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Abstract—A multi-agent coordinate ion is addressed in 
urban traffic control, which uses the recursive modeling 
method (RMM) that enables an agent to select its rational 
act ion by examining with other agents by modeling their 
decision making in a distributed multi-agent environment. 
Bayesian learning is used in conjunction with RMM for 
belief update. Based on this method, a multi-agent traffic 
control system is established and the results rated its effec-
tive.  

Index Terms—Multi-agent system, Intelligent agent, Agent 
learning, Bayesian learning 

I. INTRODUCTION 
Multi-agent systems [MAS] have demonstrated their 

potential for solving complex problems in various do-
mains. One attribute of agents which lends itself to prob-
lem solving is intelligence, which refers to the level of 
reasoning and learned behavior exhibited by an agent [12]. 
Higher levels of intelligence exist when agents can adapt 
to their environment [10]. Such adaptation involves learn-
ing about the user's objectives and resources available to 
the agent in its environment. Learning is also thought of as 
belief revision [1,3,18]. This is the actual mechanism by 
which adaptation, and thus learning occurs. Traditional 
machine learning has developed a wide variety of algo-
rithms for providing single-agent systems with learning 
capacity [22]. Among the main classes of algorithms for 
traditional machine learning are induction of trees and 
rules, learning in neural nets, system classifiers and genet-
ic algorithms, reinforcement learning, case-based learning, 
logic-based learning, and some others. However, these 
algorithms do not apply directly when used in MAS. 
Learning in multi agent systems has opened new chal-
lenges and opportunities for researchers. 

Research has focused on developing learning agents 
that can adapt to their environment in order to achieve 
enhanced performance [4,16,19,23]. The concept of agent 
learning has also been applied to develop an adaptive 
interface agent in MAS. The research on agent learning 
has primarily addressed learning a user's preference model 
[8,11,21,29] and typically involves a single agent. MAS 
research on learning has been in the area of negotiation, 
and learning strategies of other agents [27]. Little research 
has been conducted to develop agents that learn free-text 
queries and keyword searches in MAS. 

The objective of this paper is to address this open re-
search area by presenting a Bayesian learning approach 
for Web-based MAS. Bayesian learning has previously 
been applied to MAS for performance enhancement 
[4,16,19], and has been identified as one of the most suc-

cessful algorithms for classification [22]. Because the 
MAS presented in this paper seeks to resolve incoming 
queries in a timely and accurate fashion by learning to 
classify incoming queries based on past experience, a 
Bayesian approach is employed. A primary distinction 
from past work on Bayesian learning in MAS is that a 
negotiation problem is not used to illustrate learning. In-
stead, we use a cooperative system that does not involve 
negotiation between agents. In addition, the Bayesian 
approach presented in this paper learns to identify an ap-
propriate agent to answer free-text and natural language 
queries as well as keyword searches submitted by users. 
The efficacy of MACS is determined by analyzing the 
accuracy of learning in the system. This work builds on 
past work by Liebowitz et al. [20], by extending MACS 
from a multi-agent system lacking the ability to learn from 
and adapt to its environment, to a truly intelligent multi-
agent system. 

The next section describes the MACS system. Then 
Section 3 provides an overview of Bayesian learning in 
multi-agent systems. Section 4 describes how Bayesian 
learning is implemented in MACS, while Section 5 ana-
lyzes the effectiveness of Bayesian learning in MACS. 
Finally, Section 6 draws conclusions from the analysis and 
suggests future research directions. 

II. MACS 
The MACS system is a MAS developed for procure-

ment and acquisition of defense contracts. Specifically, it 
is designed to assist Acquisition Request Originators 
[AROs] and Contracting Officer's Technical Representa-
tives [COTRs] with the pre-award phase of contracting 
and procurement [20]. The system architecture consists of 
nine agents—a User agent, a Facilitator agent, a Natural 
Language agent, a Machine Learning agent, and five spe-
cialty agents. The specialty agents are encoded with do-
main knowledge about the five general areas of expertise 
required of AROs/COTRs, and the user agent interfaces 
with AROs/COTRs. Interaction between AROs/COTRs 
and the system occur through either keyword searches or 
natural language queries. As shown in Fig. 1, the MACS 
architecture implements a three-tiered brokered architec-
ture. The Facilitator agent coordinates agent activities and 
communicates with the agent(s) capable of responding to 
an incoming query. 

The User agent interacts with the user/ARO/COTR to 
welcome the user, ask what pre-award questions the user 
has, and serve as the interface between the user/ 
ARO/COTR and the other agents in the system [20]. Two 
business logic threads have been designed into the User 
agent. One thread supports the Natural Language capabil-
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ity of the system, and the other supports the keyword 
search capability of the system. The User agent sends 
incoming user queries to the Facilitator agent, which is 
responsible for communicating with all of the other agents 
in the MACS system as illustrated in Fig. 1. 

 
Figure 1.  Agent architecture and communication channels. 

Natural Language queries submitted by users are for-
warded, by the Facilitator agent, to the Natural Language 
[NL] agent for parsing, and the parsed keywords are then 
forwarded to the Machine Learning [ML] agent. The de-
tailed description of the NL parsing process is presented in 
Yoon et al. [30]. The user queries selected from a list of 
predetermined keywords are directly forwarded to the 
Machine Learning [ML] agent by the Facilitator. The ML 
agent implements Bayesian learning and creates an action 
plan, and that plan is then issued back to the Facilitator 
agent for completion. In MACS, the action plan is essen-
tially a determination of which specialty agent(s) should 
be contacted to respond to an incoming query. The facili-
tator completes the action plan by performing the neces-
sary low-level communication between the specialty 
agents. These communications lead to solutions being sent 
from a specialty agent (or agents) to the Facilitator agent 
and then from there to the User agent. As solutions to a 
query are collected, the ML agent updates its internal 
tables, making note of which agents responded to which 
user queries. This information is used to calculate the 
response plan for similar queries in the future. 

The five specialty agents in the system relate to the pre-
award phase of a contract and include the Forms, Justifi-
cation, Evaluation, Synopsis, and Type of Contract agents. 
The Forms agent identifies the forms needed to complete a 
procurement request package. The Justification agent 
indicates situations where a justification and approval is 
required to complete a procurement request. The Evalua-
tion agent provides guidelines for evaluating proposals. 
The Synopsis agent identifies the type of synopsis for a 
given procurement request. Lastly, the Type of Contracts 
agent identifies the type and nature of a contract based on 
conditions such as the source of contract, the nature of the 
work, etc. 

Each specialty agent in MACS contains a rule base and 
has explicit goals. Its rule base describes how to achieve 

the goals under varying circumstances. The specialty 
agents respond to incoming queries by presenting neces-
sary information and/or requirements for AROs/COTRs. 
For example, the Evaluation Agent can assist an 
ARO/COTR with information regarding how to evaluate a 
project and what criteria or weights to use for evaluation 
of a contract. If an ARO/COTR has a question regarding 
“determining weights on evaluation criteria,” the Evalua-
tion agent will reply with “You can develop your own 
weights on technical, qualifications, and cost criteria. 
Generally speaking, a weight of 40% (out of 100%) is 
given to cost.” [20]. The knowledge contained within each 
specialty agent is independent of the knowledge contained 
within the other specialty agents. Thus, coordination be-
tween the specialty agents is not required for the current 
implementation. However, each specialty agent does co-
ordinate with the user agent in order to answer queries. In 
the original system [20], the user agent broadcasts mes-
sages to all specialty agents. The learning capability that is 
now part of MACS allows the user agent to learn which 
specialty agent(s) should receive incoming messages. The 
user agent asks the ML agent to determine which specialty 
agent(s) should receive the query. The ML agent makes 
this determination probabilistically, by means of Bayesian 
learning. This is explained more fully in Section 4. 

MACS has been implemented using the Open Agent 
Architecture [OAA], which is supported by the Artificial 
Intelligence Lab at the Stanford Research Institute. The 
Facilitator agent functions as part of MACS, but it is a 
specialized server agent that is part of OAA, and it per-
forms many basic functions. The Facilitator agent has the 
ability to route messages, manage data, and fire registered 
triggers as well as accept incoming messages. 

Furthermore, the rules for MACS have been encoded as 
XML documents. The XML encoding of the rules offers a 
flexible means for rule modification that was not possible 
in the earlier version of MACS [20]. Each specialty agent 
loads the XML document as its rule base. The rule base is 
used to compare against incoming queries to determine if 
a rule is true or false. The XML rule bases are simply 
ASCII documents that are served up by a web server. A 
series of web forms have been designed for modification 
of the rule bases and general system maintenance. 

III. BAYESIAN LEARNING IN MULTI-AGENT SYSTEMS 

A. Background 
Bayesian probabilistic inference has been widely used 

to reason and draw conclusions in the presence of uncer-
tain knowledge in intelligent systems [24]. Bayesian in-
ference uses a natural posterior probability update of a 
prior probability for a hypothesis to determine how likely 
it is that a hypothesis will be true given certain “evidence” 
exhibited by the data. Graphically, a Bayesian network 
may be used as a probability model that is represented as a 
directed acyclic graph [DAG], where nodes of the DAG 
represent random variables and the arcs represent depend-
encies among variables. The dependencies may represent 
causal relationships, where the arrows point from the 
causes to the effects. Bayesian inference is commonly 
used in machine learning for classification and prediction 
problems as well as information retrieval and user profil-
ing tasks. Moreover, Bayesian inference provides a math-
ematically optimal method via maximum a posteriori 
(MAP) estimation (see [17] for details), which we choose 
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to employ here. Bayesian inference also provides a com-
putationally tractable algorithm via naïve Bayes classifica-
tion (see [17]), that scales easily and operates efficiently. 

Bayesian inference and, more generally, Bayesian net-
works, are extremely convenient and useful for automated 
reasoning techniques where prior opinion influences the 
final outcome. In one approach to Bayesian modeling, 
human experts are responsible for designing the network 
structure (or DAG) by identifying the variables and find-
ing the dependencies among the variables. They are also 
responsible for subjectively estimating and calculating the 
conditional probabilities associated with each node. In 
recent years, attempts have been made to automate both 
the design of the network structure and the calculation of 
the conditional probabilities from empirical data [2,7,14]. 
This automated process is known as Bayesian learning. In 
this case, prior probabilities are subjective, while condi-
tional probabilities are unknown and rely on empirical 
data for their probability estimates. Ideally, in a fully au-
tomated Bayesian network, the DAG's structure and its 
conditional probabilities may be “learned” (or updated) 
automatically as new data arrives in order to facilitate 
Bayesian inference for a particular node in the DAG, 
given the observable results from a subset of the remain-
ing nodes. In [13], a celebrated tutorial on Bayesian learn-
ing describes a Bayesian model as “an ideal representation 
for combining prior knowledge (which often comes in 
causal form) and data” as well as one which “readily han-
dles situations where some data entries are missing.” Fur-
thermore, in a DAG where “attribute” nodes are assumed 
to be conditionally independent given the value of a “tar-
get” variable , thus producing a naive Bayes model, we 
have both the simplest paradigm for Bayesian learning 
and also the most realistic, given our underlying assump-
tions in MACS. 

B. Multi-agent systems 
Essentially, Bayesian learning in MAS allows agents to 

use new or updated knowledge about other agents in the 
system to enhance performance of the system as a whole. 
There is a plethora of prior work on multi-agent learning 
from many researchers [4,16,19,23,25,31]. Much of this 
research has addressed learning in autonomous negotia-
tions and learning organizational roles (i.e., group dynam-
ics). Our work differs by looking at a problem that does 
not involve negotiation. Rather than learning preferences 
of other agents, the MACS system learns abilities of other 
agents in order to enhance performance and efficiency of 
the system. Furthermore, the MACS system applies agent 
learning to the domain of defense contracting. Zeng and 
Sycara [31] present an approach to negotiation in MAS 
based on the sequential decision making paradigm, where 
decisions are dependent on each other and the decision 
maker has a chance to update his knowledge based on 
feedback after implementing the decision at each step in 
the sequence. 

This allows for more informed decision making as the 
series of decisions progresses. Their sequential decision 
making model, Bazaar, learns by explicitly modeling 
beliefs about the negotiation environment and the partici-
pating agents under a Bayesian probabilistic framework. 
Li and Cao [19] present a Bayesian approach to learn the 
incomplete information of an opponent agent to enhance 
the negotiation efficiency. This method is applied to bilat-
eral multi-issue negotiation in agent-mediated e-

Commerce. Ishihara, Huang, and Sim [16] use Bayesian 
updating rules to learn opponents' eagerness in a market 
driven negotiation model. Recent work by Contizer and 
Garera [6] present a Bayesian approach to learn the opti-
mal reward to motivate an agent to take a certain action 
useful to the principle agent. Their work demonstrates that 
the approach effectively learns the optimal reward quickly 
when the prior belief is limited to a certain class of distri-
butions. Prasad, Lesser, and Lander [25] present a differ-
ent type of learning in MAS — coordination. Their work 
looks at how agents can change their behavior as they 
learn about the MAS of which they are a part. As an 
agent's knowledge of the system configuration changes, it 
adjusts its behavior to help meet the common goals of the 
system and enhance its overall performance. Learning 
occurs as each agent learns which part(s) of the common 
goal it can work to solve. Chalkiadakis and Boutilier [4] 
present a Bayesian approach to model multi-agent rein-
forcement learning problems that enable agents to reason 
about their uncertainty regarding the underlying domain 
and the strategies of other agents. This Bayesian approach 
improves online performance of reinforcement learning 
agents in coordination problems, when compared to heu-
ristic exploration techniques that attempt to induce con-
vergence to optimal equilibrium. Chalkiadakis and Bou-
tilier [5] also introduce a Bayesian “reinforcement learn-
ing” model for coalition formation under uncertainty. This 
model enables coalition participants to adjust their uncer-
tainty regarding the value of potential coalitions and the 
capabilities of others. A formal model of implicit imitation 
for reinforcement learning introduced by Price and Bou-
tilier [26] also uses the Bayesian method. This model 
learns useful behaviors by making intelligent use of the 
knowledge implicit in the mentors' behaviors. Sahin [28] 
also presents a Bayesian network approach for self-
organization in a multi-agent system. 

IV. LEARNING IN MACS 
In this section, we describe how learning is undertaken 

in MACS. Bayesian learning is applied in the ML agent so 
that it can learn which specialty agents should receive 
incoming messages. In particular, we use a naïve Bayes 
classifier to allow the “user agent” in MACS to redirect 
each input query to its appropriate “specialty agent,” given 
our available “ground truth” in the form of actual human-
verified queries with their “correctly judged” specialty 
agents as respondents. Our basic idea then is to establish 
patterns among input queries as they are being submitted 
in order to accurately predict (with high probability) 
which specialty agent should most likely respond to a new 
(and possibly different) query. Our approach is similar to 
that of Heckerman and Horvitz [15] where user goals are 
inferred from user queries using a naïve Bayes classifier. 
However, their approach [15] allows for free-text queries 
to a database, whereas MACS is designed for free-text and 
natural language queries as well as keyword searches in a 
multi agent system. Our approach is also flexible enough 
to “score” (in the sense of MAP estimates) new and un-
seen queries because it relies on our assumption of statis-
tical independence among the specific keywords that are 
selected from each of five (set) menus associated with 
each of the five specialty agents. This independent as-
sumption is the key to a computationally feasible and 
conveniently realistic Bayesian model. 
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Essentially, the user agent employs a Bayesian model to 
identify which of five specialty agents, ai, i=1, 2, 3, 4, 5, is 
most likely to respond correctly (as judged from ground 
truth) to a query, q, given the evidence, ej, appearing in the 
query q, where q=! ej, j=1, 2, 3, 4, 5, and ej refers to the 
specific keyword taken from the jth menu, where menu 
items are fixed and depend on the particular specialty 
agent. So, in MACS we may take each incoming query, 
qincoming, to be the Boolean “and” of five specific keywords 
that may be found on each of the five different menus. 
Our Bayesian learning procedure simply updates the prob-
ability, P(ai), for each of the five specialty agents, as P(ai 
|qincoming), in light of the “evidence” provided by the in-
coming query, i.e., qincoming=! ej, j=1, 2, 3, 4, 5, condition-
al on the ith agent ai (note that P(ai)=0.2 initially for all i). 
We may then summarize our resultant action in terms of 
Bayes rule by stating that the largest posterior probability, 
maxi P(ai |qincoming), i=1, 2, 3, 4, 5 (after we have observed 
the specific query, qincoming), is our maximum a posteriori 
(MAP) probability estimate that determines to which of 
the five specialty agents the incoming query, qincoming, 
should most likely be directed (see [9] for a discussion of 
MAPs). Our use of MAP estimation as a Bayesian classi-
fication method is indeed mathematically optimal in that it 
achieves the minimum error rate for all possible classifiers 
(refer to [17, p. 207] and [22, p. 174] for proofs of this 
fact). We further notice that computing and updating 
MAPs is quite easy via direct application of Bayes Rule 
since maximization of the posterior-to-prior probability 
ratio, given by P(ai |qincoming) / P(ai), is mathematically 
equivalent to maximization of the likelihood function, 
given by P(qincoming |ai ), i=1, 2, 3, 4, 5. Under our assump-
tion of statistical independence of the evidence as repre-
sented by keywords, ej, where qincoming=! ej, j=1, 2, 3, 4, 5, 
conditional on the ith agent ai, we may conveniently write 
the likelihood function as a product of conditional proba-
bility estimates of P(ej |ai) for fixed I and for each specific 
ej. To obtain these individual probability estimates, we 
initially “train” our Bayesian learning model by relying on 
ground truth queries that have been associated with their 
“correct” specialty agents. We then compute the probabil-
ity estimates for each keyword used on the jth menu by 
simply keeping track of the number of times each particu-
lar keyword was used in an incoming query, which was 
known to be associated with one of the five specialty 
agents. In this manner we compute and update likelihood 
“scores” for each of the five specialty agents as users input 
their queries. 

  Since a menu item is either present or absent in a par-
ticular incoming query, we may represent each query as 
an “exploded” binary vector, where ones in this vector do 
the necessary bookkeeping for us and also allow us to 
easily estimate and update the probabilities of keywords 
used in each specialty agent's menu. Furthermore, since 
the number of menu items (keyword choices) is fixed, we 
may estimate the probabilities of unseen keywords (i.e., 
those keywords not chosen by users) from the jth menu in 
a particular query as simply 1 / [nj(m+1)], where nj, j=1, 2, 
3, 4, 5, is the total number of menu items for the jth menu 
in MACS and m is the total number of user input queries. 
This type of smoothing of probability estimates [17, p. 
219] facilitates our “scoring” of incoming queries consist-
ing of one or more previously unseen menu items and also 
prevents any score from ever being equal to zero. Unless 
certain menu items are very rarely used, we will generally 

have non-uniform probability estimates for each menu 
item and will update them for each new incoming query, 
as our Bayesian learning paradigm guarantees. 

We present our Bayesian learning algorithm in the fol-
lowing steps: 

1. 1llow user to enter a query, qincoming. 
2. Employ Bayesian reasoning to determine which ai 

should receive the user's query. 
3. For each ai (i=evaluation, synopsis, justification, 

forms, type of contracts): 
a. CALCULATE the percentage of time each keyword 

appears in all qexisting (e.g., evaluation criteria appears 
in 80% of existing queries sent to an evaluation). 

b. CALCULATE the probability P (evidence |ai) by 
multiplying all percentages calculated in the imme-
diately preceding step that correspond to qincoming. P 
(evidence |ai) represents the likelihood that a query 
actually corresponds to the domain knowledge of 
that ai. This is a causal relationship from the cause ai 
to the effect qincoming. 

c. EMPLOY the Bayesian formula by: (i) multiplying 
the prior probability, P(ai), by P(evidence|ai), (ii) ob-
tain the sum of products found in (i), and (iii) divide 
each individual product computed in (i) by the sum 
in (ii) to normalize results. This will yield the proba-
bility P (ai | evidence). The prior probability, P(ai), 
represents the probability that qincoming should be sent 
to a particular ai given no evidence. Initially, 
P(ai)=0.2 for all i. Then P(ai | evidence) is the poste-
rior probability of ai given the keyword evidence. 
This probability assesses the likelihood that a spe-
cialty agent will address qincoming based on the evi-
dence provided by qincoming itself. 

d. DIVIDE the probability P(ai | evidence) by P(ai) to 
obtain the likelihood scores for each i. 

4. After completing the calculations for each ai, do the 
following: 

a. IDENTIFY which result in 3(d) has the largest val-
ue. 

b. SEND qincoming to the corresponding ai. 
c. ADD qincoming to the list of qexisting, given the corre-

sponding ai, for updating purposes. 
 

The learning model is displayed in Fig. 2. This model is 
a simple Bayesian network in that it shows a causal rela-
tionship between the specialty agents and the evidence in 
the query. ai is a random variable with a probability distri-
bution over the five specialty agents, assumed to be a 
uniform distribution a priori. Evidence is a random varia-
ble gathered from qincoming, with a probability distribution 
over the attributes associated with each specialty agent, 
where attributes are assumed to be independent. Evidence 
consists of keywords that are extracted from a user's natu-
ral language query and used to probabilistically determine 
which specialty agent(s) should most likely receive qincom-
ing. An example of how Bayesian learning is implemented 
in MACS is provided in subsequent paragraphs. The prior 
probability for each specialty agent represents the likeli-
hood that particular agent will respond to an incoming 
query. The prior probabilities are adapted over a series of 
runs, and the values displayed below are from a point in 
time prior to the sample run used in this example. In this 
example, the Contracts agent has the greatest probability, 
when compared to the other specialty agents, of respond-
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ing to a new query. This indicates that a majority of the 
incoming queries contain terms that are used by the Con-
tracts agent. It is important to note that all of the prior 
probabilities sum to one; the probability displayed as 1.0 
for the Contracts agent is rounded up and is not actually 
1.0. 

Agent                                              Prior probabilities 
Forms                                2.5822858689540867 E"242 
Contracts                                                  1.0 
Justification                      1.0240324973261967 E"166 
Evaluation                        1.9181461523891187 E"214 
Synopsis                           3.6206243551615097 E"190 

 

  
Figure 2.  Bayesian network for the user agent. 

The example run includes the following four keyword 
terms: 

1. Not on GSA Schedule 
2. Cost plus fixed fee 
3. Synopsis format 
4. Sole source (non-competitive) procurement 

 

The terms are sent to the Machine Learning agent and 
the Bayesian formula is applied. The learning procedure is 
detailed below. 

Agent                                      Probability (evidence/ai) 
Forms                                     1.0000000000000004E"20 
Contracts                                3.698224852071007E"14 
Justification                            1.0526315789473686E"16 
Evaluation                              1.0000000000000004E"20 
Synopsis                                 1.5306122448979592E"12 

 

The probability(evidence/ai) values for each specialty 
agent are then multiplied by their respective prior proba-
bilities and summed. This value is used in a subsequent 
calculation. 
(2.5822858689540867E-242*1:0000000000000004E-20) 
+(1.0*3:698224852071007E -14) 
+(1.0240324973261967E-166*1.0526315789473686E-
16) 
+(1.9181461523891187E-214*1.0000000000000004E-
20) 
+(3.6206243551615097E-190*1.5306122448979592E-
12) 
=3.698224852071007E -14 
 

The next step is to calculate the updated prior probabil-
ity values, as well as the probability P(ai/ evidence). These 
values are used to determine the order in which the agents 
will be contacted to answer the incoming query. The cal-
culations used for the Forms agent are included here. The 
same calculations are made for each agent (Table 1). 

 
 
 

TABLE I.   
CALCULATION RESULT FOR EACH AGENT 

 
 
Posterior probability: 
1.0000000000000004E -20*2.5822858689540867E - 242 
/3.698224852071007E -14 =6:98250098965185E- 249 
Score: 
6.98250098965185E -249/2.5822858689540867E -242 
=2.704E- 7 

As is indicated by the Score values, the Machine Learn-
ing agent has determined that the Synopsis agent is the 
most likely agent to have a response for the incoming 
query. In fact, the Synopsis agent is the correct agent to 
respond in this example. The posterior probability values 
are then used to update the prior probability values for 
each specialty agent for the next iteration of MACS. 

V. ANALYSIS OF LEARNING IN MACS 

C. Evaluation method 
In order to evaluate the performance of the ML agent, it 

is tested against twenty-six historical queries. This is ac-
complished by having the User agent send incoming que-
ries to all specialty agents in addition to the ML agent 
(i.e., broadcast). Because all specialty agents receive the 
queries when broadcast, all correct responses are collect-
ed. The results from the broadcast query are then used as 
the basis for evaluating the results from the ML agent in 
order to determine how well the ML agent is performing 
(i.e., whether the ML agent identifies the correct agent to 
receive the incoming query). The level of effort required 
of the ML agent in order to obtain a correct response from 
keyword searches in MACS is the focus of this paper. The 
evaluation method is summarized as follows: 

1. A user enters a query, qincoming. 
2. The query is broadcast by the User agent to all spe-

cialty agents. 
3. All correct results are enumerated and collected. 
4. The User agent sends the original qincoming to the ML 

agent. 
5. Data on where the ML agent suggests routing qincoming 

are collected. 
6. Results from the specialty agents contacted via ma-

chine learning are collected. 
7. Results from the machine learning response are 

measured against all correct results per the broadcast 
query. 

 

Results are analyzed using descriptive statistics. First is 
the accuracy of the ML agent. Here, the specialty agent to 
which the ML agent sends a query is compared to which 
specialty agent(s) replied to that same query when the 
query was broadcast to all. This statistic targets accuracy 
of the system, but not learning. Learning is handled by the 
second statistic computed. 
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The second set of data collected is the number of spe-
cialty agents to which the ML agent sent a query before 
reaching the correct agent. The term correct used here 
refers to the agent with the domain expertise to answer a 
user's question. This statistic targets the ability of the 
system to learn. Learning is evaluated over time using this 
statistic, where messages should be sent to fewer and 
fewer specialty agents before reaching the correct one 
over time. That is, the Bayesian probabilities are updated 
after every new query so that over time the ML agent 
eventually “learns” which specialty agents can answer 
which types of questions. 

D. Results 
1) Accuracy 
Accuracy of MACS is 74.31%. That is, 74.31% of the 

time, an incoming query was sent to the correct specialty 
agent and fully resolved. The accuracy rate of 74.31% 
represents only those cases where the query was fully 
resolved by a single specialty agent's response. In many 
cases, multiple specialty agents may have to respond to a 
query in order to resolve it fully, where each specialty 
agent provides a different area of domain expertise. 
22.94% of the time there was a second specialty agent 
that should also have received the query, 1.83% of the 
time there were two additional specialty agents that should 
also have received the query and 0.92% of the time there 
were three additional specialty agents that should have 
also received the query. 

The current design of MACS allows the ML agent to 
designate only one specialty agent to receive an incoming 
query. Thus, the system design will need to be changed 
before the accuracy rate can be improved above 74.31%. 
However, it should also be noted that Bayesian learning 
identified a correct specialty agent in every case. That is, 
there may have been multiple specialty agents necessary 
to fully resolve the query, but at least one of those was 
identified in every case. Thus, queries were not sent to 
specialty agents with no expertise relevant for the incom-
ing query. 

2) Learning 
The data on how many attempts the ML agent made be-

fore reaching the correct agent to which queries should be 
sent suggest the MACS system is in fact “learning.” Fig. 3 
illustrates MACS learning over time. As the trend line 
shows, over time, fewer tries were needed before the cor-
rect specialty agent was identified, indicating the ML 
agent sufficiently taught the appropriate specialty agents 
to which incoming queries should be sent. The y-axis 
identifies the number of tries the ML agent made before 
learning the correct agent. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
The multi-agent system, MACS, presented in this paper 

illustrates how Bayesian learning can be built into MAS. 
A real-world problem in the area of defense contracting is 
used to illustrate the usefulness of the system design and 
learning techniques built into the system. MACS has been 
extended beyond the system presented by the authors in 
previous research in that it now possesses the ability to 
learn from and adapt to its environment. Furthermore, the 
system has been migrated to OAA and uses XML coding. 

 

 
Figure 3.  Learning in MACS over time. 

There is also a natural language agent that is in the pro-
cess of being developed and expanded. The system has 
been tested against known, historical data in order to show 
definitively that it is learning. The data presented in Sec-
tion 4 support the authors' claims that Bayesian learning is 
a meaningful approach, and that learning is in fact occur-
ring in the system. However, the authors believe the re-
sults would be far more dramatic in a larger system where 
there are many more specialty agents that may need to 
respond to queries. In such systems, performance en-
hancements from Bayesian learning will be more pro-
nounced because resources allocated to agent communica-
tion increase as the system size increases. Clearly, as the 
number of agents increases, the value of targeted broker-
ing versus communicating with all agents in the system 
increases. 

While the research presented in this paper contributes to 
the existing MAS literature by building learning into 
MAS, it also lays a foundation upon which future work 
can build. The primary direction for future work is in the 
area of more comprehensive learning than what is current-
ly achieved by the MACS system. This will occur in two 
dimensions. First, future research will look at MAS in 
which the specialty agents cooperate with each other to 
more completely answer user queries. This is in contrast 
with the existing system where specialty agents communi-
cate with a user agent, but not with each other. Second, 
reinforcement learning will be built into the system so that 
MACS can learn from user feedback in order to learn new 
keywords. 
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