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PAPER

ECG Biometric Authentication Using Deep CNN Feature 
Learning from Analytic Wavelet-Transformed Signals

ABSTRACT
This paper investigates the use of continuous morse wavelet transform (CWT) coefficients 
as inputs to convolutional neural networks (CNNs) for electrocardiogram (ECG) biometric 
authentication. We evaluate the performance and generalization of pre-trained SqueezeNet  
architecture using the ECG-ID Database. Our approach involves extracting 10 scalograms 
from each subject’s ECG signals and employing gradient descent optimization during training. 
The models demonstrate high accuracy, achieving over 90% on both training and validation 
datasets, indicating robust performance and minimal overfitting. Further analysis using the 
F1 confidence curve and ROC curve reveals a balanced trade-off between precision and recall, 
with an optimal F1 score of 0.84 and an AUC of 0.84, respectively. Additionally, we explore 
the impact of different CWT parameter settings, including Voice per Octave (VPO), symme-
try parameter (gamma), and time-bandwidth product (P2). The optimal VPO of 41 yields an 
AUC of 0.87 and an F1 score of 0.84. The best performance is achieved with gamma values 
greater than 2 and time-bandwidth products between 45 and 80, enhancing time localization 
and frequency resolution. In this study, the significance of fine-tuning wavelet parameters 
to improve the effectiveness of ECG biometric systems is demonstrated, demonstrating the 
potential of combining CWT and CNNs for reliable biometric authentication.

KEYWORDS
electrocardiogram (ECG), biometric, authentication, convolutional neural networks (CNNs), 
continuous morse wavelet transform (CWT)

1	 INTRODUCTION

Virtual consultations, a form of telemedicine, enable online interactions between 
medical staff and patients. Its popularity has surged recently due to advancements 
in technology, particularly broadband and mobile diagnostics, extending telehealth 
services to patients’ homes. These virtual consultations benefit patients and the 
healthcare system by facilitating remote communication and consultation [1]. They 
offer easy access to specialists around the clock without the need for appointments 
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and are generally cheaper than in-person visits, reducing out-of-pocket expenses. 
Cash-pay telemedicine services do not require insurance or referrals, providing 
healthcare access to uninsured individuals. Telemedicine also allows those in remote 
areas to consult doctors quickly, saving time and avoiding long trips, while keeping 
patients at home minimizes exposure to viruses and germs. Medical practitioners 
engaging in virtual primary care face several obstacles, including challenges related 
to digital exclusion, clinical uncertainty, delays in diagnosis and treatment, overuse 
and misuse of digital remote care, and incorrect association of medical records and 
treatments with individuals [2].

Electrocardiograms (ECGs) play a valuable role in virtual consultations by pro-
viding insights into heart rhythm, rate, and potential abnormalities. Clinicians can 
remotely monitor patients for arrhythmias, ischemia, and other cardiac conditions, 
helping to determine urgency and appropriate management [3]. Patients with car-
diovascular conditions such as hypertension or heart failure can share ECG data 
during virtual visits, allowing clinicians to assess treatment effectiveness and adjust 
medications accordingly. Additionally, ECGs serve as a biometric authentication 
method, ensuring patient identity during virtual consultations.

2	 RELATED WORK

An ECG or EKG is a quick and painless test that measures the electrical impulses of 
the heart, recording its electrical activity. Using ECGs for authentication or identifica-
tion offers several advantages in enhancing security measures. ECGs provide a unique 
biometric trait due to their distinctiveness and stability over time. ECG patterns are 
specific to each person, making them a robust biometric identifier. Unlike external 
features such as fingerprints, ECGs are internal and harder to forge. ECG signals are 
difficult to replicate or manipulate, enhancing security in authentication scenarios. 
Additionally, ECG analysis confirms the subject’s vitality during authentication, ensur-
ing that the person is physically present and not using a static image or recording [4].

2.1	 ECG features for biometric authentication

The categories of ECG features used for biometric authentication encompass 
various aspects of the ECG signal that uniquely identify individuals. Morphological 
features focus on the shape and structure of the ECG signal, capturing character-
istics such as the P, Q, R, S, and T waves, and are commonly utilized for biomet-
ric authentication. Time interval features derive from the timing between specific 
points in the ECG signal, such as the duration of the PR interval, QRS complex, and 
QT interval, providing temporal information crucial for individual identification [5]. 
Amplitude features concentrate on the magnitude of specific components of the 
ECG signal, such as the height of the R wave or the depth of the S wave, capturing 
the intensity of certain signal components for authentication purposes. Frequency 
domain features involve analyzing the frequency components of the ECG signal 
using techniques such as Fourier analysis, offering insights into the spectral charac-
teristics of the ECG signal and aiding in biometric identification. Some studies explore 
combined features, integrating morphological, time interval, and amplitude features 
to enhance the accuracy and robustness of ECG-based authentication systems [6]. 
Additionally, wavelet features apply wavelet transform techniques to the ECG signal 
to extract information at different scales, capturing both time and frequency domain 
characteristics for a comprehensive set of biometric authentication features [7].
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2.2	 Continuous morse wavelet transform for ECG biometric

Wavelet features are essential in ECG biometric authentication as they provide a 
comprehensive representation of the ECG signal in both time and frequency domains. 
Wavelet transforms are effective for analyzing non-stationary signals such as ECG 
due to their excellent time-frequency localization properties [8]. By decomposing 
the ECG signal using wavelet transforms, different frequency components at various 
scales can be extracted, enabling a detailed analysis of the signal. Matsuyama et al. 
[9] focused on applying wavelet decomposition to ECG signals to extract features 
such as normalized energy and entropy, laying the groundwork for utilizing wave-
let transforms in ECG signal processing. Ingale et al. [10] explored using wavelet 
transforms to extract features for biometric authentication, highlighting the impor-
tance of wavelet coefficients in enhancing the accuracy of ECG-based identification 
systems. Ferdinando et al. [11] combined wavelet feature extraction methods, such 
as bivariate empirical mode decomposition (BEMD), with emotional data to improve 
the robustness and effectiveness of biometric systems. Ghoualmi et al. [12] investi-
gated hybrid approaches combining wavelet transforms with other algorithms, such 
as the scale-invariant feature transform (SIFT), to leverage the strengths of different 
techniques for comprehensive feature extraction.

Analytic wavelets are complex-valued functions uniquely characterized by 
their one-sided frequency spectrum, confined to positive frequencies. This spec-
tral property equips them to excel in the analysis of signals exhibiting time-varying 
amplitude and frequency modulations. Moreover, their capacity to pinpoint local-
ized discontinuities makes them indispensable tools for various signal processing 
applications. One of their key properties is having a null Fourier transform for neg-
ative frequencies, resulting in one-sided spectra. This characteristic is advantageous 
for time-frequency analysis using the continuous wavelet transform, which provides 
phase information through complex-valued coefficients. Various categories of ana-
lytic wavelets include generalized morse wavelets (GMWs) [13], airy wavelets [14], 
analytic derivative of Gaussian wavelets, and cauchy wavelets [15].

Generalized morse wavelets provide several advantages due to their distinctive 
properties:

•	 Analytic properties: GMWs are truly analytic wavelets with Fourier transforms 
supported only on the positive real axis, making them ideal for analyzing 
modulated signals with time-varying amplitude and frequency.
•	 Parameterized flexibility: GMWs have two adjustable parameters, symmetry 

(γ) and time-bandwidth product (P2), allowing for the customization of wavelet 
properties and behaviors. Many commonly used analytic wavelets are special 
cases of generalized Morse morse Wavelets wavelets.

•	 Phase information: GMWs encode phase information in their complex wavelet 
coefficients, which is valuable for various signal processing tasks, including clas-
sification and interpretation. This phase of information enhances their utility in 
different applications.

2.3	 Convolutional neural network for ECG biometric authentication

The use of convolutional neural networks (CNNs) for biometric applications 
has advanced significantly, leveraging deep learning for accurate and reliable 
identification. Genovese et al. [16] introduced PalmNet, a method using Gabor-
PCA convolutional networks for touchless palmprint recognition. This approach 
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effectively handles variations in scale, rotation, and illumination by extracting 
highly discriminative features. Additionally, Sedik et al. [17] employed CNNs for bio-
metric alteration detection in secure smart cities, illustrating the application of deep 
learning techniques to enhance security in 5G network-based environments.

Liu et al. [18] expanded the field of ECG biometric authentication with a cascaded 
CNN (CCNN) approach for feature extraction and biometric comparison of ECG heart-
beats. Similarly, Hammad et al. [19] focused on multimodal biometric systems, using 
CNNs to fuse ECG and fingerprint data for secure authentication. Ingale et al. [10] 
explored the impact of filtering, segmentation, feature extraction, and health status 
on ECG authentication, while Rehman et al. [20] enhanced the matching process by 
employing CNNs to binarize ECG signals.

Alduwaile and Islam [21] demonstrated the effectiveness of using CNNs for ECG 
biometric recognition with a single heartbeat, showcasing the potential for devel-
oping reliable ECG-based systems. Rahman et al. [22] compared unimodal and mul-
timodal systems incorporating deep learning and traditional methods, particularly 
in the context of fingerprint and ECG signal fusion. Jomaa et al. [23] developed an 
end-to-end CNN-based multimodal system for integrating ECG and fingerprint data. 
Chan et al. [24] further advanced the field by creating a phase space reconstruction 
(PSR)-based CNN to improve identification accuracy.

2.4	 Contributions

This study aims to enhance ECG biometric authentication by addressing key chal-
lenges in feature extraction and model performance. Previous works in this field have 
often relied on traditional feature extraction methods or computationally intensive 
models, which may not be suitable for resource-constrained environments. The gap 
in the literature lies in the lack of exploration of wavelet-based methods for improving 
feature extraction in lightweight CNN architectures. Our study introduces the use of 
CWT filter bank coefficients for ECG signal processing, providing a novel approach 
to feature extraction that is both efficient and effective. We evaluate ShuffleNet, a 
low-memory CNN architecture, which is more appropriate for devices with limited 
resources. Furthermore, we investigate the impact of different wavelet parameter set-
tings on system performance, optimizing for metrics such as accuracy, AUC, F1 score, 
and EER. The novelty of this study is demonstrated through a comprehensive analysis 
of the proposed approach using the ECG-ID database, which is known for its challeng-
ing nature. The results show significant improvements in biometric identification accu-
racy and generalization, thus advancing the state of ECG-based biometric technologies.

3	 SIMULATION SETUP

3.1	 ECG ID database

The ECG-ID Database is a collection of 310 ECG recordings gathered from 90 indi-
viduals for the purpose of developing biometric identification systems based on ECG 
signals. Contributed by Tatiana Lugovaya as part of her master’s thesis, the database 
consists of 20-second ECG recordings captured from lead I, digitized at a sampling 
rate of 500 Hz with 12-bit resolution [25]. Each recording includes annotations for 
10 heartbeats, marked by R- and T-wave peaks, which were automatically detected. 
Supplementary demographic information, such as age, gender, and recording date, 
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is provided in accompanying header files. The database encompasses a diverse 
group of 44 men and 46 women ranging in age from 13 to 75 years, primarily com-
posed of students, colleagues, and acquaintances of the author. It’s important to note 
that the raw ECG signals are contaminated with both high- and low-frequency noise. 
The database can be accessed for download from the PhysioNet website [26].

Most individuals in the database have at least two ECG recordings, each with a 
duration of 10,000 samples. For this study, we utilized the first two recordings from 
each individual. Each ECG signal was segmented into four parts of 2,500 samples, 
resulting in eight segments per individual. Of these, 60% were used for training, 
and the remaining 40% for testing. The ECG signals were then transformed into 
time-frequency representations known as scalograms, which are the absolute values 
of the CWT coefficients. To generate these scalograms, a precomputed CWT filter bank 
was used, optimizing the process for multiple signals with consistent parameters. The 
resulting 2D RGB scalograms served as input to the CNN for biometric authentication.

3.2	 SqueezeNet

SqueezeNet is a deep neural network for computer vision developed by Forrest 
N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, 
and Kurt Keutzer at DeepScale, University of California, Berkeley, and Stanford 
University [27]. Initially released in 2016, SqueezeNet is designed as a compact CNN 
architecture with several advantages that make it suitable for various applications, 
including scenarios with limited resources. The SqueezeNet architecture uses three 
key strategies to reduce parameter size while maintaining high accuracy:

•	 1 × 1 Filters: Replaces conventional 3 × 3 filters with 1 × 1 filters, reducing the 
number of parameters by about nine times. This effectively captures relationships 
among channels.

•	 Squeeze Layer: Reduces the number of input channels to 3 × 3 filters by preced-
ing them with 1 × 1 filters, decreasing computational complexity and memory 
requirements.

•	 Late Downsampling: Delays downsampling until later in the network to create 
larger feature maps, improving classification accuracy with the same number of 
parameters.

The architecture includes a standalone convolutional layer (conv1), eight 
Fire modules (fire2–fire9), and a final convolutional layer (conv10) as shown in 
Figure 1 [28].

Fig. 1. SqueezeNet architecture

Each Fire module is composed of a squeeze layer with only 1 × 1 filters and an 
expand layer that contains a mix of 1 × 1 and 3 × 3 convolution filters, as shown 
in Figure 2. Importantly, the number of filters in the squeeze layer is kept smaller 
than in the expand layer. The number of filters per Fire module gradually increases 
from the beginning to the end of the network.
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Fig. 2. Fire module

Max-pooling with a stride of 2 is performed after layers conv1, fire4, and fire8. After 
layer conv10, average-pooling is applied, resulting in a flattened vector with dimensions 
equal to the number of classes. This vector is then fed into the SoftMax layer for classi-
fication. Notably, SqueezeNet does not employ fully connected layers, which drastically 
reduces the number of parameters in the model. To mitigate overfitting, a dropout with 
a ratio of 50% is applied after the fire9 module, providing regularization during training.

3.3	 Performance matrix

In CNNs for classification tasks, the performance matrix is essential for evaluat-
ing model effectiveness. Various metrics, such as output classification accuracy and 
F1-score, are commonly used. Confusion matrices are also employed to analyze the 
decision-making process and overall performance of CNN models. Similarly, the eval-
uation of biometric systems frequently involves confusion matrices to scrutinize the 
system’s decision-making and performance.

Classification accuracy and validation loss. Accuracy, a conventional met-
ric in machine learning, quantifies a model’s predictive capability by determining 
the ratio of correct to total predictions. While seemingly straightforward, accuracy 
can be misleading, especially when dealing with imbalanced datasets or scenarios 
where the costs of false positives and negatives differ significantly. For instance, in 
medical diagnosis, a false negative, indicating a missed disease, carries far graver 
consequences than a false positive, a misdiagnosed condition.

To complement accuracy, validation loss provides a measure of a model’s gener-
alization ability. This metric quantifies the discrepancy between a model’s predicted 
outputs and ground truth values within a holdout dataset. A lower validation loss typi-
cally signifies better model performance on unseen data. The selection of an appropri-
ate loss function is critical. Mean squared error is commonly employed for regression 
tasks, while binary cross-entropy is suitable for binary classification problems.

Confusion matrix. A confusion matrix offers a granular assessment of a classi-
fication model’s performance by tabulating the alignment between predicted and 
actual class labels. As illustrated in Figure 3, this matrix is indispensable for eval-
uating model accuracy and reliability. This tabular representation is indispensable 
for evaluating model accuracy and reliability. A true positive occurs when both the 
actual and predicted classes are positive, indicating correct model identification. 
Conversely, a false negative arises when the actual class is positive but the model 
incorrectly predicts it as negative, signifying a model failure to recognize the posi-
tive class. A false positive emerges when the actual class is negative, yet the model 
erroneously predicts it as positive, highlighting incorrect identification. Finally, a 
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true negative signifies the correct classification of a negative instance. Through a 
meticulous analysis of these components, practitioners can gain profound insights 
into model strengths and weaknesses.

PREDICTED
POSITIVE

FALSE
POSITIVE

TRUE
NEGATIVE

ACTUAL
NEGATIVE

FALSE
NEGATIVE

PREDICTED
NEGATIVE

ACTUAL
POSITIVE

TRUE
POSITIVE

Fig. 3. Confusion matrix

F1-score. The F1 score offers a comprehensive evaluation of a model’s perfor-
mance by incorporating both precision and recall. Precision measures the proportion 
of correctly predicted positive instances out of all instances predicted as posi-
tive, while recall (also known as sensitivity) calculates the proportion of correctly 
predicted positive instances out of all actual positive instances.
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The F1 score constitutes a balanced metric that harmonizes precision and recall, 
offering a comprehensive appraisal of model performance. By averaging precision 
and recall using the harmonic mean, the F1 score penalizes extreme values and 
rewards models that excel in both identifying true positives and minimizing false 
positives and negatives. This is especially advantageous in scenarios with imbal-
anced class distributions, where accuracy alone may be misleading. A higher F1 
score signifies a superior balance between precision and recall, indicating a more 
robust model capable of accurately classifying instances across both classes.

Receiver operating characteristics (ROC) curves. Receiver operating charac-
teristic (ROC) curves are essential tools for evaluating the performance of classifica-
tion models, especially in scenarios were balancing the true positive rate (sensitivity) 
and the false positive rate (FPR) (1-specificity) is critical.

	 =
+

    TPTrue Positive Rate
TP FN

	 (4)

	 =
+

    FPFalse Positive Rate
FP TN

	 (5)
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These curves provide a graphical representation of the trade-off between 
sensitivity and specificity as the discrimination threshold of a classifier is varied.

The area under the curve (AUC) metric, derived from the ROC curve, offers a 
comprehensive assessment of a classifier’s overall performance. A higher AUC signi-
fies superior discriminative capability between positive and negative classes. In tan-
dem, the ROC curve provides invaluable insights into a model’s diagnostic efficacy, 
making these metrics essential tools for evaluating classification models. The equal 
error rate (EER), another pivotal metric, identifies the ROC curve point where false 
positives and false negatives are equalized. This threshold signifies the classifier’s 
balance between accepting and rejecting instances. A lower EER indicates a more 
reliable and accurate model.

4	 RESULTS AND DISCUSSION

4.1	 Robustness and generalization of the model

Our initial simulation evaluates the robustness and generalization of the model 
for ECG biometric authentication. We used the entire ECG-ID Database, extracting 
10 scalograms from the ECG of each subject. 70% of the scalograms were allocated 
for training, with the remaining 30% for validation. A pre-trained SqueezeNet model 
was utilized, with training conducted using a gradient descent algorithm to mini-
mize the loss function. The initial learning rate was set to 0.0003, with a batch size 
of 10, and training was performed over 50 epochs.

Fig. 4. Training and validation results
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Figure 4 illustrates the accuracy and loss performance for both the training and 
validation datasets. From the 15th epoch onward, validation accuracy and loss sta-
bilized at 0.94 and 0.25, respectively. Training accuracy reached one, and training 
loss dropped to 0 from the 15th epoch onward. These results indicate that both train-
ing and validation accuracies exceed 0.9, suggesting the model performs well on 
both seen and unseen data. The minimal difference between training accuracy and 
validation accuracy (less than 0.1) suggests the model is not overfitting. The near-
zero training loss indicates the model effectively fits the training data, while the low 
validation loss demonstrates good generalization to new and unseen data.

4.2	 Performance across different decision thresholds

Our next evaluation examines the model’s performance across various decision 
thresholds, focusing on the balance between precision and recall as indicated by the 
F1 confidence curve shown in Figure 5. As illustrated, most thresholds yield satis-
factory F1 scores around 0.68. The F1 score improves from a threshold value of 0.6, 
reaching its peak at 0.84 with a threshold value of 0.998.

Fig. 5. F1-Confidence curve

These results indicate that the model performs consistently well across a range 
of thresholds, but the optimal performance is achieved at a specific high threshold 
value. The initial satisfactory F1 scores around 0.68 suggest that the model main-
tains a reasonable balance between precision and recall across different decision 
points. As the threshold value increases, the model becomes more stringent in clas-
sifying positive instances, which improves the precision and recall balance, leading 
to a higher F1 score.

The peak F1 score of 0.84 at a threshold value of 0.998 signifies that the model 
achieves the best trade-off between precision and recall at this point. This high 
threshold value indicates that the model is very selective in predicting positive 
instances, minimizing false positives while still correctly identifying a significant 
number of true positives. Consequently, this suggests that the model is highly effective 
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at distinguishing between classes when applying a stringent decision threshold, 
resulting in a more reliable biometric authentication system.

4.3	 Verification through ROC analysis

To further validate our previous analysis, we examine the trade-off between true 
positive rate (TPR or sensitivity) and FPR as the decision threshold varies, based on 
the ROC curves shown in Figure 6. The ROC curve is close to the top-left corner, with 
an AUC of 0.85, indicating that the trained model is highly effective for biometric 
authentication.

Additionally, the EER is 0.165 at a threshold value of 0.998. The EER represents 
the point where the false acceptance rate equals the false rejection rate, indicating 
a balanced trade-off between the two types of errors. An AUC of 0.84 and low EER 
confirm that the model maintains robust performance across different thresholds, 
ensuring a high level of reliability and accuracy in identifying individuals based on 
their ECG signals.

Fig. 6. ROC curves

4.4	 Performance with CWT parameters

We further evaluated the system’s performance using various CWT parameter 
settings. The CWT decomposes a signal into different scales (frequencies) using 
wavelet functions, where the scale parameter controls the width of the wavelet 
function—larger scales correspond to lower frequencies and smaller scales cor-
respond to higher frequencies. In performing the CWT, the discretization of the 
scale parameter significantly affects the number of wavelet filters used. “Voices per 
Octave” (VPO) refers to the number of wavelet filters per octave, specifying how 
many intermediate scales are used between each octave.

Our evaluation tested VPO values ranging from one to 45 for the ECG biometric 
system. As illustrated in Figure 7, the optimal VPO for the proposed system is 41, 
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achieving an AUC of 0.87, an F1 Score of 0.84, and an EER of 0.18. When VPO is 
greater than five, the system maintains an average F1 score of 0.79, an average AUC 
of 0.79, and an average EER of 0.26.

These results suggest that a higher VPO, particularly around 41, enhances the sys-
tem’s ability to accurately and reliably authenticate individuals using ECG signals. 
The improved metrics at higher VPO values indicate that a finer discretization of the 
scale parameter allows the model to capture more detailed frequency information, 
thus enhancing its performance.

Fig. 7. Evaluation of system performance across different voices per octave (VPO) settings

In addition to VPO, the symmetry parameter (gamma) and time-bandwidth 
product (P2) are crucial Morse wavelet parameters that influence the system’s perfor-
mance. Figure 8 illustrates system performance in terms of accuracy, AUC, F1-Score, 
and EER across various settings of these parameters. The results indicate optimal 
performance with a symmetry parameter greater than two and a time-bandwidth 
product between 45 and 80.

The symmetry parameter controls the wavelet’s symmetry in time, effectively 
demodulating skewness. A common recommendation is to use a moderate value of γ 
around three, which balances time localization and frequency resolution, minimiz-
ing skewness while maintaining a reasonable time bandwidth product. The time 
bandwidth product (P2) is proportional to the wavelet duration in time, determining 
how many oscillations fit into the wavelet’s center window. A higher P2 provides bet-
ter frequency resolution, capturing fine details in the ECG signal but resulting in lon-
ger duration in the time domain. Conversely, a lower P2 enhances time localization, 
allowing for precise event detection.

These results highlight the importance of carefully selecting wavelet parameters 
to optimize the performance of ECG biometric systems. The findings suggest that 
a symmetry parameter greater than two and a time-bandwidth product between 
45 and 80 achieve the best balance between frequency resolution and time 
localization, thereby enhancing the overall accuracy and reliability of biometric 
authentication.
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Fig. 8. Performance metrics (accuracy, AUC, F1-Score, EER) for different combinations of symmetry 
parameter (γ) and time-bandwidth product (P2)

5	 CONCLUSION

This study demonstrates the effectiveness of using CWT coefficients as inputs to 
CNNs for ECG biometric authentication. Through comprehensive simulations and 
evaluations, we established the robustness, generalization, and optimal parameter 
settings of our model.

In the initial simulation using the ECG-ID Database, the model showed strong 
robustness and generalization capabilities. By training a pre-trained SqueezeNet 
model on a diverse dataset and using gradient descent with a batch size of 10 and 
an initial step size of 0.0003, we achieved high training and validation accuracies, 
both exceeding 0.9, with minimal overfitting. The near-zero training loss and low 
validation loss affirmed the model’s strong generalization to unseen data. Exploring 
performance across different decision thresholds, the F1 confidence curve high-
lighted a balance between precision and recall, peaking at an F1 score of 0.84 with 
a threshold value of 0.998. ROC curve analysis further confirmed high performance 
with an AUC of 0.84 and an EER of 0.16, indicating a reliable model.

Evaluating different CWT parameter settings, specifically the voice per octave 
(VPO), revealed that a VPO of 41 yielded the best results with an AUC of 0.87, an F1 
score of 0.84, and an EER of 0.18. Higher VPO values consistently improved perfor-
mance, with average F1 scores and AUC around 0.79 and an average EER of 0.26. 
Further investigation into morse wavelet parameters, namely the symmetry param-
eter (gamma) and time-bandwidth product (P2), showed optimal performance with 
gamma greater than two and a time-bandwidth product between 45 and 80. These 
settings balance time localization and frequency resolution, optimizing wavelet 
capabilities.

Based on our findings, we recommend focusing on fine-tuning the CWT param-
eters and hyperparameters of CNNs to achieve optimal performance. Specifically, 
adjusting the VPO and parameters such as symmetry and time-bandwidth prod-
uct can significantly impact the accuracy and reliability of biometric systems. 
Researchers should also consider leveraging pre-trained models and gradient descent 
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algorithms for effective training and evaluation. Additionally, thorough experimen-
tation with decision thresholds and performance metrics, such as F1 score, AUC, 
and EER, is essential for developing robust biometric authentication systems. These 
practices can guide future work in optimizing ECG-based authentication models and 
advancing the field.
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