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PAPER

Multi-Label Risk Prediction Diabetes Complication 
Using Machine Learning Models

ABSTRACT
Early diagnosis of diabetic complications based on risk factors is essential but remains 
understudied, particularly in the context of multi-label classification (MLC). This study lever-
ages data from the behavioral risk factor surveillance system (BRFSS) from 2016 to 2021 to 
classify seven diabetes complications using MLC techniques combined with multiple machine 
learning (ML) models. We analyzed 33 variables per dataset year after thorough statistical anal-
ysis and preprocessing. Seven ML models were employed: Artificial neural network (ANN), 
random forest (RF), decision tree (DT), K-nearest neighbors (K-NN), naïve Bayes (NB), support 
vector machine (SVM), and deep neural network (DNN). We compared two MLC frameworks: 
problem transformation and algorithm adaptation. The performance of the models was eval-
uated using several metrics, and feature importance for each complication was analyzed. Our 
results indicate that the algorithm adaptation framework, particularly with DNN models, out-
performs problem transformation. This highlights the potential of this approach for improv-
ing classification performance in complex diseases with multiple complications.

KEYWORDS
multi-label classification, risk prediction models, diabetes complication, machine learning 
(ML), early diagnosis

1	 INTRODUCTION

Diabetes is a metabolic disease that can cause complications affecting vital organs 
of the human body, classified as either microvascular or macrovascular complica-
tions, along with associated comorbidities [1]. These complications arise when blood 
sugar is not adequately controlled, particularly in patients who fail to manage their 
risk factors through medication or lifestyle changes. According to the international 
diabetes federation (IDF), 1 in 10 adults aged 20–79 years have diabetes, with pro-
jections indicating that the number will rise to 643 million by 2030 and 783 million 
by 2045 [2]. Additionally, unhealthy lifestyle behaviors, driven by social, economic, 
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or interpersonal pressures, are linked to diabetes risk [3]–[5]. Even in high-income 
countries such as the United States, the financial burden of diabetes is significant. 
The American diabetes association (ADA) reported in 2022 that the annual economic 
cost of diabetes reached $412.9 billion, with $306.6 billion attributed to direct med-
ical expenses and $106.3 billion to indirect costs [6]. Direct medical expenses are 
expected to increase by 35% from 2012 to 2017, adjusted for inflation [7]. One in four 
dollars spent on healthcare in the US today goes to helping people with diabetes.

Numerous studies have looked at the connection between lifestyle factors and things 
such as death, heart disease risk, or controlling risk factors. Some lifestyle choices may 
increase the risk of microvascular or macrovascular problems, but more research is 
needed to fully understand this link [3], [8]. Realizing the benefits of starting a healthy 
lifestyle in the early stages of diabetes could lower the number of people who get seri-
ous complications and numerous long-term illnesses, thereby easing the strain on the 
healthcare system. As a result, early diagnosis of diabetes complications often relies on 
the doctor’s knowledge and experience, which isn’t always accurate and can be dan-
gerous. Diabetes is now the leading cause of death, with 76.6% of people using it report-
ing at least one problem [9]. The need for early diagnosis of diabetes complications is 
critical, as it can prevent the progression of diseases such as neuropathy, nephropa-
thy, retinopathy, foot disease, and cardiovascular conditions, all of which significantly 
reduce the quality of life and increase healthcare costs. Traditional diagnostic methods 
heavily depend on the expertise of healthcare professionals, which can be inaccurate 
and risky [1]. Therefore, advanced tools that aid in early diagnosis are essential.

Artificial intelligent (AI) today, as a form of digital technology, is one potential 
solution in healthcare. In particular, machine learning (ML) offers promising solu-
tions for diagnosing and predicting diabetes by leveraging vast datasets [10]–[13]. 
According to [14], ML as a tool for precision medicine is still in its infancy, with the 
authors stating, ‘we are still learning the strengths and limitations of ML as an approach.’ 
Previous studies have demonstrated that ML applications in diabetes research can 
build robust models that effectively identify the relationships between key attributes 
of diabetes across different dataset settings [15]. For example, ML has been applied 
in various areas of diabetes research, such as diabetic retinopathy [16]–[20], dia-
betic foot ulcer detection [21], onset of type 2 diabetes [22]–[24], diabetes compli-
cations [25]–[27], and support for self-management [28]. However, comprehensive 
analysis of such data remains challenging due to limitations in healthcare systems, 
which cannot provide all types of data, such as tabular, image, video, signal, and text. 
Despite this, ML offers enormous potential for handling large volumes of data with 
high-dimensional features and a huge number of examples. ML has also been used 
extensively in the field of disease prediction [29]–[36]. There are three main ideas 
in ML for task classification: binary, multiclass, and multi-label classification. These 
approaches guide how to assign class labels to examples from the problem domain. 
Several researchers have used these ideas, and they have made a big difference in 
the field of diabetes prediction [26], [29], [37]–[41]. Furthermore, some studies also 
focus on comparing the performance of the ML algorithm to achieve the best accu-
racy [42]–[44], while some researchers are also developing models based on private 
data or through the electronic health record (EHR) [45], [46]. In fact, most studies 
usually use the binary classification model, which has good predictive performance 
for diabetic prediction. A few studies based on public data also have a significant 
contribution in the field of diabetes prediction by utilizing the Pima Indiana dataset 
as basis modeling by ML. [22], [47]–[52]. This dataset was collected by the National 
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and is stored in the 
UCI ML repository. The PIMA Indiana dataset is one of the most famous and widely 
used datasets in many studies. Frequently, binary and multiclass classification is 
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conducted in their study. However, there is a limited number of studies that apply 
multi-label classification (MLC), especially in diabetes complication prediction. 
Several studies in different domains have demonstrated that MLC approaches show 
great promise in tasks such as text categorization, image classification, automatic 
annotation for multimedia content, bioinformatics, web mining, rule mining, infor-
mation retrieval, tag recommendation, and other diverse fields [53]–[58].

Multi-label approaches are a more suitable technique that has not been exten-
sively utilized in diabetes complication prediction studies, as they can more rapidly 
identify correlations among distinct labels by simultaneously modeling multiple 
labels [26]. To take advantage of the connections between diabetic complications and 
enhance their predictive accuracy even further, we thus attempted to employ an MLC 
model. The prediction of diabetes complications remains challenging due to the multi- 
dimensional nature of the disease, which often affects multiple organs simultane-
ously (microvascular, macrovascular, and comorbidities). Traditionally, ML models 
used for diabetes complication predictions primarily focus on binary or multi-class 
classification. However, limited research has explored the MLC approach, which 
can simultaneously predict multiple complications. This gap in the literature high-
lights the need for effective modeling strategies to capture interrelated complications. 
By leveraging large public datasets such as the behavioral risk factor surveillance 
system (BRFSS), this study aims to explore MLC models and frameworks to enhance 
predictive accuracy in identifying multiple diabetic complications. MLC allows 
the simultaneous prediction of multiple related conditions, which may provide a 
better understanding of the complexity and interactions of diabetic complications 
than traditional methods. Existing literature indicates that different ML models have 
varying performance across different datasets. Exploring multiple models in the 
MLC context is necessary to identify the most robust model. Furthermore, under-
standing the critical factors contributing to complications is essential for preventive 
healthcare. This question aims to identify key features using feature importance 
analysis. In 2019, [59] developed a native ML-based risk prediction model using 
BRFSS data. The study shows that this public data can be used to design a risk pre-
diction model, and from the experimental results, neural network archive the best 
performance. Established in 1984, BRFSS is the biggest continually conducted health 
survey system in the world, with adult interviews conducted in 15 states annually.  
It collects state-specific data on Americans’ health-related risk behaviors, chronic 
health issues, and preventive service usage [60]. The objective of BRFSS is to identify 
the risk factors for a variety of human diseases. However, this study provides an excit-
ing opportunity to advance our knowledge of designing multi-label risk prediction 
diabetes complication models (MLRPDC) by utilizing data from BRFSS and the MLC 
concept that modeled and predicted each diabetic complication problem separately. 
Our work has three contributions based on the challenges and evidence discussed:

1. Building risk prediction for diabetes complications by utilizing MLC frameworks 
and native ML models.

2. We proposed a comparison methodology with performance evaluation for MLC 
Frameworks.

3. Explaining important factors contributing to diabetes complications.

This paper’s organization is as follows: Section 2 discusses material and methods, 
including elements addressed in this research, experiment setup, and data sets. 
Section 3 shows the result and discussion with respect to comparing MLC frame-
works with several ML, and Section 4 discusses the conclusion of research and pres-
ents scope for further study.
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2	 MATERIAL	AND	METHODS

This study utilizes seven native models: artificial neural network (ANN), deep 
neural network (DNN), random forest (RF), decision tree (DT), K-nearest neighbors 
(KNN), naive Bayes (NB), and support vector machine (SVM). Inspired by the struc-
ture and function of the human brain, an ANN is a model of connected neurons 
arranged in layers, enabling it to learn complex patterns. Multi-layer perceptron 
(MLP) is commonly used for multi-label classification, with attention mechanisms by 
improving label dependency capture [61]. A DNN adds extra layers to ANNs, allowing 
it to learn hierarchical features and perform well on large datasets, making it effec-
tive for MLC. A DT model is a flowchart-like model that tests attributes at nodes, with 
branches representing outcomes and leaves indicating classes. DTs handle both cat-
egorical and numerical data and are easy to interpret. Moreover, RF is an ensemble 
of DTs, combining their predictions for more robust results. KNN classifies instances 
based on similarity to training data; however, it can be slow with large datasets. 
NB, a probabilistic method, is efficient for high-dimensional data but struggles with 
tabular data in multi-label classification. Lastly, SVM finds an optimal hyperplane to 
separate classes, working well in high-dimensional spaces and adaptable with dif-
ferent kernel functions. To build the MLRPDC models, several steps were undertaken 
(see Figure 1), which are discussed in the subsequent sections.

Fig. 1. A framework for multi-label risk prediction diabetes complication
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2.1	 BRFSS	as	a	diabetes	complication	dataset

This study utilized BRFSS data from 2016 to 2021, which contains multiple vari-
ables for each year (https://www.cdc.gov/brfss/annual data/annual data.htm) [60]. 
In BFRSS 2016–2021 data records, respondents were suffering from diabetes and 
most of them have associated complications. In the context of diabetes itself, there 
are three main types of diabetes: type 1, type 2, and gestational. The respondents 
were diagnosed with pre-diabetes, diabetes, or gestational diabetes based on their 
answers to the survey questions. However, in this study we only consider 33 vari-
ables from each year of BRFSS data. We are extending the study from [59] which 
considered a number of factors related to type 2 diabetes and this study also consid-
ered factors related [62] to diabetes complications in order to build risk prediction 
complications. Table A1 lists the 33 factors that were investigated as risk diabetes 
complication factors for this study. The BRFSS dataset contains variables related to 
diabetic complications and includes respondents with diabetes, prediabetes, and 
no dependent variable. Other risk factors such as general and mental health status, 
health care coverage and primary source, and metropolitan status code will also be 
considered for designing MLRPDC. Independent variables such nephropathy, coro-
nary heart disease, heart attack, stroke, cancer, arthritis, and depression considered 
as multi-label. To help with personalized type 2 diabetes therapy, we sought to deter-
mine which MLC model would be most effective in predicting diabetic complica-
tions and can be guiding clinical judgments.

2.2	 Data	analysis	and	data	pre-processing

Behavioral risk factor surveillance system dataset cannot be useful right away 
out of the box. In this study, BFFRS dataset was used from 2016 until 2021 with total 
data 2.632.674 rows x 33 columns and the author fixed the columns by renaming 
each variable that has been determined Xinput (X1 – X26) and Youtput (Y1 – Y2). Data 
cleaning was conducted to detect and remove bad or noisy data, as well as handle 
missing values. Rows or columns containing NaN values were dropped where data 
cells remained empty. Then, to handle missing data, this study considered imputing 
the missing values using mean imputation techniques. In phyton library scikit-learn, 
specifically, “Iterative Imputer” is a class that implements an imputation algorithm 
using the MICE (Multiple Imputation by Chained Equations) approach [63]. For 
each missing feature, this technique builds a regression model. Then, the model’s 
projected values are used to fill in missing feature values until convergence or the 
maximum number of iterations is reached. The “Iterative Imputer” is initialized with 
the desired parameters such as missing_values (set to NaN in this case), max_iter 
(maximum number of iterations), tol (convergence tolerance), n_nearest_features 
(number of nearest features to use for imputation), and initial_strategy (strategy to 
use for initializing missing values). After fitting the imputer to Data Frame, the miss-
ing values are imputed using the transform method, and the result is stored in the 
imputed_data DataFrame. The BRFSS dataset also has various issues that must be 
addressed, such as data values that are irrelevant, if a respondent answered “don’t 
know” or refused to answer. In the BRFSS dataset, age was categorized into groups 
(1: 31 to 40 y, 2: 41–50 y, 3: 51–60 y, 4: 61–70 y, 5: 71–80 y, 6: >81 y) and mental health 
data were condensed.
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2.3	 Multi-label	classification	frameworks

Machine learning algorithms are trained to predict many labels or categories 
for a given input instance in MLC. In contrast to single-label classification, each 
occurrence can be assigned many labels. This study employed varied settings on 
classification to create MLRPDC using MLC-Problem Transformation (MLC-PT) and 
MLC-Algorithm Adaptation (MLC-AA). According to [26], [53], [64] MLC involves 
conversion into different learning issues. First-order, second-order, and high- 
order techniques are representative. The multi-label learning problem and desired 
balance between computational efficiency and correlation modelling determine the 
technique as classified in Table 1.

Table 1. Multi-label learning strategies

Multi-Label Learning Issue Methods

First-Order Binary Relevance (BR), Calibrated Label Ranking (CLR), Classifier Chains 
(CC), Label Powerset (LP), Multi-Label k-Nearest Neighbours (ML-kNN), 
Multi-Label Random Forest (ML-RF), Multi-Label Artificial Network 
(ML-ANN), Multi-Label Naïve Bayes (ML-NB), Multi-Label Deep Neural 
Network (ML-DNN), Multi-Label Decision Tree (ML-DT)

Second-Order Multi-Label Support Vector Machine (ML-SVM), Calibrated Label Ranking 
(CLR), Classifier Chains (CC)

Higher-Order Ensemble methods, Meta-Learning, and other complex techniques 
that require greater computing complexity

The first-order method is simple and efficient but may overlook label relation-
ships. The second-order strategy captures paired relationships and generalizes 
well but may miss higher-order correlations. In contrast, the high-order strategy 
is more comprehensive but requires greater computational complexity and often 
involves ensemble methods, meta-learning, or other intricate procedures beyond 
simple adjustments. The choice of strategy depends on the specific multi-label learn-
ing problem. Notably, some methods, such as calibrated label ranking (CLR) and CC, 
can span multiple categories (first-order and second-order) depending on how they 
manage label dependencies.

Binary relevance (BR) is one of the most straightforward and widely used prob-
lem transformation techniques for multi-label classification. The process of transfor-
mation on BR for each unique label in the multi-label problem, a binary classifier is 
trained independently. Each binary classifier is responsible for predicting the pres-
ence or absence of a specific label. If there are, for example, three labels (A, B, C) in 
the original multi-label problem, BR would create three binary classifiers: one for A, 
one for B, and one for C. The training data for each binary classifier is constructed 
by considering instances that have the presence or absence of the corresponding 
label. For instance, for the binary classifier handling label A, instances are labeled 
as positive if they have label A and negative if they do not. During prediction, each 
binary classifier produces a binary decision for its corresponding label. The final 
multi-label prediction is then formed by combining the individual binary decisions. 
The advantages are BR is conceptually simple and easy to implement and can be 
combined with various base classifiers, allowing for flexibility in the choice of algo-
rithms. BR assumes that labels are independent, which may not hold true in all cases. 
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If there is label dependence, other problem transformation methods like CC might 
be more suitable.

Classifier chains is a problem transformation technique designed to capture label 
dependencies in multi-label classification. Instead of training a separate binary clas-
sifier for each label independently (as in BR), CC creates a chain of classifiers, where 
each classifier is responsible for predicting one label and considers the predictions 
of the preceding classifiers in the chain. The order of the chain is often determined 
based on label dependencies or a predetermined sequence. The first classifier in the 
chain is trained on the original features and the binary labels for its corresponding 
label. Each subsequent classifier is trained on the original features along with the 
binary predictions made by the preceding classifiers in the chain. During prediction, 
each classifier in the chain produces a binary decision for its corresponding label. 
The predictions made by preceding classifiers are used as additional features for 
subsequent classifiers. The final multi-label prediction is formed by combining the 
binary decisions of all classifiers.

Label Powerset (LP) is a problem transformation technique that treats each 
unique combination of labels as a distinct class. For a multi-label problem with 
m labels, LP generates up to 2m possible label combinations. These combinations 
become separate classes in the transformed problem, where a standard single-label 
classifier is trained. During prediction, the classifier outputs a label combination, 
which is then mapped back to the original set of labels for the multi-label prediction. 
LP effectively captures the joint occurrences of labels, making it suitable when the 
relationships between label combinations are crucial. However, as the number of 
labels increases, the number of possible classes grows exponentially, making LP less 
practical for problems with many labels. In such cases, methods such as BR or CC 
may be more efficient.

Calibrated label ranking transforms MLC problems by ranking labels based on 
relevance or likelihood. Instead of predicting labels in a binary fashion or using 
combinations, CLR ranks each label for an instance according to its relevance or 
confidence. During training, the model learns to rank relevant labels higher for each 
instance, and during prediction, it provides scores indicating the relevance of each 
label. The “calibrated” aspect ensures that the model outputs reflect the relevance 
of labels more accurately. CLR is particularly effective when a fine-grained under-
standing of label significance is needed, and it offers more informative predictions 
when relevance rankings are more meaningful than binary or label combination 
predictions. Finally, Algorithm adaptation [64], also known as algorithm extension or 
modification, involves adjusting or extending ML algorithms to address specific chal-
lenges or dataset criteria, thereby enhancing performance, robustness, or suitability 
for a given task. This approach is particularly useful in multi-label classification, 
where single-label algorithms must be adapted to handle instances with multiple 
labels. The adaptation process includes modifying algorithms to optimize hyperpa-
rameters (such as learning rates, regularization strengths, or kernel parameters) for 
multi-label datasets, as well as incorporating features that improve the detection of 
multi-label relationships. This may involve designing elements that account for label 
dependencies or incorporate domain-specific information. Additionally, algorithm 
adaptation may involve modeling and leveraging label relationships to improve 
performance. Ensemble methods, such as bagging or boosting, can further enhance 
the adapted algorithm’s robustness and effectiveness. Adjusting training loss func-
tions to align with MLC goals, such as accounting for label correlations or penalizing 
specific errors, is another critical aspect. In summary, algorithm adaptation in MLC 
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enhances performance and applicability by tailoring algorithms or models to better 
handle multi-label datasets.

2.4	 Evaluation	metrics	for	multi-label	classification

There is no general agreement about suitable evaluation matric for multi-label 
classification. The evaluation metrics for multi label learning can be divided into 
example-based metrics and label-based metrics. In our experimental settings, we 
conduct several evaluation metrics that has been recommended in the previous 
study [26], [53], [64] (refer to Table 2):

Table 2. Model evaluation metrics for multi-label classification
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Label-Based Metric
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Table 2. Model evaluation metrics for multi-label classification (Continued)
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True labels are denoted by �i, while predicted labels for the same sample are 
denoted by h(xi). The ∆ symbol indicates a symmetric difference between sets, p and 
q represent examples and class labels, TPj and FPj, represent true positives and false 
positives for label j, and TNj and FNj represent true negatives and false negatives for 
label j. The accuracy and subset accuracy used in MLC are example-based measures 
computed on the label set, unlike the general accuracy used in binary or multi-class 
classification. While macro average metrics calculate the metric for each class before 
averaging them, micro average metrics add up all class contributions to calculate the 
average metric. According to previous research [40], we evaluate the model using 
macro and micro criteria.

3	 RESULT	AND	DISCUSSION

We compared the performance of each MLC framework using 20 evaluation met-
rics (refer to Table 1). Next, we used AUC and ROC curves to evaluate model perfor-
mance. We labeled the experiments Nephropathy, Coronary Heart Disease, Heart 
Attack, Stroke, Cancer, Arthritis, and Depression. The dataset was randomly split 
into the training (80%) and test (20%) sets. All studies then employed 10-fold cross- 
validation to validate model performance. The objective in this study is to build the 
risk prediction for diabetes complications by comparing several experimental MLC 
frameworks with seven ML models and evaluating them using 20 performance eval-
uation metrics for MLC. The experimental result (refer to Tables 3 and 4) as empirical 
evidence of the study that become a standpoint on discussion that was divided into 
two parts: (1) Comparison of ML model on each MLC frameworks; (2) Comparison of 
the best performance on each MLC frameworks with respect to the ML performance 
evaluation in the following sub-sections.

3.1	 Comparison	of	ML	on	MLC	framework

To evaluate the performance of different ML methods across each MLC frame-
work, we analyzed their results using 20 evaluation metrics. In PT-BR, three models 
outperformed others, including native ML methods such as ANN, NB, and DNN. ANN 
excelled in 13 metrics compared to NB (2 metrics) and DNN (6 metrics). In PT-CC, 
four models outperformed native methods like ANN, RF, NB, and DNN, with DNN 
leading in 10 metrics, followed by RF (3 metrics), NB (3 metrics), and ANN (10 met-
rics). Similarly, in PT-LP, four models outperformed RF, SVM, NB, and DNN, with RF 
excelling in 13 metrics, compared to SVM (1 metric), NB (1 metric), and DNN (5 met-
rics). In PT-CLR, four models outperformed ANN, RF, NB, and DNN, with ANN leading 
in 10 metrics, RF in 2 metrics, NB in 5 metrics, and DNN in 5 metrics. Finally, in the 
AA framework, four models outperformed ANN, RF, NB, and DNN, with DNN excel-
ling in 13 metrics, followed by RF (1 metric), NB (2 metrics), and ANN (6 metrics). 
Overall, the results indicate that ANN, DNN, RF, NB, and SVM demonstrate significant 
performance across MLC frameworks.

3.2	 Comparison	the	best	performance	on	MLC	frameworks

As previously discussed, ANN, DNN, RF, NB, and SVM show significant per-
formance across MLC frameworks, with DNN and NB being the most effective in 
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handling all MLC problems. The ANN model performed exceptionally well in PT-BR, 
PT-CC, PT-CLR, and AA, while the RF model excelled in PT-CC, PT-LP, PT-CLR and AA. 
SVM, however, showed notable performance only in PT-CLR. When evaluating the 
best performance metrics, ANN stood out in PT-BR and PT-CLR, DNN in PT-CC and 
AA, and RF in PT-LP.

To determine the overall best performance across all MLC frameworks, we con-
ducted a ranking procedure based on each model’s performance. The steps for this 
ranking procedure are as follows:

1. After the experiment, results are obtained based on performance for MLC frame-
works. (refer to Tables 3 and 4)

2. Finding the best results or best model on each MLC metric.
3. Selecting the best metric on ML model from 20 predetermined metrics, the best 

metric is accumulated as a reference in ranking. Then, determined the five best 
models in each Framework. (See section 3.2)

4. Calculating the average of the accumulated MLC metrics for each model from 
5 Frameworks. To calculated average metrics, follow Eq. 1:

 AverageMetric

Metric

n

i

n

i

� � ��
1  (1)

Where:
•	 n is the number of models.
•	 Metrici indicates total metric values for the ith model.

5. Perform ranking and get the best ML model for all frameworks.

The findings from the ranking procedure, based on the average metric values, 
indicate that DNN (7.6) is the best model for all MLC frameworks, followed by ANN 
(7.0), RF (3.8), NB (2.6), and lastly, SVM (0.2). These results were obtained by calculat-
ing the average of accumulated MLC metrics for each model across five frameworks. 
Equation 1 was applied to each model, yielding an average metric value. As previ-
ously mentioned, the ranking results show that DNN is the top-performing model, 
with ANN in second place for MLC frameworks. This provides empirical evidence that 
neural network-based models are more robust compared to other ML models in MLC 
frameworks. However, it is worth noting that the PT-LP-DNN framework exhibited the 
worst performance, with 15 of the 20-performance metrics ranking lowest. This poor 
performance may be attributed to the large number of labels and limited samples, 
which likely exacerbated the issue of class imbalance in the dataset, as noted by [26].

3.3	 Result	of	area	under	the	receiver	operating	characteristic	curve

To illustrate the performance of the best method, the AA-DNN model for predicting 
diabetes complications, we utilized AUC and ROC curves. These curves demonstrate 
the trade-off between recall (sensitivity or true positive rate) and the false-positive 
rate, providing a comprehensive view of model performance. Additionally, we used 
the precision-recall curve, which highlights the precision of the model relative to 
recall, particularly in cases of imbalanced datasets. Notably, the AA-DNN model 
achieved the highest AUROC, indicating its superior ability to distinguish between 
classes (see Figure 2). These results validate the AA-DNN model as a highly effective 
tool for risk prediction in diabetic complications.
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Table 3. Result example based metric

M
LC

  
Fr

am
ew

or
k

Classifier

Example Based Matric

Sub-Set 
Accuracy ↑ 

Hamming  
Loss ↓

Accuracy  
(Exp) ↑

Precision  
(Exp)  ↑

Recall  
(Exp)  ↑

F1-Score  
(Exp) ↑ 

One  
Error ↓ Coverage ↓ Ranking  

Loss ↓
Average 

Precision ↑ 

PT-BR ANN 0.4164 0.1269 0.8620 0.8909 0.9621 0.9114 0.0727 6.5988 0.3212 0.8707

RF 0.3730 0.1383 0.8499 0.8913 0.9472 0.9008 0.0728 6.6106 0.3194 0.8664

DT 0.2270 0.2023 0.7778 0.8836 0.8621 0.8538 0.0757 6.7645 0.3512 0.8561

K-NN 0.3571 0.1450 0.8426 0.8885 0.9410 0.8961 0.0730 6.6461 0.3318 0.8635

NB 0.3346 0.2294 0.7101 0.7790 0.7780 0.8448 0.0772 6.8327 0.4166 0.8820

SVM 0.0012 0.6551 0.2353 0.6332 0.2464 0.3531 0.0946 6.9918 0.4666 0.8406

DNN 0.4149 0.1272 0.8615 0.8926 0.9595 0.9103 0.0727 6.5889 0.3129 0.8713

PT-CC ANN 0.4163 0.1274 0.8617 0.8893 0.9637 0.9116 0.0727 6.6142 0.3303 0.8698

RF 0.3729 0.1382 0.8500 0.8909 0.9479 0.9011 0.0728 6.6176 0.3229 0.8662

DT 0.2322 0.2037 0.7760 0.8833 0.8599 0.8526 0.0757 6.7571 0.3502 0.8560

K-NN 0.3599 0.1442 0.8439 0.8870 0.9446 0.8974 0.0730 6.6531 0.3384 0.8627

NB 0.3439 0.2316 0.7072 0.7265 0.7926 0.8481 0.0727 6.8813 0.4784 0.8747

SVM 0.0088 0.6984 0.1693 0.5055 0.1762 0.2555 0.0768 6.9916 0.4866 0.8402

DNN 0.4165 0.1273 0.8617 0.8897 0.9631 0.9115 0.0727 6.6131 0.3283 0.8700

PT-LP ANN 0.1403 0.2091 0.7734 0.9241 0.8313 0.7118 0.0727 6.5755 0.1666 0.8365

RF 0.4141 0.1288 0.8609 0.8846 0.9680 0.9122 0.0727 6.6557 0.3558 0.8671

DT 0.2492 0.1895 0.7920 0.8851 0.8798 0.8619 0.0751 6.7392 0.3460 0.8565

K-NN 0.3398 0.1501 0.8375 0.8899 0.9340 0.8891 0.0729 6.6520 0.3242 0.8604

NB 0.1210 0.5356 0.4194 0.7620 0.4559 0.5730 0.0951 6.9692 0.5092 0.8505

SVM 0.1672 0.2130 0.7694 0.9065 0.8409 0.7984 0.0719 6.6645 0.2447 0.8435

DNN 0.1175 0.2261 0.7542 0.9274 0.8046 0.6867 0.0727 6.6124 0.1569 0.8365

PT-CLR ANN 0.4166 0.1271 0.8621 0.8889 0.9645 0.9120 0.0727 6.6108 0.3306 0.8699

RF 0.3749 0.1380 0.8500 0.8916 0.9472 0.9009 0.0727 6.6127 0.3188 0.8666

DT 0.2685 0.1829 0.7953 0.8931 0.8783 0.8632 0.0738 6.7277 0.3257 0.8606

KNN 0.3573 0.1450 0.8419 0.8908 0.9381 0.8952 0.0730 6.6452 0.3249 0.8644

NB 0.3328 0.2317 0.7074 0.7763 0.7751 0.8435 0.0772 6.8372 0.4189 0.8821

SVM 0.2308 0.3029 0.6703 0.7518 0.7911 0.8016 0.0845 6.9596 0.5154 0.8351

DNN 0.4160 0.1269 0.8620 0.8910 0.9620 0.9113 0.0727 6.5965 0.3203 0.8709

AA ANN 0.4150 0.1273 0.8365 0.9999 0.9996 0.9109 0.0584 6.2347 0.0823 0.9343

RF 0.3733 0.1381 0.8500 0.8914 0.9472 0.9008 0.0728 6.6099 0.3190 0.8665

DT 0.2271 0.2021 0.7780 0.8836 0.8622 0.8539 0.0756 6.7643 0.3511 0.8562

KNN 0.3567 0.1450 0.8426 0.8885 0.9411 0.8962 0.0730 6.6466 0.3320 0.8635

NB 0.3346 0.2294 0.7101 0.7790 0.7780 0.8448 0.0773 6.8328 0.4166 0.8820

SVM 0.0227 0.5799 0.3289 0.6652 0.3533 0.4820 0.0941 6.9687 0.4461 0.8424

DNN 0.4156 0.1272 0.8365 0.9989 0.9996 0.9113 0.0594 6.2342 0.0827 0.9345

Notes: ↑ and ↓ show the best performance.
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Table 4. Result label based matric

M
LC

  
Fr

am
ew

or
k

Classifier

Label Based Matric

Accuracy  
(Micro)  ↑

Accuracy  
(Macro)  ↑

Precision  
(Micro)  ↑

Precision  
(Macro)  ↑

Recall  
(Micro)  ↑

Recall  
(Macro) ↑ 

F1-Score  
(Micro)  ↑

F1-Score  
(Macro) ↑ 

AUC  
(Micro)  ↑

AUC  
(Macro)  ↑

PT-BR ANN 0.8731 0.8731 0.8935 0.8785 0.9630 0.9477 0.9270 0.9114 0.6879 0.5569

RF 0.8617 0.8617 0.8936 0.8755 0.9475 0.9278 0.9198 0.9008 0.6851 0.5547

DT 0.7977 0.7977 0.8885 0.8645 0.8670 0.8434 0.8776 0.8538 0.6550 0.5648

K-NN 0.8550 0.8550 0.8908 0.8718 0.9421 0.9221 0.9158 0.8961 0.6756 0.5556

NB 0.7706 0.7706 0.9072 0.8952 0.8084 0.8026 0.8550 0.8448 0.6926 0.6761

SVM 0.3449 0.3449 0.8873 0.8419 0.2482 0.2388 0.3872 0.3531 0.5441 0.5139

DNN 0.8728 0.8728 0.8953 0.8801 0.9602 0.9438 0.9266 0.9103 0.6928 0.5573

PT-CC ANN 0.8726 0.8726 0.8918 0.8770 0.9648 0.9502 0.9268 0.9116 0.6828 0.5556

RF 0.8618 0.8618 0.8931 0.8750 0.9483 0.9289 0.9199 0.9011 0.6837 0.5534

DT 0.7963 0.7963 0.8887 0.8645 0.8648 0.8410 0.8766 0.8526 0.6553 0.5647

K-NN 0.8558 0.8558 0.8890 0.8703 0.9457 0.9265 0.9165 0.8974 0.6708 0.5529

NB 0.7684 0.7684 0.8907 0.8830 0.8243 0.8235 0.8562 0.8481 0.6533 0.6624

SVM 0.3016 0.3016 0.9304 0.8546 0.1790 0.1657 0.2943 0.2555 0.5539 0.5228

DNN 0.8727 0.8727 0.8923 0.8773 0.9642 0.9494 0.9268 0.9115 0.6842 0.5560

PT-LP ANN 0.7909 0.7909 0.9240 0.6852 0.8191 0.7429 0.8672 0.7118 0.7333 0.5000

RF 0.8712 0.8712 0.8870 0.8725 0.9696 0.9571 0.9265 0.9122 0.6686 0.5522

DT 0.8105 0.8105 0.8891 0.8649 0.8836 0.8590 0.8864 0.8619 0.6598 0.5610

K-NN 0.8499 0.8499 0.8915 0.8696 0.9343 0.9102 0.9124 0.8891 0.6760 0.5476

NB 0.4644 0.4644 0.8016 0.8691 0.4777 0.5172 0.5977 0.5730 0.4367 0.5636

SVM 0.7870 0.7870 0.9047 0.8508 0.8335 0.7804 0.8674 0.7984 0.6914 0.5269

DNN 0.7739 0.7739 0.9273 0.6624 0.7918 0.7143 0.8542 0.6867 0.7371 0.5000

PT-CLR ANN 0.8729 0.8729 0.8916 0.8769 0.9655 0.9514 0.9271 0.9120 0.6822 0.5562

RF 0.8620 0.8620 0.8939 0.8758 0.9475 0.9278 0.9199 0.9009 0.6858 0.5549

DT 0.8171 0.8171 0.8973 0.8723 0.8823 0.8551 0.8897 0.8632 0.6828 0.5709

KNN 0.8550 0.8550 0.8929 0.8735 0.9393 0.9182 0.9155 0.8952 0.6815 0.5574

NB 0.7683 0.7683 0.9069 0.8953 0.8058 0.8005 0.8534 0.8435 0.6912 0.6772

SVM 0.6971 0.6971 0.8398 0.8341 0.7882 0.7829 0.8129 0.8016 0.5095 0.4882

DNN 0.8731 0.8731 0.8937 0.8788 0.9628 0.9476 0.9270 0.9113 0.6882 0.5569

AA ANN 0.8727 0.8727 0.8937 0.8785 0.9622 0.9466 0.9267 0.9109 0.8738 0.7935

RF 0.8619 0.8619 0.8938 0.8757 0.9474 0.9277 0.9198 0.9008 0.6857 0.5550

DT 0.7979 0.7979 0.8886 0.8646 0.8671 0.8435 0.8777 0.8539 0.6553 0.5654

KNN 0.8550 0.8550 0.8908 0.8718 0.9422 0.9222 0.9158 0.8962 0.6756 0.5557

NB 0.7706 0.7706 0.9072 0.8951 0.8085 0.8026 0.8550 0.8448 0.6925 0.6761

SVM 0.4201 0.4201 0.8837 0.8537 0.3534 0.3427 0.5038 0.4820 0.5576 0.5121

DNN 0.8728 0.8728 0.8930 0.8780 0.9634 0.9483 0.9269 0.9113 0.8737 0.7935

Notes: ↑ and ↓ showing the best performance.

https://online-journals.org/index.php/i-joe


iJOE | Vol. 20 No. 16 (2024) International Journal of Online and Biomedical Engineering (iJOE) 79

Multi-Label Risk Prediction Diabetes Complication Using Machine Learning Models

Fig. 2. AUROC of AA-DNN model

Coronary heart disease (Y2) exhibited the highest AUROC among all diabetes com-
plications, followed by cancer (Y5) and depression (Y7). These results reinforce the 
strong performance of the AA-DNN model, which achieved an AUC macro value of 
0.7935. This demonstrates the model’s overall effectiveness in predicting multiple 
diabetes-related complications.

3.4	 Result	of	feature	importance

To identify the key factors that significantly contribute to the development of 
diabetes complications, we utilized the AA-DNN model in this study. The model 
highlighted several factors with strong correlations to complications, as shown in 
Table 5. These factors were identified as having a significant impact on the progres-
sion of diabetes-related conditions, providing valuable insights into the underlying 
contributors to these complications.

Table 5. Top10 key features in prediction

Nephropathy  
(Y1)

Coronary Heart 
Disease (Y2)

Heart 
Attack (Y3)

Stroke  
(Y4)

Cancer  
(Y5)

Arthritis  
(Y6)

Depressive 
Disorder (Y7)

GENHLTH (X1) _AGEG5YR (X21) GENHLTH (X1) GENHLTH (X1) _AGEG5YR (X21) _AGEG5YR (X21) DECIDE (X16)

_AGEG5YR (X21) GENHLTH (X1) _AGEG5YR (X21) _AGEG5YR (X21) GENHLTH (X1) GENHLTH (X1) MENTHLTH (X2)

EMPLOY1 (X11) _SEX (X17) _SEX (X17) EMPLOY1 (X11) _SEX (X17) _SEX (X17) _SEX (X17)

DIABETE4 (X23) DIABETE4 (X23) DIABETE4 (X23) DECIDE (X16) EMPLOY1 (X11) EMPLOY1 (X11) EMPLOY1 (X11)

CHECKUP1 (X4) EMPLOY1 (X11) _SMOKER3 (X6) DIABETE4 (X23) MARITAL (X9) _BMI5CAT (X20) GENHLTH (X1)

BLIND (X15) _SMOKER3 (X6) EMPLOY1 (X11) INCOME2 (X12) _BMI5CAT (X20) DECIDE (X16) _SMOKER3 (X6)

DECIDE (X16) INCOME2 (X12) INCOME2 (X12) BLIND (X15) _SMOKER3 (X6) CHECKUP1 (X4) _AGEG5YR (X21)

_EDUCAG (X13) BLIND (X15) CHECKUP1 (X4) _SMOKER3 (X6) _EDUCAG (X13) _SMOKER3 (X6) _EDUCAG (X13)

DEAF (X22) CHECKUP1 (X4) BLIND (X15) CHECKUP1 (X4) CHECKUP1 (X4) _RACE (X19) _RACE (X19)

MSCODE (X14) PREDIAB1 (X25) MARITAL (X9) MARITAL (X9) RENTHOM1 (X10) MARITAL (X9) _BMI5CAT (X20)
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This study presents 10 key features (refer to Table 5) that have been used to vali-
date the AA-DNN model, achieving better performance as demonstrated in the pre-
vious analysis of MLC performance, where higher rankings correspond to higher 
SHAP (Shapley Additive Explanations) values [65]. Many of these features align with 
established predictive factors; for example, X1, X11, and X21, which are significant 
in the context of diabetes complications, were consistent with known behavioral 
risk factors in medical research. To the best of our knowledge, the MLC model can 
effectively handle the multifactorial correlations of diabetic complications synchro-
nously with high predictive performance. Among the evaluated MLC frameworks, 
AA-DNN outperformed other PT-MLC when assessed using various performance 
metrics. As mentioned earlier, the AA-DNN model demonstrated superior perfor-
mance based on overall MLC metrics, achieving the highest AUROC value of 0.84. 
Notably, the AA-DNN model showed significant improvement in predicting coro-
nary heart disease (Y2), a crucial predictor of diabetes complications, while cancer 
(Y5) and depressive disorder (Y7) exhibited the lowest AUROC value of 0.75, reinforc-
ing the accuracy of our model.

4	 CONCLUSION	AND	FUTURE	WORK

This study employed MLC frameworks and ML models to predict diabetic com-
plications using public health data. Our findings suggest that the AA framework, 
particularly with the DNN, is the most effective for predicting multiple diabetic com-
plications. This work demonstrates the potential of ML models in healthcare, spe-
cifically in the early diagnosis of complex conditions like diabetes. However, there 
are certain limitations, as this model is not based on clinical patient data, despite 
diabetes being a metabolic disease where many studies utilize clinical data or bio-
marker datasets. A deeper understanding of health studies and the medical context 
of data is necessary for designing models to diagnose diabetic complications accu-
rately. Additionally, addressing the challenge of imbalanced datasets is crucial, as it 
enhances classification performance. Future work will explore the feasibility of DL 
methods that incorporate higher-order strategies for MLC frameworks, with a par-
ticular focus on the AA framework.
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9	 APPENDIX

Table A1. Factors used in this study based behavioral factors during 2016–2021 [60]

No Factors Question Value

1 GENHLTH General Health 1: Excellent, 2: Very good, 3: Good, 4: Fair, 5: Poor

2 MENTHLTH Number of Days Mental 
Health Not Good

1: 0–10, 2: 11–20, 3: 21–30

3 HLTHPLN1 Have any health care coverage 1: Yes, 2: No

4 CHECKUP Length of time since last 
routine check-up

1: <1 y, 2: 1–2 y, 3: 3–5 y, 4: >5 y, 6: Never

5 EXERANY Exercise in Past 30 Days 1: Yes, 2: No

6 SMOKER Computed Smoking Status 1: Current smoker every day, 2: Current smoker 
some days, 3: Former smoker, 4: Never smoked

7 TOTINDA Leisure Time Physical Activity 
Calculated Variable

1: Had physical activity or exercise, 2: No physical 
activity in past 30 days

8 RFDRHV Heavy Alcohol Consumption 
Calculated Variable

1: No; 2: Yes

9 MARITAL Marital Status 1: Married, 2: Divorced, 3: Widowed, 4: Separated, 
5: Never married, 6: Unmarried couple

10 RENTHOM1 Own or Rent Home 1: Own, 2: Rent, 3: Other

11 EMPLOY Employment Status 1: Employed, 2: Self-employed, 3: No work >1 y, 
4: No work <1 y, 5: Homemaker, 6: Student,  
7: Retired, 8: Unable to work

12 INCOME2 Income Level 1: <$10 K, 2: $10–$15 K, 3: $15–$20 K, 4: $20–$25 K, 
5: $25–$35 K, 6: $35–$50 K, 7: $50–$75 K, 8: >$75 K

(Continued)
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No Factors Question Value

13 EDUCAG Computed level of education 
completed categories

1: Did not graduate high school, 2: Graduated high 
school, 3: Attended college, 4: Graduated college

14 MSCODE Metropolitan Status Code 1: Centre city, 2: County, 3: Suburban, 5: not in MSA

15 BLIND Blind or Difficulty seeing 1: Yes, 2: No

16 DECIDE Difficulty Concentrating or 
Remembering

1: Yes, 2: No

17 SEX Calculated sex variable 1: Male, 2: Female

18 FLSHOT Flu Shot Calculated Variable 1: Yes, 2: No

19 RACE Computed Race-
Ethnicity grouping

1: White, 2: Black, 3: American Indian or Alaskan 
Native, 4: Asian, 5: Native Hawaiian or other Pacific 
Islander, 6: Other race, 7: Multiracial, 8: Hispanic

20 BMICAT Computed body mass index 
categories

1: Underweight, 2: Normal weight, 
3: Overweight, 4: Obese

21 AGEGYR Reported age in five-year age 
categories calculated variable

1: 31 to 40 y, 2: 41–50 y, 3: 51–60 y, 4: 61–70 y, 
5: 71–80 y, 6: >81 y

22 DEAF Are you deaf or do you have 
serious difficulty hearing?

1: Yes, 2: No

23 DIABETE (Ever told) you have diabetes 1: Yes, 2: Yes but pregnant, 3: No, 4: Prediabetes

24 PDIABTST Had a test for high blood 
sugar or diabetes in the past 
three years?

1: Yes; 2: Yes, during pregnancy; 3: No

25 PREDIAB1 Ever been told by a doctor 
or other health professional 
that you have pre-diabetes or 
borderline diabetes?

1: Yes; 2: Yes, during pregnancy; 3: No

26 RFBMI Overweight or obese 
calculated variable

1: No (Notes: 1200 <= _BMI5 < 2500  
(BMI5 has 2 implied decimal places);  
2: Yes (Notes: 2500 <= _BMI5 < 9999)

27 CHCKDNY (Ever told) you have 
kidney disease?

1: Yes, 2: No

28 CVDCRHD Ever Diagnosed with Angina or 
Coronary Heart Disease

1: Yes, 2: No

29 CVDINFR Ever Diagnosed with 
Heart Attack

1: Yes, 2: No

30 CVDSTRK Ever Diagnosed with a Stroke 1: Yes, 2: No

31 CHCOCNC (Ever told) you had any other 
types of cancer?

1: Yes, 2: No

32 HAVARTH Told Have Arthritis 1: Yes, 2: No

33 ADDEPEV Ever told you had a 
depressive disorder

1: Yes, 2: No

Table A1. Factors used in this study based behavioral factors during 2016–2021 [60] (Continued)
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