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PAPER

Comparative Evaluation of PD Detection Using 
Deep Learning on IMFCCs Extracted from VMD

ABSTRACT
This paper presents a new method for extracting vocal features for the diagnosis of Parkinson’s 
disease (PD) via voice analysis applying variational mode decomposition (VMD). The classical 
method of extracting mel-frequency cepstral coefficients (MFCC) is compared to a new approach 
that generates coefficients named intrinsic mel-frequency cepstral coefficients (IMFCC). 
For this study, two audio databases were used: the SAKAR database containing 38 recordings 
and a PC-GITA database comprising 50 recordings. The signal preprocessing steps include frame 
segmentation, pre-emphasis, and filtering. The voice signal is then decomposed into intrinsic 
modes employing VMD. From these modes, the log-energy of specific components is calculated 
to extract the IMFCC. In this study, two types of classifiers were used: convolutional neural net-
works (CNN) and long short-term memory (LSTM). The results show that IMFCC provides a new 
perspective for representing vocal signals, capturing distinct features compared to classical 
MFCC. Notably, the IMFCC2 attained the highest accuracy of 100% adopting the CNN classifier. 
This approach could improve the performance of systems for identifying PD via voice analysis, 
offering a robust and complementary alternative to existing feature extraction methods.

KEYWORDS
Parkinson’s disease (PD), intrinsic mel-frequency cepstral coefficients (IMFCC), mel-frequency 
cepstral coefficients (MFCC), long short-term memory (LSTM), convolutional neural networks 
(CNN), variational mode decomposition (VMD)

1	 INTRODUCTION

Parkinson’s disease (PD) represents a significant global health challenge due to its 
progressive nature and the substantial impact it has on patients’ quality of life. The 
early stages of the disease often go undetected, which can delay crucial interventions 
and worsen outcomes. Therefore, early and accurate diagnosis is paramount for 
enabling timely treatment, improving patient prognosis, and enhancing overall dis-
ease management. In this context, the use of non-invasive, cost-effective biomarkers 
for PD detection has gained increasing attention in the research community.
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Recent advancements in signal processing and machine learning have provided 
promising opportunities to harness voice-based biomarkers for PD diagnosis. Voice, 
as a non-invasive and readily accessible indicator, has the potential to reflect subtle 
changes in motor control associated with the onset and progression of PD. By ana-
lyzing these voice patterns, it is possible to develop diagnostic tools that are both 
effective and easy to implement in clinical settings.

This study investigates the integration of advanced signal processing techniques 
with state-of-the-art machine learning algorithms to analyze voice recordings for PD 
detection. Specifically, we propose a comprehensive framework that utilizes variational 
mode decomposition (VMD) to decompose voice signals into their fundamental compo-
nents. Following this, we compute intrinsic mel-frequency cepstral coefficients (IMFCC) 
to extract relevant features that capture the nuances of voice affected by PD. These 
features are then fed into deep learning models, specifically convolutional neural net-
works (CNN) and long short-term memory (LSTM) networks, for classification purposes. 
This integrated approach is designed to maximize the accuracy and efficiency of PD 
detection, thereby contributing to improved patient care and disease management.

The proposed methodology is applied to two distinct datasets: the Sakar dataset, 
which comprises 38 audio recordings from both PD patients and healthy controls, 
and the PC-GITA dataset, which includes 50 audio recordings. These datasets offer a 
diverse range of voice samples, making them suitable for evaluating the robustness 
and generalizability of the proposed models. To ensure rigorous model evaluation, 
the datasets are partitioned into training and testing sets using robust cross- 
validation techniques. Specifically, a holdout method is employed, where 20% of 
the data is reserved for testing, to prevent overfitting and to accurately assess the 
model’s ability to generalize to unseen data.

The entire implementation process, including data preprocessing, feature 
extraction (MFCC and IMFCC), and model training (LSTM and CNN), is conducted 
using MATLAB. This environment provides the necessary tools to handle the complex 
computational tasks involved and ensures that each step is meticulously designed 
to uphold the reproducibility and rigor of the experimental setup. This attention to 
detail is crucial for validating the proposed methodology and for facilitating future 
research efforts in this domain.

The effectiveness of the proposed techniques is evaluated using a variety of 
performance metrics, including accuracy, specificity, and sensitivity. These metrics 
provide a comprehensive assessment of the models’ ability to correctly classify PD 
and non-PD cases based on the extracted voice features. The results obtained from 
these evaluations are expected to highlight the potential of combining advanced 
signal processing and deep learning techniques in developing reliable and scalable 
diagnostic tools for Parkinson’s disease.

Subsequent sections of the paper include: Section 2 discusses previous research; 
Section 3 offers a comprehensive overview of the database; Section 4 outlines the 
research methodology; Section 5 presents the results and includes an in-depth dis-
cussion and analysis. Lastly, Section 6 delivers the concluding remarks and recom-
mendations for future research.

2	 RELATED	WORK

Taha Khan et al. [1] presented cepstral separation distance characteristics, showcas-
ing their effectiveness in detecting PD. They noted that these features performed well, 
with intra-class correlation coefficients exceeding 0.9. Orozco-Arroyave et al. [2] concen-
trated on PD diagnosis utilizing prolonged words and vowels, achieving an accuracy of 
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up to 85% through the employment of cepstral and spectral features. Mehmet et al. [3]  
proposed an innovative method for PD detection from voice signals, utilizing pre-
trained deep networks and LSTM models alongside Mel spectrograms obtained from 
filtered audio signals using VMD. Karan et al. [4] explored voice tremors in PD patients 
applying a combination of VMD and Hilbert spectrum analysis (HSA). For this purpose, 
they introduced a new set of characteristics termed Hilbert Cepstral Coefficients. In 
the work conducted by Sakar et al. [5], a range of voice signal processing algorithms 
were evaluated for PD evaluation. They presented an innovative tool named Q-factor 
Wavelet Transform (TQWT) and trained classifiers with diverse feature groups. Their 
findings revealed that TQWT and MFCC attained the greatest accuracy, underscoring 
their importance in PD classification. An average accuracy of 86% was attained using 
the support vector machines (SVM) classifier. Various additional studies have similarly 
employed DWT for the accurate recognition of PD [6], [7], [8]. In recent research, Asmae 
Ouhmida et al. [9] explored various machine learning techniques to diagnose PD by 
analyzing voice disorders. They assessed different classifiers such as SVM, K-nearest 
neighbors (KNN), and decision trees (DT) and used feature selection methods such as 
mRMR and ReliefF to boost performance. The findings indicated that the KNN classi-
fier outperformed others, achieving an accuracy rate with an AUC of 98.26%. Rania 
Khaskhoussy et al. presented a novel approach for the automatic identification of PD 
using voice signal analysis. This study employs SVM and CNN as learning techniques 
for the classification of speech task-derived data. Two sets of input data are utilized: raw 
speech signal values and i-vector features with dimensions of 100, 200, and 300. Analysis 
of a test dataset consisting of 28 participants reveals 100% accuracy, affirming the effi-
cacy of the suggested approach for detecting PD [10]. Ahmed Anter et al. introduced 
a powerful regression model designed to track PD patients through voice recordings. 
Their model incorporates a binary version of an ant lion optimizer (BALO) for selecting 
voice features and an extreme learning machine (ELM) using differential evaluation 
(DE) for continuous prediction of the Unified Parkinson’s Disease Rating Scale (UPDRS). 
In comparison to several meta-heuristic models and machine learning forecasting tech-
niques, the BALO-DEELM approach shows notable efficiency in feature selection and 
achieves more precise predictions [11]. Tao Zhang and colleagues introduced a tech-
nique for extracting voice features using fractional attribute topology (FrAT). Initially, 
FrAT is applied to incorporate energy information into the voice spectrogram for time– 
frequency representation. Concurrently, feature extraction is carried out using formal 
concept analysis, establishing a formal context using statistical data in the fractional 
domain to develop FrAT. Subsequently, connected components that denote discrete 
FrAT degrees are extracted as CCF-FrAT features to enhance classification accuracy. The 
approach achieved top accuracies of 99.57%, 95.33%, and 94.13% across three data-
sets at p = 0.7 [12]. Renata et al. proposed using extreme learning machines (ELM) to 
expedite training time in the context of PD detection using voice signal spectrograms. 
This study examined five different pre-trained CNN models namely VGG-16, AlexNet, 
SqueezeNet, ResNet-50, and Inception V3. The findings indicated that the ELM-based 
classifier achieved a comparable level of accuracy to CNN models, while significantly 
reducing the training time [13]. Gaffari SeleK et al. proposed a new method, SkipCon-Net, 
which integrates DL and ML techniques for PD detection from speech signals. SkipCon-
Net is tailored to extract critical features from voice signals. Moreover, the RF algorithm 
is used to forecast features derived from the SkipCon-Net architecture. The combined 
SkipCon-Net + RF approach showed excellent performance, achieving an accuracy of 
98.30% on the PDO_Dataset and 99.11% on the PD_Dataset [14]. Tao Zhang et al. intro-
duced co-occurrence direction attribute topology (CDAT), a method for describing voice 
features. Initially, CDAT establishes a formal context using statistically derived direction 
information within spectrogram sub-regions to depict relationships between energy 
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points and their directional attributes. This method captures coupling among direc-
tional attributes. The number of connected domains in CDAT, indicating nodal coupling 
intensity, is extracted as structural features and validated across various classifiers. 
Experimental evaluations on Parkinsonian sustained vowel datasets (CPPDD and SPDD) 
achieved high accuracy of 95.84% and 93.90% with RF, respectively. The suggested 
approach emphasizes variations in energy direction derivatives in spectrograms via 
attribute topology, demonstrating robust classification accuracy across diverse native 
language datasets and in cross-corpora experiments, often outperforming or matching 
state-of-the-art PD classification methods [15]. In addition to previous research on PD, 
various studies have explored machine learning techniques for medical diagnostics 
across different conditions, further validating the application of such techniques to PD 
detection. Al-Nawashi et al. proposed a machine learning-based approach for breast 
cancer detection using CNNs for feature extraction and classifiers like RF, SVM, and 
logistic regression. Their model was tested on a dataset of over 3,000 mammograms and 
achieved high precision and accuracy, demonstrating the potential of machine learning 
in cancer diagnostics [16]. Khazaaleh et al. presented an unsupervised machine learning 
model for handling DNA malfunctions, highlighting the effectiveness of unsupervised 
learning in genomic data analysis [17]. In the field of diabetic retinopathy diagnosis, 
Al-Hazaimeh et al. combined artificial intelligence and image processing techniques to 
analyze retinal fundus images. Using CNNs for feature extraction, their model achieved 
an impressive 98.3% accuracy, showcasing the reliability of AI in the field of ophthal-
mology [18]. Gharaibeh et al. introduced a swin transformer-based segmentation model 
combined with a multi-scale feature pyramid fusion module for Alzheimer’s disease 
detection. The swin transformer model is known for its robust performance in medi-
cal image segmentation tasks [19]. These diverse applications of machine learning in 
medical diagnostics illustrate the broad utility of these techniques, reinforcing their rel-
evance for neurodegenerative diseases such as Parkinson’s.

3	 DATASET

Sakar dataset: The Sakar dataset includes 38 audio samples, with 20 record-
ings from individuals diagnosed with PD (10 males and 10 females) aged between 
39 and 79 years and 18 recordings from healthy individuals (eight males and eight 
females) aged between 50 and 70 years. Participants were directed to pronounce 
the sustained vowel ‘a’ using a standard microphone operating at a sampling rate of 
44.100 Hz. These recordings were captured in stereo mode using a desktop computer 
equipped with a 16-bit sound card and saved in WAV file format [20].

PC-GITA dataset: The PC-GITA dataset, collected using professional-grade equip-
ment, comprises recordings from 50 healthy individuals and 50 individuals diag-
nosed with PD. Recordings were made at a resolution of 16 bits and a sampling rate of 
44.1 kHz. The healthy group included women aged 43 to 76 years (mean age 61.4 years, 
SD 9.5 years) and men aged 31 to 86 years (mean age 60.5 years, SD 9.4 years). The 
PD group consisted of women aged 49 to 75 years and men aged 33 to 81 years [21].

4	 METHODOLOGY

The recommended approach involves several critical stages, including initial 
handling of the captured data, signal breakdown using VMD into intrinsic modes, 
then extraction of MFCC and IMFCC features from each mode, and classifica-
tion using CNN and LSTM. This systematic framework facilitates methodical and 
structured analysis of speech data, leading to increased accuracy in PD detection. 
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Figure 1 outlines the methodology suggested in this study, with a comprehensive 
explanation provided in the ensuing section.

Fig. 1. The proposed approach

Algorithm 1: Algorithm of the Suggested Method

1. Input: A set of speech signals (x1, x2, …, xn).
2. Output: Five matrices for five modes, where each mode contains a set of 12 IMFCC coefficients.
3. Load Audio Data:

– Load the dataset containing the speech signals (audio files).
4. For each audio file in the dataset:

1.	Load the speech samples.
2.	Apply VMD (Variational Mode Decomposition) to decompose the speech signal into modes.
3.	Select the first 5 modes from the decomposed signal.
4.	For each of the 5 modes:

1. Extract the mode’s signal.
2. Compute the Energy: Square each value of the mode’s signal to get its energy.
3. Apply Logarithm: Take the logarithm (base 10) of the energy to get the log-energy.
4. Compute IMFCCs:

– Apply the Discrete Cosine Transform (DCT) to the log-energy to obtain 12 IMFCC coefficients 
for the mode.

5. Store IMFCCs:
– Save the 12 IMFCC coefficients for each mode.

5. Compile Results:
– Store the 12 IMFCC coefficients for each of the 5 modes separately in a matrix.

5. End For.
6. Output: Five matrices for five modes, where each mode contains a set of 12 IMFCC coefficients.

4.1	 Feature	extraction

This section introduces an innovative method for identifying PD using voice 
analysis. The method combines VMD and the extraction of IMFCC. The approach 
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aims to extract robust and precise audio features essential for identifying vocal 
markers associated with Parkinson’s disease.

Variational mode decomposition is an innovative algorithm for signal 
processing, presented by Dragomiretskiy [22] to address the lack of a theoretical basis 
for the empirical mode decomposition (EMD) algorithm. VMD is an adaptive signal 
decomposition technique that decomposes a signal into a finite number of sub-signals, 
referred to as modes, each possessing unique and narrowband frequency character-
istics. Unlike traditional approaches such as EMD, VMD is framed as a variational 
problem, enhancing its robustness and effectiveness in decomposing complex signals.

Variational mode decomposition aims to disaggregate an incoming signal x(t) 
into a set of modes {uk(t)} Equation 2, where each mode uk(t) is concentrated around 
a central frequency wk.

Each mode uk(t) is assumed to be amplitude modulated and frequency modu-
lated, formulated as (Equation 1):

 u (t) A t cos( t )
k k k

� �( ) ( )  (1)

Where Ak(t) is the amplitude envelope and	ϕk(t) is the phase

 x t( ) u t res(t)
k

k 1

k

� �
�
� ( )  (2)

Where uk(t) is decomposed mode and res(t) is residual component.
Intrinsic mode function cepstral coefficient: An advanced method for fea-

ture extraction that derives cepstral coefficients from modes obtained via VMD. This 
novel technique, introduced in this study, involves applying the DCT to the logarithm 
of the energy of each mode (Equation 3). Equation 4 details the computation formula 
for IMFCCs [23], [24].

 E
1

N
(mode )

mode

i 1

N

2

i

�
�

i�  (3)

 IMFCC DCT log E
mode mode

i i

� � �� �  (4)

With i denoting the mode number.
Mel frequency cepstral coefficient (MFCCs): MFCCs are calculated from the 

modes obtained using VMD. The process begins by applying VMD to the original 
audio signal, decomposing it into several modes. For each selected mode, MFCCs are 
computed to capture cepstral characteristics derived from the spectral information 
of the mode. The MFCC extraction involves pre-emphasizing the mode, framing the 
signal, and applying the short-time Fourier transform (STFT) to compute the magni-
tude spectrum. A mel-frequency filter bank is then applied to this spectrum, followed 
by the computation of the logarithm of the filter bank energies. Finally, the DCT is 
applied to these log energies to produce the MFCCs. These coefficients represent the 
cepstral information, which emphasizes the spectral envelope of the selected mode, 
enhancing the analysis of audio features, particularly for tasks such as voice signal 
analysis and disease detection. The transformation formula from linear frequency 
to mel frequency, detailed in Equation 5.

 Mel(f) 2595log
10

1
f

700
� �

�

�
�

�

�
�  (5)
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4.2	 Method	explanation

The initial stage of the method entails preparing the sound signal for analysis. 
The vocal signal is segmented into frames of a fixed duration of 25 milliseconds (ms) 
with an overlap of 10 ms between frames to ensure continuity and detailed cap-
ture of temporal variations. A pre-emphasis filter is applied to amplify the high 
frequencies, compensating for the typical drop in energy in these frequencies and 
improving the clarity of the extracted features.

Once the signal is preprocessed, VMD is applied to break down the vocal signal 
into several intrinsic modes. VMD is an advanced signal decomposition technique 
that solves the variational minimization problem to extract a set of modes, each 
centered on a specific frequency. This decomposition allows precise separation of 
the different frequency components of the vocal signal, essential for capturing fine 
characteristics associated with vocal anomalies in Parkinson’s disease.

After decomposition, the first five modes are selected, as they generally contain 
the high-frequency components of the signal (see Figure 2). These modes are crucial 
for analysis because they capture the fine variations and anomalies in the voice that 
may be linked to Parkinson’s disease.

For each selected mode, the energy is calculated by squaring the mode values. 
This energy measure quantifies the amplitude of oscillations in each mode, pro-
viding a clear indication of each frequency band’s contribution to the vocal signal. 
To compress the dynamic range of the energy values and mitigate the impact of 
extreme variations, a base-10 logarithmic transformation is implemented to the 
energy values. Then, a DCT is applied to the log-energy values to obtain the cep-
stral coefficients. These coefficients, called IMFCC, capture the main spectral 
characteristics of the vocal signal.

The number of cepstral coefficients extracted is set to 12, corresponding to 
the first few coefficients that contain most of the relevant spectral information. 
These coefficients are then averaged for each segment of the vocal signal, pro-
ducing a representative and stable feature vector. The IMFCC feature vectors 
for all frames of the vocal signal are aggregated to form a complete set of audio 
descriptors. These descriptors are then analyzed to identify vocal markers asso-
ciated with PD. By comparing the IMFCC extracted from healthy individuals to 
those from Parkinson’s patients, specific anomalies in vocal characteristics can 
be identified.

4.3	 Classification

Long short-term memory: An architecture of recurrent neural network (RNN) 
built to solve the issue of diminishing gradients in conventional RNNs. LSTM 
networks excel in capturing prolonged dependencies and are widely applied 
in tasks involving sequential data, for instance, natural language processing 
and speech recognition. Their ability to retain and utilize information over 
extended sequences makes them indispensable in modeling complex temporal 
relationships [25].

LSTM network definition: The network consists of a sequence of key layers:

– Input layer (sequence input layer): Each sequence of 12 coefficients is treated as 
a temporal sequence with a dimension of one at each time step.

https://online-journals.org/index.php/i-joe
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– LSTM layer: Incorporating 200 hidden units, this layer is optimized to handle 
long-term relationships in sequences, extracting meaningful features from IMFCC 
data over time. The output at each time step t is determined as (Equation 6):

 h LSTM(x ,h ,c )
t t t 1 t 1
�

� �
 (6)

Where ct-1 is the previous cell state, ht-1 is the previous hidden state, and xt is the 
input at time step t.

– Fully connected layer: Provides a final interpretation of features extracted by the 
LSTM layer, reducing dimensions while preserving information richness.

– Softmax layer: Normalizes outputs into probabilities, providing a probability dis-
tribution over potential class.

– Classification layer: Defines the final output by categorizing input sequences into 
one of the two classes, suited for the specific task of binary classification.

Network training options: Training parameters are adjusted to optimize con-
vergence and model performance:

– Adam optimizer: Chosen for its effective handling of gradients. Parameter updates 
are computed as (Equation 7):

 � � � � �
� ��t 1 t

t

t

m

v

ˆ

ˆ

 (7)

Where θt are the network parameters, ε is a small constant for numerical stability,  
m̂

t
 is the estimated gradient v̂

t
 is the estimated second moment of the gradient and 

η is the learning rate.

– 200 training epochs: Determines how many times the entire training dataset is 
traversed during model learning.

– Mini-batch of 70: Subset size employed for calculating gradients and adjusting 
network weights, facilitating accelerated and more efficient learning.

– Gradient threshold of 1: Limits the size of gradients updated at each backpropaga-
tion step, preventing gradient explosions that could compromise learning stability.

– Training progress visualization: Monitors model performance over time, 
facilitating diagnosis of potential learning issues or overfitting.

Convolutional neural network: An advanced DL framework designed to auto-
matically extract meaningful features from input data using convolutional layers. 
These neural networks are renowned for their ability to discern intricate patterns 
in complex datasets, making them indispensable in diverse fields, including speech 
recognition and speaker identification. Their hierarchical feature learning capabili-
ties and robust performance have positioned CNNs at the forefront of modern signal 
processing and machine learning methodologies [25].

Defining CNN Architecture:

– Input layer: The input layer expects data of size [1, 12] representing each 
IMFCC sequence.
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– Convolutional layers:
•	 First convolutional layer: Apply a convolution operation with a filter size of 3 

and 8 filters, Equation 8.

 Y i X i j W j b

j 0

2

[ ] [ ] [ ]� � �
�
� �  (8)

	 	 Where Y[i] is the output, X is the input sequence, W is the filter, and b is 
the bias term

•	 Batch normalization: Normalize the activations to stabilize and accelerate 
training, Equation 9.

 X̂
X

2

�
� �

� � �
 (9)

	 	 Where µ and σ are the mean and the variance of X, and ε is a small constant 
for numerical stability

•	 ReLU activation: Apply the ReLU activation function to incorporate non- 
linearity, Equation 10.

 ReLU(x) max (0,x)=  (10)

•	 Max Pooling: Down-sample the feature maps to reduce dimensionality, 
Equation 11.

 Y max X i j
POOL j 0

k 1

� �
�

�

[ ]  (11)

	 	 Where K is the size of the pooling window.
•	 Second and third convolutional layers: Apply additional convolutional layers 

with increasing numbers of filters (16 and 32, respectively), Subsequently, 
batch normalization, ReLU activation, and max pooling are applied after 
every layer.

– Flatten layer: Convert the 3D output from the convolutional layers into a 1D vector 
to prepare for the fully connected layer, Equation 12.

 Flattened output reshape(Y)=  (12)

– Fully connected layer: Use a fully connected layer with two output neurons 
corresponding to the number of classes, Equation 13.

 Z W Y b� ��  (13)

  Where Z is the output of the fully connected layer, W is the weight matrix, and 
b is the bias vector.

Softmax and classification layers:

•	 Softmax layer: Converts CNN output into class probabilities, ensuring they sum 
to 1 for classification.

•	 Classification layer: Uses softmax probabilities to make final predictions and 
computes categorical cross-entropy loss during training.
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Training process

•	 Optimizer (SGDM): Utilizes Stochastic Gradient Descent with Momentum for 
weight updates, enhancing convergence speed.

•	 Batch size: Mini-batch size set to 40 samples, optimizing memory usage and 
training efficiency.

•	 Max epochs: Trains over 1000 epochs, iterating through the entire training dataset 
multiple times to improve model accuracy.

•	 Regularization techniques: Includes batch normalization to stabilize training and 
prevent overfitting, ensuring robust generalization.

•	 Visualization and monitoring: Tracks training progress with visual plots, aiding 
in performance evaluation and hyperparameter tuning for optimal MFCC 
sequence classification.

4.4	 Classification	explanation

•	 For CNN: The 12 extracted IMFCCs from the audio recordings are used as inputs 
to CNN for the classification of PD. This classification process involves several key 
steps, enabling the network to learn and leverage the features of the IMFCCs to 
differentiate between the voices of individuals with PD and those who are healthy. 
The CNN is structured to optimize learning of spectral characteristics from the 
IMFCC vectors. The sequential input layer accepts the IMFCC vectors, each sized 
1 × 12, corresponding to the 12 extracted coefficients. These vectors represent the 
spectral features of voice segments. The convolutional layers of the CNN capture 
local patterns in the IMFCC data. The first convolutional layer uses filters of size 3 to 
scan the IMFCC vectors, producing eight distinct feature maps. Batch normalization 
is applied after each convolution to stabilize and accelerate learning, followed by a 
ReLU activation to introduce non-linearity, allowing the network to model complex 
relationships in the data. Max pooling layers decrease the dimensionality of the fea-
ture maps while preserving the key information. This is followed by a second con-
volutional layer with sixteen additional filters for a deeper analysis of local features. 
Another round of batch normalization and ReLU activation improves the stability 
and non-linearity of the model. A second max pooling layer further reduces dimen-
sionality. The third convolutional layer applies thirty-two filters, enabling finer 
feature extraction. A final batch normalization and ReLU activation stabilize the 
network further. The flatten layer converts the resulting 2D feature maps into a 1D 
vector, processing the data for the fully connected layers. These fully connected lay-
ers process the flattened vector and learn complex non-linear combinations of the 
characteristics derived from convolutional layers. Finally, the softmax layer gener-
ates a probability distribution over the classes (PD or healthy), and the classification 
layer uses these probabilities to predict the most likely class. During training, the 
CNN adjusts its weights based on the error between predictions and actual labels, 
using a stochastic gradient descent algorithm with momentum. The convolutional 
filters learn to detect relevant patterns in the IMFCCs that indicate PD. The fully 
connected layers aggregate these patterns to make the final predictions.

•	 For LSTM: The 12 extracted IMFCCs from the audio recordings are used as inputs 
to the LSTM network for the classification of PD. This process involves diverse key 
steps, enabling the network to learn and leverage the features of the IMFCCs to dis-
criminate between PD patients and healthy ones. The IMFCC vectors, each contain-
ing 12 coefficients, are formatted into cell arrays suitable for input into the LSTM 
network. The labels corresponding to the training and test sets are also prepared, 
with the training labels being converted to categorical format for the classification 
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task. The LSTM network is designed with an input size of 1 and consists of several 
layers: a sequence input layer, an LSTM layer with 200 hidden units configured 
to output only the last element in the sequence, a fully connected layer with two 
output classes (indicating the presence or absence of PD), a softmax layer to gener-
ate probability distributions over the classes, and a classification layer to make the 
final prediction. The network is trained using the ‘adam’ optimization algorithm 
over 200 epochs, with a mini-batch size of 70. The training process adjusts the net-
work’s weights based on the error between predictions and actual labels, optimiz-
ing the network to improve its classification accuracy. Once trained, the network is 
used to classify the test set IMFCCs. The predicted labels are compared to the actual 
test labels to evaluate the network’s performance. A confusion chart is created to 
view the classification results, showing the distribution of TN, TP, FN, and FP pre-
dictions. The overall accuracy of the network is computed as the ratio of correctly 
predicted instances to the total number of instances in the test set. By leveraging 
the temporal dynamics captured by the LSTM network, this classification approach 
aims to enhance the accuracy and reliability of PD recognition via voice analysis, 
offering a significant tool for automated diagnosis and clinical monitoring.

4.5	 Evaluation

To assess the effectiveness of the classifier, the confusion matrix is utilized, which 
is a tabular representation of predicted versus actual classifications. This matrix aids 
in calculating various performance metrics that gauge the classifier’s accuracy in 
identifying individuals with and without PD based on its predictions.

The confusion matrix is structured as follow (refer to Table 1):

Table 1. The structure of the confusion matrix

Predicted Negative  
(No Parkinson’s)

Predicted Positive 
(Parkinson’s)

Actual Negative (No Parkinson’s) TN FP

Actual positive (Parkinson’s) FN TP

From the confusion matrix, the following performance metrics accuracy, sensi-
tivity, and specificity, respectively in Equation 14, Equation 15, and Equation 16 can 
be derived

 Accuracy
TN TP

TN TP FP FN
�

�
� � �

 (14)

 Sensitivity
TP

TP FN
�

�
 (15)

 Specificity
TN

TN FP
�

�
 (16)

True positives (TP) pertain to accurately identified individuals without PD. True 
negatives (TN) correspond to correctly identified individuals afflicted with PD. 
False positives (FP) signify individuals without PD who were erroneously classified 
as having the disease. False negatives (FN) denote individuals with PD who were 
incorrectly classified as not having the disease.
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5	 RESULTS	AND	DISCUSSION

The proposed method for detecting PD is based on extracting IMFCC from voice 
signals. First, VMD is applied to break down the voice signals into distinct modes, each 
representing different frequency components of the signal, enabling more detailed 
analysis. Following this, MFCC features are extracted from these modes, with parame-
ters such as a frame duration of 25 ms, frame shift of 10 ms, and 20 filter bank channels. 
These features capture key spectral characteristics of the voice, which are essential 
for distinguishing between healthy individuals and those with PD. The IMFCCs are 
obtained by applying the DCT to the logarithm of the energies of the intrinsic modes.

These extracted features provide a compact and informative representation of 
the voice signals, which are then used for classification. For this, CNNs and LSTM 
networks are employed. CNNs are used to capture important local features from the 
IMFCCs through convolution and pooling layers, which reduce data dimensionality 
while preserving critical information. LSTMs are utilized to capture long-term tem-
poral dependencies in the voice signals, modeling complex time variations. Model 
performance is evaluated using holdout cross-validation, with the dataset split into 
80% for training and 20% for testing. Models are optimized on the training data, and 
their generalization ability is assessed on the unseen test data.

5.1	 Comparative	study	of	feature	patterns

This section focuses on a comparative analysis of the first five modes between indi-
viduals with PD and healthy individuals. The energy distribution across these modes 
reveals compelling differences: energy levels are notably lower in PD patients com-
pared to healthy subjects, as depicted in Figure 2. This highlights the diagnostic potential 
of the initial modes in distinguishing between the two groups. The distinct energy pat-
terns observed in these modes underscore their relevance in capturing essential vocal 
characteristics associated with Parkinson’s disease. Importantly, energy distribution in 
healthy individuals show higher levels compared to those affected by the disease. This 
suggests that crucial vocal signal information is concentrated within the first five modes.

Fig. 2. Comparative analysis of the energies of the first seven modes derived from VMD  
for individuals with PD and healthy individuals

5.2	 Comparative	analysis	of	IMFCC	and	MFCC	energies

The comparison between the energies of IMFCC and MFCC, presented in 
Figure 3, highlights key differences across the first five modes. For mode one, the 
IMFCC energy reaches 2976, while the MFCC energy is 1439. Similarly, for mode two, 
IMFCC records 2923 compared to MFCC’s 1072. The trend continues with mode three 
showing IMFCC at 3170 and MFCC at 937, mode four with IMFCC at 3627 and MFCC 
at 859, and mode five with IMFCC at 3776, while MFCC peaks at 634.
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These observations underline a consistent pattern where IMFCC energies are sig-
nificantly higher than MFCC energies across all modes, suggesting that IMFCC provides 
a richer and more detailed representation of vocal information. This enhanced energy 
profile, particularly in the IMFCC spectrum, suggests a superior capability for capturing 
the subtle vocal characteristics crucial for PD recognition. The substantial difference in 
energy levels implies that IMFCC encodes more comprehensive vocal features, which 
could lead to improved diagnostic accuracy and sensitivity in clinical applications.

5.3	 Statistical	analysis	of	IMFCC	and	MFCC	coefficients

The statistical analysis compares the correlation coefficients and p-values between 
IMFCC and MFCC across two databases, Tables 2 and 3. In Database SAKAR, signifi-
cant correlations are observed primarily in the first few coefficients of both IMFCC 
and MFCC. Specifically, IMFCC one exhibits a correlation coefficient of 0.5585 with a 
highly significant p-value of 0.0003, indicating a strong association. Similarly, MFCC 
one shows a correlation coefficient of 0.7820 with an equally significant p-value of 
0.0000. As we progress through the coefficients, the correlations fluctuate with vary-
ing degrees of significance. Notably, IMFCC 3 and IMFCC nine show moderate cor-
relations with coefficients of 0.3937 (p = 0.0050) and 0.2585 (p = 0.1171), respectively. 
Meanwhile, MFCC three demonstrates a weaker correlation coefficient of -0.1366 
(p = 0.3431), indicating less pronounced association in this context. In Database 
PC-GITA, a similar trend is observed where IMFCC one exhibits a strong correlation 
coefficient of 0.8122 (p = 0.0000), aligning closely with MFCC one, which shows a cor-
relation coefficient of 0.9471 (p = 0.0000). This robust correlation continues across sev-
eral coefficients, highlighting the consistency in vocal feature representation between 
IMFCC and MFCC. Overall, the results underscore the effectiveness of both IMFCC 
and MFCC in capturing vocal characteristics, with IMFCC often demonstrating com-
parable or stronger correlations compared to MFCC across various coefficients. These 
findings support the potential of IMFCC as a valuable feature set in the examination 
and categorization of vocal signals, particularly in applications such as PD detection.

Fig. 3. Energy comparison for MFCC and IMFCC coefficients extracted from modes through VMD
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Table 2. Analysis of Spearman correlation in proposed feature Sakar database

Sakar Database

IMFCC  
Coefficients

Correlation 
Coefficients P-Value MFCC  

Coefficients
Correlation 
Coefficients P-Value

IMFCC 1coefficients 0.5585 0.0003 MFCC 1coefficients 0.7820 0.0000

IMFCC 2coefficients -0.0151 0.9283 MFCC 2coefficients 0.2489 0.1319

IMFCC 3coefficients -0.0149 0.9293 MFCC 3coefficients 0.3824 0.0178

IMFCC 4coefficients -0.2257 0.1731 MFCC 4coefficients 0.3169 0.0525

IMFCC 5coefficients 0.0278 0.8684 MFCC 5coefficients 0.3316 0.0420

IMFCC 6coefficients 0.3176 0.0520 MFCC 6coefficients 0.2707 0.1002

IMFCC 7coefficients -0.2235 0.1775 MFCC 7coefficients 0.3169 0.0525

IMFCC 8coefficients -0.0468 0.7801 MFCC 8coefficients 0.0867 0.6049

IMFCC 9coefficients 0.2585 0.1171 MFCC 9coefficients 0.3955 0.0140

IMFCC 10coefficients 0.2154 0.1941 MFCC 10coefficients 0.3344 0.0402

IMFCC 11coefficients -0.3095 0.0587 MFCC 11coefficients -0.1615 0.3326

IMFCC 12coefficients -0.0131 0.9376 MFCC 12coefficients 0.1370 0.4121

Table 3. Analysis of Spearman correlation in proposed feature PC-GITA database

PC-GITA Database

IMFCC  
Coefficients

Correlation 
Coefficients P-Value MFCC  

Coefficients
Correlation 
Coefficients P-Value

IMFCC 1coefficients 0.8122 0 MFCC 1coefficients 0.9471 0

IMFCC 2coefficients 0.6441 0.0000 MFCC 2coefficients 0.2118 0.1395

IMFCC 3coefficients 0.3937 0.0050 MFCC 3coefficients -0.1366 0.3431

IMFCC 4coefficients 0.4466 0.0013 MFCC 4coefficients 0.1382 0.3376

IMFCC 5coefficients 0.4504 0.0012 MFCC 5coefficients 0.2799 0.0493

IMFCC 6coefficients 0.1309 0.3636 MFCC 6coefficients 0.1382 0.3376

IMFCC 7coefficients 0.0906 0.5303 MFCC 7coefficients 0.1311 0.3629

IMFCC 8coefficients 0.0894 0.5360 MFCC 8coefficients 0.2279 0.1113

IMFCC 9coefficients 0.4821 0.0005 MFCC 9coefficients -0.0228 0.8749

IMFCC 10coefficients 0.2356 0.0995 MFCC 10coefficients 0.1370 0.3417

IMFCC 11coefficients 0.5406 0.0001 MFCC 11coefficients 0.1850 0.1977

IMFCC 12coefficients 0.6452 0.0000 MFCC 12coefficients 0.3624 0.0101
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5.4	 Results	and	comparison	with	previous	study

Table 4. The outcome of the MFCC using Sakar database

Sakar Dataset

MFCCs
CNN LSTM

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

MFCC1 71.42 100 50 63.63 60 66.66

MFCC2 71.42 100 50 72.72 60 83.33

MFCC3 57.14 66.66 50 54.54 60 50

MFCC4 71.42 100 50 54.54 40 66.66

MFCC5 57.14 33 75 45.45 20 66.66

Table 5. The outcome of the IMFCC using Sakar database

Sakar Dataset

IMFCCs
CNN LSTM

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

IMFCC1 57.14 66.66 50 72.72 100 50

IMFCC2 90 100 80 54.54 20 83.33

IMFCC3 57.14 66.66 50 63.63 20 100

IMFCC4 42.85 33 50 36.36 40 33.33

IMFCC5 42.85 33 50 36.36 40 33.33

Table 6. The outcome of the MFCC using PC-GITA database

PC-GITA Dataset

MFCCs
CNN LSTM

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

MFCC1 70 40 100 80 100 60

MFCC2 70 80 60 70 80 60

MFCC3 50 20 80 80 100 60

MFCC4 60 20 100 50 60 40

MFCC5 50 60 40 50 0 100

Table 7. The outcome of the IMFCC using PC-GITA database

PC-GITA Dataset

IMFCCs
CNN LSTM

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

IMFCC1 90 100 80 90 80 100

IMFCC2 100 100 100 80 60 100

IMFCC3 70 60 80 80 60 100

IMFCC4 70 60 80 70 60 80

IMFCC5 70 80 60 80 80 80
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The results show that performance varies according to the coefficients used 
(MFCC vs. IMFCC) and the classification models (CNN vs. LSTM). For the Sakar data-
set, the IMFCC coefficients with the CNN model (specifically IMFCC2) achieve a 
high accuracy of 90%, as demonstrated in Tables 4 and 5. For the PC-GITA dataset, 
using IMFCC coefficients with a CNN model (specifically IMFCC2) yields the best 
performance, with an accuracy of 100%, as shown in Tables 6 and 7.

It is important to note that the PC-GITA dataset contains 50 audio samples, while 
the Sakar dataset contains 38. The number of samples can also influence model per-
formance, with a higher number of samples potentially offering better generalization 
and increased accuracy.

These results suggest that the IMFCC approach combined with CNNs can 
offer superior performance for detecting PD from voice signals. However, the 
effectiveness of the models also depends on the specific dataset, as demonstrated by 
the performance differences between the Sakar and Spanish datasets. Therefore, the 
most suitable approach may vary, and it is crucial to select the method based on the 
context and characteristics of the available data.

Fig. 4. Comparison between the proposed method and other approaches

In the domain of PD detection, various methods have been explored, as shown 
in Figure 4, each utilizing specific datasets and techniques. Trinh and Brien focused 
on the SPDD dataset, employing the CNN approach to achieve an accuracy rate 
of 96.7% [26]. Vasquez-Correa et al., utilizing a Spanish dataset, applied CNN and 
reached an accuracy of 89% [27]. Suhas et al. used the NIMHANS dataset, apply-
ing CNN and achieving 93% accuracy [28]. Ali et al., worked with the Sakar data-
set, employing a neural network method to achieve 95% accuracy [29]. Karan et al., 
applying EMD-IMFCC approach to represent Parkinson’s speech characteristics effec-
tively. These features were evaluated using two datasets: dataset-1 and dataset-2, 
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each comprising 20 individuals with normal speech and 25 individuals affected by 
PD. An improvement of 98% in accuracy was observed for IMFCC-SVM [23]. Er et al. 
utilized the PC-Gita database and applied the ResNet 101+LSTM method, achieving 
an impressive accuracy of 98.61% [3]. Karan et al. also used the PC-Gita database, 
applying the MLP method with an accuracy of 91% [4].

The results indicate that the proposed approach in this study (VMD-IMFCC-CNN) 
outperforms other methods in terms of accuracy, achieving a perfect score of 100%. 
This superior accuracy may be attributed to the specific combination of methods 
used in this study, indicating its potential efficacy in PD detection, particularly when 
compared to the results of the other studies are illustrated in Figure 4.

In the context of the results, it is evident that the IMFCC extracted from the VMD 
exhibits superior performance, and it also outperforms the conventional MFCC. When 
comparing the results obtained in this paper to those of previous studies, it becomes 
apparent that VMD-IMFCC yields the best results; this indicates that this approach 
has the potential to greatly enhance the accurate diagnosis of Parkinson’s disease.

This manuscript presents an innovative approach for PD detection using IMFCCs 
derived from voice signals. The incorporation of VMD for mode extraction followed 
by the use of CNNs and LSTM networks for classification represents a significant 
advancement over traditional methods. The use of VMD provides a more precise 
decomposition of voice signals into intrinsic modes compared to EMD, improving 
the quality of features extracted and enhancing classification accuracy. By focusing 
on the first five modes, the study benefits from capturing the most significant com-
ponents of the voice signal, as indicated by their higher energy levels compared to 
other modes. This targeted feature extraction enhances the model’s ability to dif-
ferentiate between healthy individuals and those with PD, leading to more reliable 
diagnostic results. The performance of the proposed method is rigorously evaluated 
using holdout cross-validation, ensuring that the results are robust and generalizable. 
However, the study’s effectiveness is contingent on the quality and size of the data-
set used. While the dataset includes a sufficient number of samples, expanding it to 
include a more diverse range of subjects could further validate and generalize the 
findings. Additionally, the combination of VMD, IMFCC extraction, CNNs, and LSTMs 
introduces a level of complexity that may not be easily implementable in all clinical 
settings. Simplifying the model or developing a more user-friendly interface could 
address this limitation. Finally, while focusing on the first five modes is justified by 
their higher energy, further exploration into the impact of other modes and their 
potential contributions to detection accuracy would provide a more comprehensive 
understanding of feature relevance.

6	 CONCLUSION

The analysis of vocal signals for detecting PD has been advanced through the 
application of log-energy IMFCC extracted using VMD. By leveraging data from the 
PC-GITA and SAKAR databases, this method facilitated the extraction of distinctive 
and pertinent features crucial for disease detection. Experimental results demon-
strated that utilizing IMFCC, specifically IMFCC2, from the PC-GITA database with 
a CNN classifier achieved a remarkable accuracy of 100% in Parkinson’s disease 
detection. This highlights the effectiveness and potential of this novel approach 
in extracting vocal characteristics, presenting a promising and complementary 
alternative to conventional techniques like mel-frequency cepstral coefficients.
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Future work could focus on further validating these findings across larger and 
more diverse datasets, as well as exploring the integration of advanced machine learn-
ing techniques to enhance real-time diagnostic capabilities based on voice analysis.

7	 REFERENCES

 [1] T. Khan, J. Westin, and M. Dougherty, “Cepstral separation difference: A novel approach 
for speech impairment quantification in Parkinson’s disease,” Biocybern. Biomed. Eng., 
vol. 34, no. 1, pp. 25–34, 2014. https://doi.org/10.1016/j.bbe.2013.06.001

 [2] J. R. Orozco-Arroyave, F. Hönig, J. D. Arias-Londoño, J. F. Vargas-Bonilla, and E. Nöth, 
“Spectral and cepstral analyses for Parkinson’s disease detection in Spanish vowels 
and words,” Expert Systems, vol. 32, no. 6, pp. 688–697, 2015. https://doi.org/10.1111/
exsy.12106

 [3] M. B. Er, E. Isik, and I. Isik, “Parkinson’s detection based on combined CNN and LSTM 
using enhanced speech signals with variational mode decomposition,” Biomed. Signal 
Process. Control., vol. 70, p. 103006, 2021. https://doi.org/10.1016/j.bspc.2021.103006

 [4] B. Karan and S. Sekhar Sahu, “An improved framework for Parkinson’s disease prediction 
using variational mode decomposition-Hilbert spectrum of speech signal,” Biocybern. 
Biomed. Eng., vol. 41, no. 2, pp. 717–732, 2021. https://doi.org/10.1016/j.bbe.2021.04.014

 [5] C. O. Sakar et al., “A comparative analysis of speech signal processing algorithms 
for Parkinson’s disease classification and the use of the tunable Q-factor wavelet 
transform,” Applied Soft Computing, vol. 74, pp. 255–263, 2019. https://doi.org/10.1016/ 
j.asoc.2018.10.022

 [6] T. B. Drissi, S. Zayrit, B. Nsiri, and A. Ammoummou, “Diagnosis of Parkinson’s disease 
based on wavelet transform and Mel frequency cepstral coefficients,” International 
Journal of Advanced Computer Science and Applications (IJACSA), vol. 10, no. 3,  
pp. 125–132, 2019. https://doi.org/10.14569/IJACSA.2019.0100315

 [7] B. Nouhaila, B. D. Taoufiq, and N. Benayad, “An intelligent approach based on the com-
bination of the discrete wavelet transform, delta delta MFCC for Parkinson’s disease 
diagnosis,” International Journal of Advanced Computer Science and Applications (IJACSA), 
vol. 13, no. 4, pp. 562–571, 2022. https://doi.org/10.14569/IJACSA.2022.0130466

 [8] Z. Soumaya, B. Drissi Taoufiq, N. Benayad, K. Yunus, and A. Abdelkrim, “The detection 
of Parkinson disease using the genetic algorithm and SVM classifier,” Applied Acoustics, 
vol. 171, p. 107528, 2021. https://doi.org/10.1016/j.apacoust.2020.107528

 [9] A. Ouhmida, A. Raihani, B. Cherradi, and O. Terrada, “A novel approach for Parkinson’s 
disease detection based on voice classification and features selection techniques,” 
International Journal of Online and Biomedical Engineering (iJOE), vol. 17, no. 10, 
pp. 111–130, 2021. https://doi.org/10.3991/ijoe.v17i10.24499

 [10] R. Khaskhoussy and Y. Ben Ayed, “Improving Parkinson’s disease recognition through 
voice analysis using deep learning,” Pattern Recognition Letters, vol. 168, pp. 64–70, 
2023. https://doi.org/10.1016/j.patrec.2023.03.011

 [11] A. M. Anter, A. W. Mohamed, M. Zhang, and Z. Zhang, “A robust intelligence regres-
sion model for monitoring Parkinson’s disease based on speech signals,” Future 
Generation Computer Systems, vol. 147, pp. 316–327, 2023. https://doi.org/10.1016/ 
j.future.2023.05.012

 [12] T. Zhang, L. Lin, and Z. Xue, “A voice feature extraction method based on fractional attri-
bute topology for Parkinson’s disease detection,” Expert Systems Application, vol. 219, 
p. 119650, 2023. https://doi.org/10.1016/j.eswa.2023.119650

https://online-journals.org/index.php/i-joe
https://doi.org/10.1016/j.bbe.2013.06.001
https://doi.org/10.1111/exsy.12106
https://doi.org/10.1111/exsy.12106
https://doi.org/10.1016/j.bspc.2021.103006
https://doi.org/10.1016/j.bbe.2021.04.014
https://doi.org/10.1016/j.asoc.2018.10.022
https://doi.org/10.1016/j.asoc.2018.10.022
https://doi.org/10.14569/IJACSA.2019.0100315
https://doi.org/10.14569/IJACSA.2022.0130466
https://doi.org/10.1016/j.apacoust.2020.107528
https://doi.org/10.3991/ijoe.v17i10.24499
https://doi.org/10.1016/j.patrec.2023.03.011
https://doi.org/10.1016/j.future.2023.05.012
https://doi.org/10.1016/j.future.2023.05.012
https://doi.org/10.1016/j.eswa.2023.119650


iJOE | Vol. 20 No. 15 (2024) International Journal of Online and Biomedical Engineering (iJOE) 139

Comparative Evaluation of PD Detection Using Deep Learning on IMFCCs Extracted from VMD

 [13] R. Guatelli, V. Aubin, M. Mora, J. Naranjo-Torres, and A. Mora-Olivari, “Detection of 
Parkinson’s disease based on spectrograms of voice recordings and extreme learn-
ing machine random weight neural networks,” Engineering Applications of Artificial 
Intelligence, vol. 125, p. 106700, 2023. https://doi.org/10.1016/j.engappai.2023.106700

 [14] G. Celik and E. Başaran, “Proposing a new approach based on convolutional neural 
networks and random forest for the diagnosis of Parkinson’s disease from speech 
signals,” Applied Acoustics, vol. 211, p. 109476, 2023. https://doi.org/10.1016/j.
apacoust.2023.109476

 [15] T. Zhang, L. Lin, J. Tian, Z. Xue, and X. Guo, “Voice feature description of Parkinson’s 
disease based on co-occurrence direction attribute topology,” Eng. Appl. Artif. Intell., 
vol. 122, p. 106097, 2023. https://doi.org/10.1016/j.engappai.2023.106097

 [16] M. M. Al-Nawashi, O. M. Al-Hazaimeh, and M. Kh. Khazaaleh, “A new approach for 
breast cancer detection-based machine learning technique,” Applied Computer Science, 
vol. 20, no. 1, pp. 1–16, 2024. https://doi.org/10.35784/acs-2024-01

 [17] M. Kh. Khazaaleh et al., “Handling DNA malfunctions by unsupervised machine learning 
model,” J Pathol Inform, vol. 14, p. 100340, 2023. https://doi.org/10.1016/j.jpi.2023.100340

 [18] O. M. Al-hazaimeh, A. Abu-Ein, N. Tahat, M. Al-Smadi, and M. Al-Nawashi, “Combining 
artificial intelligence and image processing for diagnosing diabetic retinopathy in ret-
inal fundus images,” International Journal of Online and Biomedical Engineering (iJOE), 
vol. 18, no. 13, pp. 131–151, 2022. https://doi.org/10.3991/ijoe.v18i13.33985

 [19] N. Gharaibeh, A. A. Abu-Ein, O. M. Al-hazaimeh, K. M. O. Nahar, W. A. Abu-Ain, and 
M. M. Al-Nawashi, “Swin transformer-based segmentation and multi-scale feature 
pyramid fusion module for Alzheimer’s disease with machine learning,” International 
Journal of Online and Biomedical Engineering (iJOE), vol. 19, no. 4, pp. 22–50, 2023.  
https://doi.org/10.3991/ijoe.v19i04.37677

 [20] B. E. Sakar et al., “Collection and analysis of a Parkinson speech dataset with multiple 
types of sound recordings,” IEEE Journal of Biomedical and Health Informatics, vol. 17, 
no. 4, pp. 828–834, 2013. https://doi.org/10.1109/JBHI.2013.2245674

 [21] J. R. Orozco-Arroyave, J. D. Arias-Londõ No, J. F. Vargas-Bonilla, M. C. González-Rátiva, 
and E. Nöth, “New Spanish speech corpus database for the analysis of people suffering 
from Parkinson’s disease,” in LREC., 2014, pp. 342–347.

 [22] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE Transactions 
on Signal Processing, vol. 62, no. 3, pp. 531–544, 2014. https://doi.org/10.1109/TSP.2013. 
2288675

 [23] B. Karan, S. S. Sahu, and K. Mahto, “Parkinson disease prediction using intrinsic mode 
function-based features from speech signal,” Biocybern. Biomed. Eng., vol. 40, no. 1, 
pp. 249–264, 2020. https://doi.org/10.1016/j.bbe.2019.05.005

 [24] N. Boualoulou, M. Miyara, B. Nsiri, and T. B. Drissi, “Voice-based detection of Parkinson’s 
disease using empirical mode decomposition, IMFCC, MFCC, and deep learning,” in 
Artificial Intelligence, Data Science and Applications, ICAISE 2023. Lecture Notes in Networks 
and Systems, Y. Farhaoui, A. Hussain, T. Saba, H. Taherdoost, and A. Verma, Eds., 2024, 
vol. 838, pp. 144–150, Springer, Cham. https://doi.org/10.1007/978-3-031-48573-2_21

 [25] N. Boualoulou, T. Belhoussine Drissi, and B. Nsiri, “CNN and LSTM for the classification 
of Parkinson’s disease based on the GTCC and MFCC,” Applied Computer Science, vol. 19, 
no. 2, pp. 1–24, 2023. https://doi.org/10.35784/acs-2023-11

 [26] N. H. Trinh and D. O’brien, “Pathological speech classification using a convolutional 
neural network,” in Irish Machine Vision and Image Processing 2019, 28–30 Aug 2019, 
Dublin, Ireland, 2019.

https://online-journals.org/index.php/i-joe
https://doi.org/10.1016/j.engappai.2023.106700
https://doi.org/10.1016/j.apacoust.2023.109476
https://doi.org/10.1016/j.apacoust.2023.109476
https://doi.org/10.1016/j.engappai.2023.106097
https://doi.org/10.35784/acs-2024-01
https://doi.org/10.1016/j.jpi.2023.100340
https://doi.org/10.3991/ijoe.v18i13.33985
https://doi.org/10.3991/ijoe.v19i04.37677
https://doi.org/10.1109/JBHI.2013.2245674
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1016/j.bbe.2019.05.005
https://doi.org/10.1007/978-3-031-48573-2_21
https://doi.org/10.35784/acs-2023-11


 140 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 15 (2024)

Boualoulou et al.

 [27] J. C. Vásquez-Correa, J. R. Orozco-Arroyave, and E. Nöth, “Convolutional neural network 
to model articulation impairments in patients with Parkinson’s disease,” in Proceedings 
of the Annual Conference of the International Speech Communication Association 
(INTERSPEECH), International Speech Communication Association, Sweden, 2017, 
pp. 314–318. https://doi.org/10.21437/Interspeech.2017-1078

 [28] B. Suhas et al., “Speech task based automatic classification of ALS and Parkinson’s dis-
ease and their severity using log Mel spectrograms,” in 2020 International Conference on 
Signal Processing and Communications (SPCOM), 2020, pp. 1–5. https://doi.org/10.1109/
SPCOM50965.2020.9179503

 [29] L. Ali, C. Zhu, Z. Zhang, and Y. Liu, “Automated detection of Parkinson’s disease based on 
multiple types of sustained phonations using linear discriminant analysis and geneti-
cally optimized neural network,” IEEE Journal of Translational Engineering in Health and 
Medicine, vol. 7, pp. 1–10, 2019. https://doi.org/10.1109/JTEHM.2019.2940900

8	 AUTHORS

Nouhaila Boualoulou graduated in Electronics, Electrotechnics, Automatic, 
and Industrial Computing from Faculty of Science Ain Chock. University 
Hassan II – Casablanca, Morocco. She was a research student in Research Laboratory 
in Industrial and Electrical Engineering, Information Processing, Informatics 
and Logistics (GEITIIL). Currently she is a Faculty of Science Ain Chok, University 
Hassan II – Casablanca, Morocco. Her interests are in speech processing for detecting 
people with neurological disorders (E-mail: boualoulounouha@gmail.com).

Benayad Nsiri holds an MBI degree in computer sciences from Telecom 
Bretagne (2005), and did Ph.D. degree in signal processing from Telecom Bretagne 
in 2004. He received D.E.A (French equivalent of a M.Sc. degree) in electronics from 
Occidental Bretagne University, in 2000. Currently, he is a Full Professor in the 
National School of Arts and Crafts of Rabat (ENSAM),), Mohammed V University; 
a member of Research Center STIS, M2CS, Mohammed V University; and a mem-
ber associate in Researcher, Industrial Engineering, Data Processing and Logistic 
Laboratory, Hassan II University. He was a Professor in the Faculty of Sciences Ain 
Chock, Hassan II University. Benayad NSIRI has advised and co-advised more than 
15 Ph.D. thesis and contributed to more than 80 articles in regional and interna-
tional conferences and journals. His research interests include but are not restricted 
to computer science, telecommunication, signal, and image processing, adaptive 
techniques, blind deconvolution, MCMC methods, seismic data, and higher-order 
statistics (E-mail: nsiri2000@yahoo.fr).

Taoufiq Belhoussine Drissi graduated with a Ph.D. degree in acoustics in 2009 
at the university of le Havne (France), since 2011, he has been an assistant profes-
sor at the sciences faculty of Ain chock University Hassan II, Casablanca. His sci-
entific interest lies in the research of non-destructive testing and signal treatment 
(E-mail: belhoussine2014@gmail.com).

https://online-journals.org/index.php/i-joe
https://doi.org/10.21437/Interspeech.2017-1078
https://doi.org/10.1109/SPCOM50965.2020.9179503
https://doi.org/10.1109/SPCOM50965.2020.9179503
https://doi.org/10.1109/JTEHM.2019.2940900
mailto:boualoulounouha@gmail.com
mailto:nsiri2000@yahoo.fr
mailto:belhoussine2014@gmail.com

