
SOA MEETS ROBOTS - A SERVICE-BASED SOFTWARE INFRASTRUCTURE FOR REMOTE LABORATORIES

SOA Meets Robots - A Service-Based Software
Infrastructure for Remote Laboratories

Peter Tröger1, Andreas Rasche2, Frank Feinbube2 and Robert Wierschke2
1 Blekinge Institute of Technology, Ronneby, Sweden

2 Hasso Plattner Institute at University of Potsdam, Germany

Abstract—With the ongoing internationalization of virtual
laboratories, the integration aspect becomes more
important. The meanwhile commonly accepted ’glue’ for
such legacy systems are service oriented architectures, based
on standardized and accepted Web service standards.

We present our concept of the ’experiment as a service’,
where the idea of service-based architectures is applied to
virtual remote laboratories. In our laboratory middleware,
experiments are represented as stateful service
implementations and jobs as logical service instances of
these implementations. We discuss performance, reliability,
security and monitoring issues in this approach, and show
how the resulting infrastructure - the Distributed Control
Lab - is applied in the European VetTrend project.

Index Terms—remote laboratory, service-oriented
architecture, VetTrend, stateful service instance, monitoring
data model

I. INTRODUCTION
The Distributed Control Lab (DCL) is a virtual

laboratory at the Hasso Plattner Institute in Potsdam,
which enables the remote usage of experiments for
teaching purposes. Authenticated users can submit control
programs for an experiment by the help of different front-
ends, such as the Web interface, a development
environment plug-in or a command-line interface. Each
control program by a particular user is called a job, which
is executed by a matching experiment controller that
steers the according physical experiment hardware.

The DCL infrastructure is responsible of distributing
incoming jobs to available experiments. Multiple
experiments of the same type, being able to handle the
same kind of job, are called experiment types. The

infrastructure supports both physical experiments and
simulations for the same experiment type. Simulations are
intended to help out in case of high load on experiments,
e.g. before a student assignment deadline. Simulations can
act as full replacement for the real experiment in most
cases, since students submit most of their jobs for
checking the correctness of their control application. This
only demands mainly a compiler run for the control
program in the particular runtime environment, but not a
real execution of physical activities [4, 6].

Beside the support for teaching activities, research in
the DCL project covers the question of protecting the
infrastructure against malicious code, which can
potentially harm experiment hardware or execution nodes.
It utilizes techniques such as automated source code
analysis, run-time monitoring and dynamic adaptation for
protecting the experiment infrastructure [5].

Within the DCL, several real-time control experiments
have already been integrated. Fig. 1 gives an overview of
some experiments connected to the DCL. Foucault’s
Pendulum as an experiment imitates Leon Foucault’s
famous experiment for measuring the earth rotation. An
iron ball is used for the pendulum that can be accelerated
using an electro-magnet connection to a control-PC via
USB. Two orthogonal laser-based light barriers provide
position information about the swinging ball. In this
experiment, students have to implement an algorithm
which evaluates the light barriers and switches the magnet
on and off to keep the pendulum swinging.

A second experiment is the Higher Striker, which
works like a linear motor. Seven electro-magnets are
placed around a tube of glass and can be used to accelerate
an iron cylinder. Light barriers among the tube can be
used to determine the position of the cylinder. The task of
the experiment is to analyze the data stream sampled from

Figure 1: The Distributed Control Lab

24 http://www.i-joe.org

SOA MEETS ROBOTS - A SERVICE-BASED SOFTWARE INFRASTRUCTURE FOR REMOTE LABORATORIES

the light-barriers and generate a control data-stream for
the magnets to move the cylinder to the top of the tube.
The electro-magnets and the light barriers are sampled by
a control-PC with a frequency of 38,4 KHz. We use this
experiment to teach the programming of embedded real-
time control applications and students compare different
real-time operating systems on the control-PC.

Another experiment shown in Fig. 1 is a model of an
assembly line controlled by a programmable logic
controller (PLC). In addition to the control program,
which has to be implemented in a PLC-language (IEC
61131), monitoring and HMI components are
implemented as Java and .NET programs, which be
uploaded via our laboratory infrastructure. Students can
use this experiment to experience heterogeneous
embedded control systems. Further experiments also
include the programming of Lego NXT robots and various
simulators for our physical experiment installations.

A. Motivation
For several years, the DCL installation at HPI was

based on a proprietary distributed .NET application. Both
the experiment controllers and the job scheduler where
realized with the .NET 1.1 framework and its proprietary
remoting technology. Meanwhile, new experiment types
require the experiment controllers to be implemented in
Java and other languages that are either not or badly
supported by the .NET remoting environment. This
requirement motivated the switch to a service-oriented
middleware, in order to integrate different execution
platforms for the experiment controllers.

During the utilization of the DCL infrastructure for the
European Vet-Trend project, we also faced the new
problem of integrating experiment installations from
different organizations. Since heterogeneous technologies
and execution platforms are in use in the field, a way
needed to be found to integrate these systems. This
requirement also motivated the usage of service
architecture to couple the experiment installations.

Another motivation to improve the existing DCL was
the new separation of compile and execution step for
single experiment runs. In the old architecture both steps
were coupled, causing many users to wait for a
compilation, while the physical experiment was in use by
a long running job. We wanted to avoid this possible
scalability bottleneck by using additional execution
resources for compile services in a dynamic fashion.

II. STATEFUL SERVICE CONCEPT
In order to realize the DCL as service-based distributed

environment, we applied results from our earlier Service
Infrastructure research [8] to the domain of remote/virtual
laboratories. Our stateful service approach extends the
idea of stateless Web services with the explicit notion of
service instances. Client applications (such as workflow
engines in typical SOA environments) are enforced to
perform an explicit service instantiation through a factory
operation. The factory returns a reference to a logical
service instance, which is described as WS-Addressing-
compliant XML document [2]. This document is then
used by the client for subsequent service invocations,
which are all automatically related to the initially created
session between client and server.

A logical service instance represents a stateful entity to
the client, but does not necessarily need to be realized by
only one physical service instance on a particular server.
This slightly extends the idea of standard Web service
frameworks, where services are referenced by an endpoint
URI for a particular service instance on a particular
machine. Instead, all clients communicate with a
coordination layer that routes SOAP requests (specifically
the SOAP body) to a matching execution host. All logical
and physical instances relate to their according service
implementation, which is realized as binary Web service
component, such as a Java Servlet or a .NET Assembly.
The kind of implementation for the particular service is
transparent to the client in this case, and depends only on
the available kind of execution hosts.

In our stateful service concept, a logical service
instance has query-able state and monitoring information,
expressed by uniformly accessible attributes. Our
implementation uses the specifications for the Web
Services Resource Framework (WSRF) to allow
interaction with stateful SOAP implementations. WSRF
combines the WS-ResourceProperties (WS-RP)
specification, which defines read, write and list operations
for Web service attributes [1], and the WS-
ResourceLifetime (WS-RL) specification, which defines
operations and WS-RP attributes for managing the
lifetime of a service instance [7]. Since both the attribute
access and the lifetime management is independent from
the particular service implementation, clients can access
and utilize this functionalities in all cases. The according
query and update operations become automatically part of
the service interface, as defined in the according
standards.

Figure 2: Service Infrastructure

A first implementation of this infrastructure concept
was realized and tested in the Adaptive Services Grid
project [12]. Fig. 2 shows how the logical service
instances for the client are managed by a coordination
layer, which schedules and manages the incoming
requests for the available set of physical service instances.
New service implementations can be deployed at runtime,
in which case the coordination layer chooses the right
execution host for the binary (service placement). Service
access is monitored by the request processing
components, which supports the unified gathering of
monitoring information for all service types. Service
implementations can use a central storage facility to
provide attribute values to the client or to save their own

iJOE – Volume 4, Issue 2, May 2008 25

SOA MEETS ROBOTS - A SERVICE-BASED SOFTWARE INFRASTRUCTURE FOR REMOTE LABORATORIES

state between invocations. The atomic services can either
implement some functionality by them self or act as proxy
for external functionality.

A. Experiment as a service
Based on our research results from the ASG project, we

identified the tackled problems to be similar in the context
of our new DCL infrastructure:

• Due to the usage of standardized SOAP-based
protocols, client and infrastructure
implementation should be enabled to rely on
different implementation platforms.

• Stateful interaction with services should be made
available to the client in an interoperable and
standardized manner.

• For scalability and maintainability reasons, new
service implementations should be deployable
during runtime. They should be able to utilize
additional execution resources on demand,
without effecting active requests and their
clients.

• Clients and services should be loosely coupled.
Service access and state data access should
therefore not relate to a particular execution
host.

• Open access to researchers, students and guest
users at the same time demands a prioritization
of specific requests according to the users’
identity.

In order to check the Service Infrastructure concepts
against a virtual laboratory application scenario, we
compared the old DCL infrastructure concepts with the
stateful service concepts of the ASG infrastructure. The
resulting mapping is shown in the following table.

TABLE 1: MAPPING OF DCL CONCEPTS ON STATEFUL SERVICES
Distributed Control Lab Stateful Service Concept

Experiment controller daemon Execution service implementation
Experiment compiler daemon Compile service implementation
Experiment simulation daemon Experiment service

implementation
Job for an experiment type Logical service instances of

compiler and execution service
Compiling a job Operation on a logical instance of

the compiler service
Running a job Operation on a logical instance of

the execution service
Job results Resource properties of the logical

instances for the execution service
List of all available
experiments

List of all usable execution
services

Status of users job Resource property of logical
service instance

Queue per physical experiment Queue per physical service
instance

Each DCL experiment controller, the software

component to execute jobs on physical experiment
hardware, can be represented by an experiment execution
service (or control service) implementation. It provides the
necessary interfaces to execute jobs and query job results.

Since most of the experiments expect the source code
of a control application as input, we also introduced the
notion of a compile service implementation. It is specific
to an experiment type and transforms source code to an

executable binary, which can be directly passed to an
execution service of a given experiment type.

The decoupling of compilation and job execution
improves the scalability of single experiment types.
Execution services act as proxy for the physical hardware,
and can therefore not be duplicated to multiple physical
instances on multiple computers. In contrast, the compiler
service acts as self-contained functional unit, and can be
replicated over multiple execution hosts.

As described in Table 1, every job for an experiment
type can be represented by creating a logical instance for
an execution service. The mapping between logical
instances and physical instances is managed by the
coordination layer (see figure 2). Each client therefore can
operate its own logical instance (or session) for an
experiment. The central request processing module queues
the incoming requests for the available physical instances.

The standardized support for service attributes allows a
unified representation of job results. Each physical
instance can store job results from the experiment run as
attribute values. The infrastructure relates such saved
attribute values to the logical instance triggering the
operation, and stores the value and related logical service
instance identifier in a central database. If the client now
queries its logical instance for some current attribute
value, the coordination layer can provide the latest data
made available by the execution service or the compile
service. This decouples write and read operations for
experiment data, and also decouples clients from
particular execution hosts for compilation or experiment
services.

Figure 3 shows an example workflow for the service-

based DCL infrastructure. After the experiment service
implementation has been deployed and configured (step
1), the user creates a logical service instance at the
Coordination Layer (step 2). In the next step (3) the
experiment is executed by invoking the described service
operations. The first time an experiment is used, the
Coordination Layer dynamically deploys a physical
service instance in an appropriate execution host.
Afterwards the user code is potentially compiled and
finally executed (step 3.1 and 3.2). In the last step the user
can acquire experiment results via resource properties of
the according logical service instance.

B. Instance destruction
A special activity to be considered by the infrastructure

is the concurrent usage and destruction of a logical service

Figure 3: Workflow in the Distributed Control Lab

26 http://www.i-joe.org

SOA MEETS ROBOTS - A SERVICE-BASED SOFTWARE INFRASTRUCTURE FOR REMOTE LABORATORIES

instance. The typical case is the cancellation of a long-
running experiment job by destroying the according
logical instance. With SOAP as basic access protocol, the
service consumer will send a destruction request message
to the infrastructure, while the response message to the
original service request is still pending.

With the destruction request in place, the infrastructure
coordination layer now has to decide how the still running
request is handled. This is mainly a decision based on the
nature of the according service. One typical approach in
HTTP-based Web service systems would be the
cancellation of the transport layer connection from
infrastructure to atomic service, which has the
disadvantage of an exception in the service
implementation.

In the case of the DCL service infrastructure, physical
service implementations therefore describe in their meta-
data which kind of cancellation they support. Simulation
services support the silent invalidation of the logical
instance on a destruction request. In this case, the service
call is completed by the physical instance and the returned
value is discarded. Execution services demand the explicit
retrieval of a cancellation call, in order to cancel the
experiment run on the connected hardware. They will
therefore not return a response message for the pending
call. Since the destruction of logical instances has no
influence on the local reference in the service consumer, it
might happen that requests are still performed outside of
the logical instances lifetime. This results in an error
response stating the non-existence of the logical instance.

It must be noted that service implementations shall not
be able to influence the life time of their logical instances,
in order to keep the strict separation of logical instance
coordination and physical execution layer. With such an
approach, all life time management remains on the level
of logical instances, enabling the flexible assignment of
resources.

In the following section, we will now describe the
implementation of the updated DCL based on the stateful
service concept.

III. IMPLEMENTATION DETAILS
In the current implementation of the DCL

infrastructure, new available experiments must be
announced by providing an implementation of execution
and compile service for a particular experiment type. The
experiment provider uploads a service package as binary
file, containing the service implementation and a
deployment descriptor. The deployment descriptor
contains meta-data such as scheduling configurations, a
description of the experiment for the frontend display,
properties of the service and the experiment type that is
used to group compile and execution services. During the
registration process, the WSDL of the services is
augmented with the necessary operations defined by the
WSRF standards for property and life-time management.

A. Experiment usage
To use an experiment, a logical service instance for

both compile and execution service has to be created by
the front-end. The created instances allow the usage of an
experiment by invoking the standardized
ExecuteExperiment or CompileExperiment
method on the logical instance. The DCL coordination

layer ensures that a working physical service instance
exists for any logical instances being successfully created.
If necessary, it places a new service by loading the
according service package to a remote host. Results of the
experiment runs are centrally stored and can be accessed
via the resource properties of the logical service instance.
Experiment hardware cannot be shared among multiple
jobs. Therefore, the coordination layer has to support the
serialization of invocations for physical service instances.

Listing 1 shows a sample implementation of an
execution service for the Lego NXT robot experiment.
Users can write control programs for robot movement, and
submit it to the infrastructure in order to see the resulting
physical activities of the experiment hardware. In the
implementation, the class NxtExecuteService
derives from the WebService base class, indicating the
implementation of a new Web Service. Each execution
service must implement the ExecuteExperiment
method, which receives the program image to be executed
as binary array. The method is called by the coordination
layer, based on the next request to be handled from the
queue of pending logical instance calls.

Listing 1: Experiment implementation

As first step in the example implementation, a camera
recording is started to save a video of the robot’s
movements during the job execution. Then the binary
program image is transferred to the NXT via a Bluetooth
connection. After the execution of the job, which is
indicated over the Bluetooth connection, results of the
experiments are saved in the infrastructure. The DCL
implementation automatically determines the related
logical instance and can therefore provide a generic
attribute access library for experiment services. This
simplifies the programming model, since the integrators of
new experiments don’t need to consider the logical
instance handling of the coordination layer.

Listing 2 shows a shortened example for the
implementation of a client using an experiment and
fetching the results afterwards. In the listing, logical
instances for compile and execution service are created
first. Each service instance is represented by an endpoint
reference object, in accordance to the WSRF specification.
The ExecuteExperiment method returns after the
finalization of the control program, or after the maximum
time allowed for execution has been expired. The result of

iJOE – Volume 4, Issue 2, May 2008 27

SOA MEETS ROBOTS - A SERVICE-BASED SOFTWARE INFRASTRUCTURE FOR REMOTE LABORATORIES

the experiment run can be acquired by accessing the
according service attributes with the WS-RP operations.

All DCL experiments are currently accessible over the
Internet. Therefore it must be ensured that only authorized
users can access the experiments. The DCL therefore
requires authentication data to be present in a SOAP
request as described by the WS-Security Username Token
Profile [3]. Furthermore, clients and experiment
developers are free to use other standardized mechanisms
to protect the message body.

Listing 2: Experiment client

B. Scheduling
In order to schedule Web service requests in our

infrastructure according to an assigned priority, two
problems needed to be solved. First, the priority decision
value that is encoded in the SOAP message needs to be
accessed. As most Web service stacks abstract from the
communication handling, the access to priorities is usually
not possible before the request processing starts. This
prevents a re-ordering of incoming requests according to
some priority setting. The problem was solved by
intercepting the SOAP processing in the Web service
stack, and analyzing the incoming raw XML data in a
custom preprocessing handler. This step also covers the
reaction on WSRF-compliant request messages, for
example for the attribute access, which is not covered by
the service implementation itself. The solution provides
fast access to the priority values and allows the correct
routing of the result messages.

Some of the experiment hardware requires a recovery
phase between successive jobs. This is implemented by
according queuing strategies in the coordination layer
implementation.

Using our central scheduling approach, we are able to
tolerate crash-faults, by having execution hosts installed
on redundant computers. Before executing a job, the
coordination layer checks whether the chosen physical
service instance is still operational. If this is not the case,
an existing physical service instance on another host is
used. If no more physical instances are available, the
coordination layer can also decide to deploy the service
implementations to another empty machine. The
infrastructure supports the addition of new execution hosts
at runtime, which allows the immediate reaction on
failures without down time for the whole infrastructure.

In a future step, we plan to delegate jobs to multiple
physical service instances in parallel and choose a result

according to a voting mechanism. This mechanism is
independent from the location of the execution host, and
can therefore support fail-over scenarios between multiple
interconnected virtual labs. For the sake of extensibility,
the coordination layer itself is not aware of the
deployment format of a service package. At the moment,
our infrastructure contains two different types of service
containers – one type to process .NET Web services, and
one type for JAX-WS Web services. Since all incoming
requests contain the information about the logical service
instance, successive jobs need not to be processed by the
same physical instance. This supports both load balancing
and fault tolerance for a particular experiment type, under
the assumption of reliable central data storage.

C. Performance data model
In order to rely the dynamic resource usage

mechanisms on according runtime information, we
developed a generic data model for performance
measurements in service infrastructures. The obtained data
is used to identify performance bottlenecks with
simulation and compilation services in the processing of
user requests. It also supports the dynamic scheduling of
requests to different physical instances.

Our data model is a combination of existing
specifications from different standards, especially
[9-11]. It focuses only on properties measurable on the
level of the service infrastructure itself. Other typical
performance counters from hardware and operating
systems, such as CPU load or process working set, are not
comparable between heterogeneous execution hosts.
Therefore, they cannot be utilized for an overall ranking
and analysis of services in the infrastructure and were
intentionally omitted.

The model distinguishes between performance values
per request, per logical instance and per service
implementation. Every logical instance allows the retrieval
of performance values of all these classes through the WS-
RP operations (see section II). The validity scope is
expressed by the namespace of the QName (e.g.
{'http://dcl/perf/callscope','state'}).

One example are implementation-scope values, which
are retrievable through all logical instances of this
particular implementation.

Performance values that are valid per request are either
measured in the coordination layer or in the runtime
environment for the physical instances:

• In the coordination layer
o Request / response retrieval time
o Request / response forwarding time
o Response time (duration)
o Request status

 Received
 Processed
 Finished
 Failed

o Request / response size
• In the service container

o Request processing start / end
o Utilized CPU time

28 http://www.i-joe.org

SOA MEETS ROBOTS - A SERVICE-BASED SOFTWARE INFRASTRUCTURE FOR REMOTE LABORATORIES

A single request has the status ‚received’ if the
coordination layer received the request message
completely, but did not forwarded the request to a
physical instance so far. The request is then in the status
‘processed’ as long as the physical instance did not send a
response message. The state ‘finished’ expresses the fact
that the processing is completed. Requests with the status
‘failed’ can occur if the service infrastructure had no
physical instance available, or if the response message
was identified as SOAP fault message.

The state change to ‘finished’ or ‘failed’ is triggered by
a generic SOAP interceptor in the service container, which
also reports the container-side performance values. The
state therefore does not imply any information about the
possible availability of experiment results, since this is an
implementation-specific issue.

The request processing time, as well as the utilized
CPU time is relevant for the dynamic usage of physical
instances of the same implementation on different
machines. The current implementation of our concept
obtains these values also in the SOAP interceptor.

In the second class of monitoring parameters, all values
are available per logical instance. As a specific
characteristic, these values are always also available per
implementation, basically as an aggregated version. All
the values collected in the coordination layer are:

• Number of successful requests
• Number of failed requests
• Successability rate
• Request throughput
• Average / maximum response time
• Maximum request / response size
• Processing time
• Life start / end

The successability rate expresses the relation between
the number of successfully processed requests (status
‘finished’) and the overall number of requests, similar to
[10].

It must be noted that the concept of accessibility from
this standard ([10]) is not used, since it would demand
some message retrieval acknowledgements from the
service consumer. This shows again the focus on
technology-independent performance metrics in our
model.

 For the computation of the request throughput, we
divide the number of all successful requests by the life
time of the instance / implementation. The average
response time per implementation is obtained accordingly.

The monitoring values in the third class are only
available per implementation:

• Status
o Available

 Busy
 Free

o Not available
 Stopped
 Failed

• Overall duration of available status (up time)
• Overall duration of failed status (outage time)

• Overall duration of not available status
(down time)

• Availability
• Reliability
• Number of physical / logical instances

A ‘busy’ implementation is in general available by its
logical instances, but has some pending requests at the
time of querying. A ‘free’ implementation has no pending
requests. This distinguishing can be used for choosing
between different implementations before logical instance
creation, and is based on the assumption that state changes
are comparatively infrequent.

The non-availability of an implementation, even though
the logical instances are still provided, can be transient
(reconfiguration, failures) or permanent (de-installation).
In both cases, logical instances remain accessible on the
coordination layer, to provide an endpoint for late result or
performance data retrieval.

Up time, outage time and down time are updated on
every status change of the implementation. The
availability value describes the portion of time where the
implementation was ‘available’. The reliability value is
computed according to [11], based on the mean time
between failures for the implementation.

The overall monitoring model was implemented as part
of the updated DCL infrastructure. SOAP interceptors on
the execution hosts report the current values to the
coordination layer by asynchronous messaging protocols.
The coordination layer aggregates the data sets and offers
them of the logical instances to interested clients.

IV. OPERATIONAL EXPERIENCES
Within the VET-Trend project, we started a first pilot

effort for testing experiment integration with the
Technical University Darmstadt and at the Hasso Plattner
Institute. TU Darmstadt is operating a remote laboratory
for reconfigurable hardware modules, which can be
programmed and tested by according tools. In order to
perform the integration, TU Darmstadt provides an
experiment and compilation service interface for their
experiments, which is called by our infrastructure.

Practical tests showed that the usage of SOAP
messaging to query information about experiment runs is
the most time consuming task in the new infrastructure.
Since most of the job-related information remains constant
during their life-time, we integrated several caches in parts
of the infrastructure. With this technique, the number of
fully processed service invocations at the coordination
layer was dramatically reduced.

From a technological perspective, we successfully
interconnected an ASP.NET frontend with the
coordination layer written in Java 6. Current execution
host are programmed both in Java and .NET, and initial
experiments already showed the possibility also for other
platforms. In general, the usage of mature Web service
standards and the consideration of WS-I regulations has
shown to be helpful in order to achieve true
interoperability in a heterogeneous middleware
environment.

iJOE – Volume 4, Issue 2, May 2008 29

SOA MEETS ROBOTS - A SERVICE-BASED SOFTWARE INFRASTRUCTURE FOR REMOTE LABORATORIES

V. RELATED WORK
Many universities around the world provide virtual and

remote laboratories with a variety of experiments.
Nevertheless only a few of these labs rely on Web service
communication between users and experiments. In
contrast to our approach, which uses an extended Web
service infrastructure with integrated support for stateful
service, load balancing and fault tolerance these features
cannot be found in most other approaches.

The MIT iLab project [14][15] provides an open source
framework with common functionality for the operation of
virtual/remote laboratories. iLab relies on a three-tier Web
architecture including client applications, intermediate
service brokers and lab servers. Users do not communicate
with experiments directly, but use a Web service interface
provided by service brokers. A service broker is a generic
actor provided by iLab, which synchronizes access to lab
servers and also handles authorization and authentication
of users. The service broker forwards experiments usages
from users with a computed trust level to the lab servers,
which are totally decoupled from user management and
synchronization details. iLab uses Web services to
interconnect experiments residing in on different cam-
puses.

IsiLab [13] is a web-based remote laboratory for
measurement experiments in electronics. Behind a portal
tier, which generates web pages for users, a workflow
manager coordinates Web service invocations within the
engine tier and into the resource tier. In the resource tier,
measurement instruments can be accessed via Web
services. Their usage is synchronized by an additional
instrument reservation Web service. An experiment
workflow ensures that all necessary resources are reserved
during an experiment execution. Together with the
workflow, the WS-execution engine service manages user
working sessions. IsiLab has much in common with our
approach and besides iLab it is one of the most advanced
projects using Web services for remote labs. IsiLab
currently is restricted to a web page. Our approach has
advantages in the flexibility for end-users. It offers a very
convenient way to access experiments directly via the
offered stateful services. This allows for an easy
integration of experiment access into standard
development tools.

VI. CONCLUSION
The utilization of service-oriented software

architectures for remote/virtual laboratories is a promising
approach for solving the typical problems of cross-
organizational access, scalable behavior and dynamic
resource usage. We presented our concept of an
’experiment as a service’, were physical service instances
provide access to the experiment hardware and logical
service instances represent according user jobs. The
application of mature Web service technologies allows
establishing a transnational virtual laboratory
environment, which integrates experiments and users from
different sites all over Europe. First steps toward such an
infrastructure already have been taken.

We have successfully used our laboratory infrastructure
in courses on embedded systems, held at the Hasso
Plattner Institute and the Blekinge Institute of Technology
in Sweden. The integration of new experiments from other
organizations has just started.

Future work we will concentrate on the integration of
further experiments and on the improvement of our
service-oriented laboratory middleware according to user
and integrator feedback. Beside the batch mode
programming of hardware modules, we also identified the
need for an interactive mode, which is required to perform
test cycles at the downloaded hardware configuration. The
interactive mode will be realized as stream-based
interaction with an experiment during the execution of a
job.

REFERENCES
[1] S. Graham and J. Treadwell. Web Services Resource Properties

1.2 (WS-ResourceProperties). OASIS Open, June 2004.
[2] M. Gudgin, M. Hadley, and T. Rogers. Web Services Addressing

1.0 - Core. World Wide Web Consortium (W3C), May 2006.
[3] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web

Services Security UsernameToken Profile 1.1. OASIS Open, Feb.
2006.

[4] A. Rasche and A. Polze. Configuration and Dynamic
Reconfiguration of Component-based Applications with Microsoft
.NET. In International Symposium on Object-oriented Real-time
distributed Computing (ISORC), pages 164–171, May 2003.

[5] A. Rasche, M. Puhlmann, and A. Polze. Heterogeneous Adaptive
Component-Based Applications with Adaptive.Net. In
International Symposium on Object-oriented Real-time distributed
Computing (ISORC), pages 418–425, 2005.

[6] A. Rasche, P. Tröger, M. Dirska, and A. Polze. Foucault’s
Pendulum in the Distributed Control Lab. In Proceedings of IEEE
Workshop on Object-Oriented Realtime Dependable Systems,
pages 299–306, Oct. 2003.

[7] L. Srinivasan and T. Banks. Web Services Resource Lifetime 1.2
(WS-ResourceLifetime). OASIS Open, June 2004.

[8] P. Tröger, H. Meyer, I. Melzer, and M. Flehmig. Dynamic
Provisioning and Monitoring of Stateful Services. In Proceedings
of the 3rd International Conference on Web Information Systems
and Technologies (WEBIST 2007), pages 434–438, Mar. 2007.

[9] I. Sedukhin. Web Services Distributed Management: Management
of Web Services (WSDM-MOWS) 1.0. OASIS Open. Mar. 2005

[10] E. Kim and Y. Lee. Quality Model for Web Services. OASIS
Open. September 2005

[11] J. C. Laprie. Dependability. Basic Concepts and Terminology.
Springer Verlag, 1998. – ISBN 978-3211822968

[12] D. Kuropka, P. Tröger, S. Staab and M. Weske. Semantic Service
Provisioning. Springer Verlag, 2008 – ISBN 978-3-540-78616-0

[13] G. Donzellini and D. Ponta. The electronic laboratory: traditional,
simulated or remote? In Advances on remote laboratories and e-
learning experiences. University of Deusto, 2007 - ISBN 978-84-
9830-077-2

[14] J. Harward, T. T. Mao, and I. Jabbour. iLab. Interactive Services -
Overview. http://icampus.mit.edu/iLabs/Architecture, 2006.

[15] The iLab Project. The Challenge of Building Internet Accessible
Labs. http://icampus.mit.edu/iLabs/Architecture, 2004.

AUTHORS
Peter Tröger is with the Blekinge Institute of

Technology, Department of Systems and Software
Engineering (APS), PO Box 520, SE-37225 Ronneby,
Sweden (e-mail: peter.troger@bth.se).

Andreas Rasche, Frank Feinbube, and Robert
Wierschke are with the Hasso Plattner Institute, Prof.-
Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany (e-mail:
[andreas.rasche|frank.feinbube|robert.wierschke]@hpi.uni-
potsdam.de).

Manuscript received April 2008. Published as submitted by the

authors.

30 http://www.i-joe.org

