are no interference between 
them. However, interference exists between the same type 

48 http://www.i-joe.org



PAPER 
CAPACITY OF INHOMOGENEOUS HYBRID WIRELESS NETWORKS IN THREE-DIMENSIONAL SPACE 

 

of traffic in different cells. Reference [9] have proposed 
the notion of interfering neighbors and proved that in 2D 
hybrid networks, for an arbitrary cell, the number of its 
interfering neighbors is bounded by a constant. We adopt 
this notion to the 3D inhomogeneous hybrid networks and 
obtain a similar conclusion. 

Definition 5: Interfering Neighbors. If there is a point 
in cell l which is within a distance (2 )r+ ! of some point 
in cell k, we say the two cells are interfering neighbors. 

Theorem 1: In an inhomogeneous hybrid network in a 
3D space, for each cell, the number of its interfering 
neighbors is bounded by c, c is a constant only depends 
on! . 

Proof: We denote the length of each side of a cell 
(cubelet) as a and assume that a br= , where b is a 
constant. Hence each cell is contained by a ball with 

radius 3
2
a and contains a ball with radius 1

2
a . 

If a cell l is an interfering neighbor of cell k, one point 
in cell l must be within a distance (2 )r+ ! of some point 
in cell k. Therefore, all the interfering neighbors of cell k 

must be contained by a ball with radius 3 3 (2 )
2
a r+ + ! . 

Hence, the number of interfering neighbors is loosely 
bounded by 

3 3

3

4 3 3[ (2 ) ]
3 2

3 3 24 2 
3

c a r a

b

b

!

!

= + + "

# $
+ + "% &

% &=
% &
% &
' (

. 

                                                                                       
By the theorem above, we can conclude that there is a 

spatial scheduling policy that each cell gets one slot to 
transmit data in every (1 )c+ slots. 

Theorem 2: If cell k is a dense cell, its aggregate 
capacity contributed by multi-hop mode is 

                 
2

3, 12 2( )
log ( )

k
m k k

k

p nT p W
p n

=!                     (2) 

where kp is the distribution probability of cell k. 

Proof: Since cell k is a dense cell, 1( )kp n
= ! , the 

number of source-destination pairs in cell k goes to 
infinity as n goes to infinity. According to the conclusion 
of reference [15], with large enough kN , the aggregate 
capacity contributed by multi-hop mode is: 

2

3 12( )
log

k

k

NT W
N

=! . 

By (1), we know that 2
k kN p n! as n goes to infinity. 

Hence, the aggregate capacity of cell k contributed by 
multi-hop is: 

2

3, 12

2 2

3 12 2

2

3 12 2

( )
log

( )
     ( )

log ( )

      = ( )
log ( )

k
m k

k

k

k

k
k

k

NT W
N

p n W
p n

p np W
p n

=!

=!

!

. 

                                                                                       
Theorem 3: If cell l is a sparse cell, its aggregate 

capacity contributed by multi-hop mode is 
23

, ( )m l l lT O p p n= , 

where lp is the distribution probability of cell l. 

Proof: Since cell l is a sparse cell, 1( )lp o
n

= , the 

number of source-destination pairs lN in cell l is 
constrained as n goes to infinity. We can not use the 
method in Theorem 2 to calculate the network capacity. 

Reference [15] gives the transport capacity when a 3D 
network is optimally operated, the transport capacity is: 

             
2
33 12( )

4
VnL Wn!
"

#
$

bit-mete/sec             (4) 

where ! is the average per-node transmission rate, L is 
the average distance of packets transmission, V is the 
volume of the space. 

Consider a sparse cell l, the volume 1
lV m
= , the and 

3

1( )L
m

=! . Since (4) gives the transport capacity bound 

of an optimally operated network, which is larger than that 
of a random network, we have: 

1 2
23 3 3

1 1
3 1( ) 2( ) ( )
4m l k l lT N N W N O N W!
"

# # =
$

 

Since 2
l lN p n! as n goes to infinity, we have: 

2 2 23 3
, 1( ( ) ) ( )m l l l lT O p n W O p p n= = . 

                                                                                       

C. Capacity Contributed by Infrastructure Mode 
Since the base infrastructures communicate through 

wired channels, their bandwidth assumed  not to be 
constrained. The bandwidths of uplink and downlink sub-
channels are both 2W . Thus, the throughput capacity is 
bounded by 2W . By the analysis above, we have the 
following theorem. 

Theorem 4: In 3D inhomogeneous hybrid networks, 
the aggregate capacity contributed by infrastructure mode 
is: 

                             2( )iT mW=! .                              (5) 

D. Aggregate Capacity of the Whole Networks 
Now we calculate the aggregate throughput capacity of 

the whole networks. The whole networks consist of dense 
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cells and sparse cells. For simplicity, we let dm denote the 
number of dense cells, sm denote the number of sparse 
cells. Thus we have d sm m m+ = . The following theorem 
shows the relationship of dm and m. 

Theorem 5: If ( )m o n= , we have 1dm ! ; 

if ( )m n=! , we have ( )dm o m= . 
Proof: For simplicity, we assume that cells1,2,..., l are 

dense cells, cells 1,...l m+ are sparse cells. Therefore, we 
have: 

           ( 1,... )
lim

const.( 1,... )n
i

i l
p n

i l m!"

" =#
= $

= +%
. 

Let 1

l

i
i

d
d

p n
n

m
==
!

, 1

m

i
i l

s
s

p n
n

m
= +=
!

, then we 

have: ( )dn n=! and ( )sn o n= .  

If ( )m o n= , we have: 

1( ... )
lim lim m

n n

p p nn
m m!" !"

+ +
= =" . 

It can be also written as: 

lim d d s s

n

m n m n
m!"

+
=" . 

Since 1sm
m

! and ( )sn o n= , we have 0dm ! . 

If ( )m n=! , similarly, lim d d s s

n

m n m n
m!"

+
is bounded 

by a constant. Thus we have ( )dm o m= . 
                                                                                     
The theorem above implies if the number of base 

stations is small, there is at least one dense cell. And if the 
number of base stations is large enough, the number of 
dense cells is limited. 

Based on the analysis above, we have the following 
theorem. 

Theorem 6: In 3D hybrid inhomogeneous network, if 
dense cell exists in the network ( 0dm ! ), the aggregate 
capacity is 

2
233 1 12 2

1 1
( ) ( )

log ( )

d

d

m m
k

m k l l
k l mk

p nT p W O p p n W
p n= = +

=! +" " (6) 

And if no dense cell exists in the network, the 
aggregate capacity is 

             23
1 2

1

( ) ( )
m

l l
l

T O p p n W mW
=

= +!" .              (7) 

Proof: If 0dm ! , by the conclusion of theorem 2 and 
theorem 3, the aggregate throughput capacity contributed 
by multi-hop mode is 

            

, ,
1 1

2

3 12 2
1

23

1

    ( )
log ( )

        ( )

d

d

d

d

m m

m m k m l
k l m

m
k

k
k k

m

l l
l m

T T T

p n
p W

p n

O p p n

= = +

=

= +

= +

=!

+

" "

"

"

.                     (8) 

Combining (5) and (8), we can obtain the aggregate 
capacity of the whole network: 

              
2

3 12 2
1

23
1 2

1

  ( )
log ( )

      ( ) ( )

d

d

m i

m
k

k
k k

m

l l
l m

T T T

p n
p W

p n

O p p n W mW

=

= +

= +

= !

+ +!

"

"

       (9) 

If 0dm = , 1 2 ... 0kp p p= = = = . Then the aggregate 
capacity contributed by multi-hop mode is: 

23

1
( )
m

m l l
l

T O p p n
=

= ! . 

The aggregate capacity of the whole network is: 
23

1 2
1

( ) ( )
m

l l
l

T O p p n W mW
=

= +!" . 

                                                                                     

E. Capacity Analysis 
In this section we discuss how the inhomogeneity 

affects the network capacity. Concretely, in our network 
model, for different cells, the distributions probabilities 
are different. Now we assume that all the dense cells have 
the same distribution probability, and so do the sparse 
cells. Then we have the following corollaries. 

Corollary 1: In 3D hybrid network, if all the dense 
cells have the same distribution probability 
( 1 2 ...

dm dp p p p= = = = ), and so do the sparse cells 

( 1 2 ...
d dm m m sp p p p+ += = = ), the aggregate throughput 

capacity of the whole networks is: 
2

' 233 22
( ) ( )

log ( )
d

m d d s s s

d

p nT m p O m p p n
p n

=! +     (10) 

Corollary 2: The aggregate capacity of a network 
where 1 2... dm

p p p! ! and 1 2 ...
d dm m mp p p+ +! ! ! is mT . 

If there is another network where all the dense cells have 

the same distribution probability 1

dm

k
k

d
d

p
p

m
==
!

and so do the 

sparse cells 1d

m

l
l m

s
s

p
p

m
= +=
!

, its aggregate capacity is '
mT . 

We have: 
'

m mT T> . 
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Proof: Let
2

2 2( )
log ( )
xnf x x
x n

= . According to L' 

Hospital rule, as n goes to infinity, we have: 
4 2

3
2 2

4 2 '

3
2 2 '

4

3 2 2
2

4 2

3
2

4 2 '

3
2 '

lim ( ) lim
log ( )

( )
              lim

(log ( ))

2              lim
12log( )

              lim
log( )

( )
              

(log( ))

             

n n

n

n
n

n

n

n

n

x nf x
x n

x n
x n

x n

x n x
x n

x n
x n

x n
x n

!" !"

!"

!"

!"

=

=

=
# #

=

=

3 4 2 x n=  
Therefore, when n is large enough, ( )f x is a concave 

function. We have: 

1

1
( ) ( )

d

d

m

m k
k

k d
k d

p
f p m f

m
=

=

>
!

! . 

Hence we can conclude: 
2 2

3 31 122 2 21 log ( ) log ( )

dm
k d

k d d
k k d

p n p np W m p W
p n p n=

>! .      (11) 

Similarly, let 3 2( )g x x xn= . Since ( )g x is also a 
concave function, we have: 

           2 23 3
1 1

1d

m

l l s s s
l m

p p n W m p p n W
= +

>! .              (12) 

Combining (6), (10), (11) and (12), we have: 
'

m mT T> . 
                                                                                     
The corollary above implies that in 3D inhomogeneous 

hybrid network, if the same type of cells exhibit 
homogeneity, the network capacity will decrease. In other 
words, suitable inhomogeneity can increase the 3D 
network capacity. 

IV. CONCLUSIONS 
In this paper, we propose an inhomogeneous hybrid 

network model where all the sensor nodes are distributed 
in a 3D space. By setting different sensor node 
distribution probabilities for cells, we divide all the cells 
into dense cells and sparse cells. We derive the aggregate 
throughput capacity of our network model and analyze the 
results we obtain. We find that under the same conditions, 
inhomogeneity can increase the network capacity. 
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