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Abstract—Nowadays, Radio frequency identification (RFID)
has been extensively deployed to retailing, supply chain
management, object recognition, object monitoring and
tracking and many other fields. Detecting outliers in RFID
data streams can help us find abnormal activities and thus
avoid disasters. In order to detect outliers in RFID data
streams efficiently and effectively, we proposed a fractal
based outlier detection algorithm. Firstly, we built a mono-
tone searching space based on the self-similarity of fractal.
Then, we proposed two piecewise fractal models for RFID
data streams, and presented an outlier detection algorithm
based on the piecewise fractal model. Finally, we validated
the efficiency and effectiveness of the proposed algorithm by
massive experiments.

Index Terms—Radio Frequency Identification; outlier de-
tection; fractal; data streams

L INTRODUCTION

Radio frequency identification (RFID) [1] is a kind of
contactless automatic identification technique, which
utilizes radio frequency signal to transmit data between
electrical readers and tags, and thus to monitor and track
tagged objects. RFID has the advantages of small tags,
low cost and non-contact, and has been extensively de-
ployed to retailing, supply chain management [2], target
recognition [3], object monitoring and tracking [4] and so
on. Nowadays, RFID is one of the most important tech-
niques in Internet of Things.

In the real time monitoring applications [5, 6], electrical
readers are deployed in different locations, and these read-
ers monitor and track distributional tagged objects. When
the status or data of the monitored object deviates from
the normal value, an outlier occurs [7]. If the outlier is not
reported and processed timely, then a devastating result
will happen. Usually, RFID readers read data with some
fixed frequency, so the data from the same reader can be
assumed to be a data stream [8]. However, the huge
amount of data, volatility, unreliability and distribution of
RFID data streams pose a huge challenge for outlier detec-
tion in such systems.

In this paper, we apply fractal [9] to detect outliers in
data streams. We use the self-similarity of fractal to sort
the searching space into a monotone searching space, use
piecewise fractal model to map a data stream into a num-
ber of buckets, and detect outliers in these buckets based
on the piecewise fractal model. The rest of the paper is
organized as follows. In section 2, we review related
works about outlier detection in data streams. In section 3,
we introduce some basis of fractal. In section 4, we build a
monotone searching space based on fractal. In section 5,
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we propose two piecewise fractal models, and use them to
detect outliers in data streams. Experiments and conclu-
sion are given in section 6 and 7 respectively. Full-Sized
Camera-Ready (CR) Copy

II. RELATED WORKS

There are lots of studies on outlier (or anomaly) detec-
tion in data mining, some classical outlier detection algo-
rithms include FindAllOutsD [10], FindOut [11], LOF
[12], LOCI [13], etc. However, these algorithms needs
very large time and space complexity while processing
large scale data, and cannot deal with streaming data with
only one pass through the whole data. Moreover, the out-
lier detection algorithms proposed in [10, 11] depend on
predefined parameters, and are not applicable to the dy-
namic streaming data.

The outlier detection on streaming data has attracted a
lot of researchers. Jagadish et al. [14] proposed the devi-
ant, a special kind of outlier, in a time series database.
Based on [14], Muthukrishnan et al. [15] studied a special
kind of deviant in time series data streams, and proposed a
deviant detection algorithm for large scale data streams.
Angiulli and Fassetti [16] proposed a distance based outli-
er detection algorithm, called STORM, on data streams.
However, the STORM algorithm is only suitable to cen-
tralized data streams, and doesn’t support cooperations
between multiple nodes. In outlier detection on distributed
data streams, Palpanas et al. [17] proposed an outlier de-
tection framework for signal networks of a distributed
environment. In the proposed framework, Palpanas et al.
illustrated some problems that needed to be solved, but
they didn’t give the strategy of how to solve them. In
addition, Babcock and Olston [18] proposed a Top-a de-
tection algorithm for data streams; Cormode and
Hadjieleftheriou [19] studied the problem of frequent item
mining in data streams; Subramaniam et al. [20] analyzed
the problem of outlier detection in sensor data streams;
Cormode et al. [21] proposed a clustering algorithm for
distributed data streams; and Su et al. [22] proposed a
kernel density estimation based method for outlier detec-
tion. All of the above methods can deal with distributed
data streams, but when the dimension of data is very high,
performances of all above methods will decrease quickly.
For outlier detection in RFID data, Masciari [23] proposed
an outlier mining framework for RFID data, but the pro-
posed framework cannot be applied to RFID data streams.

III. BASIS OF FRACTAL

Fractal is the self-similar phenomenon in nature. Mas-
sive studies have validated that, self-similarity is ubiqui-
tous in nature. For instance, communicating on the inter-
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net, stock dealing, human physiological phenomenon and
meteorological data are all self-similar. The power law
scaling relationship [9] described in equation 1 is an im-
portant feature of fractal model, and it is a useful mathe-
matical tool for describing self-similarity. In equation 1,
S represents the feature, such as time or length; gis a

measure with respect to S, such as aggregation function;
P is proportionality constant; and d is a scaling Index. If

we take logarithm of both sides of equation 1, we can get
equation 2.

qg=p-s’ (1)

logg =logp+d-logs 2
Given a point dataset, if every point (S, q ) in the da-

taset is on the curve described by equation 1, and then the
dataset is accurate fractal data. The pow law scaling rela-
tionship is a necessary and sufficient condition on an ac-
curate fractal. For accurate fractal data, every point

(logs,logq) is on the line described by equation 2,
where d is the slope of the line. For approximate fractal
data, logq and logp +d- logs have the same distri-
bution, and d is the fit of all
pointslog s,log g.

slopes  of

For discrete time series data or streaming data, equations
1 and 2 can be transformed to equations 3 and 4 [24].

q(s.t) =" -q(1) 3)

_ log(q(s,)) - log(g(1)
logs

Where ¢ is the time unit, § is the number of time units

for measuring ¢ . In a data stream, S is the size of sliding

“)

window.

Piecewise fractal model consists of limited number of
shrinking maps {M cil= 1,---,k}, and each shrinking
map M . is related with a group of segments. The math-

ematical basis of piecewise fractal model is the recurrent
iterated function system [25], which can be described by
the following equation.

i i
X a; a, |[x b,
M (=l . +| )
1 1 1
y ayay ||Y a,
Where,i = 1,---,m, and the shrinking factor a;2 sat-
isfies that | a;z |s 1. In order to make the mapping injec-
. i
tive, let| a, |= 0.

In this paper, we aim to build piecewise fractal model
for data streams, and detect outliers on the shrinking maps
of the piecewise fractal model.

IV. BUILDING SEARCHING SPACE

Current outlier detection algorithms optimize the time
overhead via different index techniques while detecting
multiple sliding windows. In the worst case, it still needs
to check the sliding windows with all lengths, and thus the
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time complexity is Q(m), where m the number of slid-
ing windows with different lengths is.

In this paper, we sort all sliding windows required to be
checked, and turn the unordered searching space into an
ordered searching space. In an ordered searching space, if
an outlier (measured by aggregating function) is detected
in some sliding window, then the aggregating value in
previous sliding windows can also be assumed to be outli-
ers. So, we can do binary search in the ordered searching

space, and the time complexity is only O(log m).

I I I T

log( F{wy))—log(F1))
d= (Fluy)) (Fi1)

log(ly)

(log(;), log(T{w;)
- log(i;), log(T{wy))) ]

o
Q
3 log(Mw,))
=

log(l,)

Figure 1. Monotone searching space on an accurate fractal

A. Fractal based searching space

We assume that the data stream {X Jii= 1,~-,n} is

an accurate fractal. Let the value of aggregating function
for one time unit be (1), then we have F'(1) > 0. The

accurate fractal of {X ;ti=1,---,nf can determine the

slope d in equation 2, where d is the exponential of

aggregating function F', and can be computed by equation
4. Different aggregating functions on different datasets
will result in different exponentials. Given an aggregating

function /" and its corresponding exponential d , T'(w),)
and T’ (Wl/.) are the thresholds for checking outliers on

the sliding windows wj, and Wy, and figure 1 illustrates

their relationships. From the figure we can see that, the
point (log(/,),log(T'(w),)))is above the line, and the

point (log(/;),log(T(w;))) is below the line. So, we

have the following two in equations:

log(T(w;,)) - log(F()) |

log(/,) ¢ ©)
log(T'(w,))—log(F (1)) -y o
log(/,)
Where, d = log(T'(wy,)) - log(F(l))'

log(/,)

When processing data stream X , outlier is always de-
tected on Wy and is never detected onw),. Because of

inequations 6 and 7, we have T'(w;) < F'(w;;) and
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T(w,) < F(w,). So, we can detect outlier by compar-
log(T(w,) - log(F())
log(/;)

B.  Searching space building algorithm

ing d =

In this section, we propose an algorithm for building the
monotone searching space, and the algorithm is in algo-
rithm 1. Algorithm 1 is an incremental algorithm, and it
describes how to update the searching space when new

sliding window w,, needs to be checked. When the num-
ber of sliding windows required to be checked is 2, and
the thresholds are 7'(w, ) and T'(w) (W, < w), then

constructed by  (log(/,),log(T(w;,)))
and (log(/, ), log(T'(w),))) intersects with the y axis at

the line

the point A . While building searching space for two slid-
ing windows, if the point (0,10g(F (1) , )) is above the

point 4, then the searching space corresponding to d »
is< wy,,w, >;and if the point dp is below the point A4,
then the searching space corresponding to d » is

< W, W, > When there are more sliding windows, we

can use algorithm 1 to update the searching space dynami-
cally.

Algorithm 1: Algorithm of Building monotonic search space
W, T(w,)
1 Create a new point T; (log(ll), lOg(T(Wh))),

2if m =1 then
3 forj=1t0m do

4 line ‘T:Tl intersect vertical axis at point Xi ;

5 if le <w; then

6 add < le s Wy > to lower intervals of X i
7 add< Wy, le > to upper intervals of Xi ;
8 else

9 add < Wi, le > to lower intervals of Xi ;
10 add < le » Wy; > to upper intervals of Xi ;

11 increase 11 by 1;

The threshold for detecting outlier is usually prede-
fined, and this algorithm build the monotone searching
space offline, so it wouldn’t affect the performance of
outlier detection for a data stream. Ifm is the number of

sliding windows needed to be checked, then the time
complexity of algorithm is O(m”).

V. OUTLIER DETECTION ALGORITHM FOR PIECEWISE
FRACTAL MODEL ON A DATA STREAM

After building the monotone searching space, in order
to finish the task of outlier detection efficiently, it only
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needs to compute the current ¢ » and compare it with
log(T'(w;,)) - log(F (1))
log(/;)

tain the aggregating value of sliding windows with any

. Therefor, in order to main-

lengths on a data stream and compute ,» We propose a

piecewise fractal model on a data stream. The proposed
model utilizes the self-similarity of aggregating values of
sliding windows with any lengths, and thus can compress
both the monotone and un-monotone aggregating values.
Based on the monotone searching space and the piecewise
fractal model on a data stream, we propose an outlier
detection algorithm on a data stream.

The power law exponential d » of the current data
stream is the slope of linear regression on point
set. {(log(/;),log(F(w;))):[; =1,--,n} .
F (Wli) is the aggregating function value of the sliding

where

window being checked. If F' is the sum function,

then F'(w),) is the sum of suffix of the current data
. n

stream X, : [, =1,---,n, ie. F(w,)= Ej=n—l[+l X; -

Therefor, the overhead for maintaining d , on a data

stream is very high, and it cannot be implemented incre-
mentally. However, if the points is piecewise in set

{(log(/,),log(F(w;))):l. =1,---,n} , then it only

needs to keep the endpoints for each segment, for the
regression line with these endpoints is equal to the regres-
sion line with all points.

In the rest of the paper, we assume F' is the sum ag-

gregating function.
A. Piecewise fractal model on a data stream

In a data stream, let the time stamp be i and the value
be y;, then the data stream is a series of points (i, ), ).
Given a data stream P, let the start point and end point of
P be(s,y, ) and (e,y,) respectively, where s <e .

As the points in a data stream are discrete, we define M
as a shrinking map of the form

M(i,y,) = (inti-a,, +b),a, i+ay, -y, +b,) .
The shrinking map M maps the
P{(SB ys )9(67 ye)} to a

Pis,y eyt . ie P C P and

e—s>e —5. At the same time, different segments
overlap only at the endpoint, and the union of all segments
equals to the original data  stream, i.e.

7/1'];13 = )/l-lilpiv = {xj :j=L---,n}. In this section,

points in

smaller segment

we aim to solve the following problem: Given P and P,
how to set shrinking factor a,, to minimize the L2 error

E=(M(P)-P)".
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. 2

The error of Mis E = E,_ (4, —B;) ., where

e-1I i-s
ys+ ye) >

e—S e—3S

e—i -
B, =y, —( y, t
e—Ss

4, =yi_(

S
Y, ). According to [26],

the shrinking factor @,, of the shrinking map M

opt >
which has the minimal error, can be computed by the
partial derivative of E with respect to a,,, ie.

OE _,
0a,,

> AB
a,, = “4= - Therefore, in order to find the opti-
>

mal shrinking map M

E; (AiaZz -B)4,=0 and

opt > it only needs to maintain

e e
2, A;B; and 2 Af on the data stream. Because
1=5 =5

e
the maintain of 2 AtBi on a data stream cannot be
=5
done in sub-linear passes of the data stream, we need to
e . .
compute 2i=s A[Bi approximately. In order to approxi-
e

. A, B, , we

1

mate substitute

. 1 .
a,,witha 2 = , and propose two piece-
2

wise fractal models, which are illustrated in figures 2 and
3 respectively.

X e p. ,—4 Y

1
M

P Pia P X

Time

Figure 2. Piecewise fractal model

Time

Figure 3. Extended piecewise fractal model
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In figure 2, piecewise fractal model is made up of B
closest buckets, and each bucket b, corresponds to a

shrinking map M, and the segments of F; and P, . In

each bi, it only needs to keep the suffix of endpoint
(s:5y,) of p;, F(w, _ ) and the number of points in
it. Under the constraint of (4,, )’ <1, add the arrival data X,
to P, and P, of the current bucket , , and use X, as the
end point of both Fand P . When (a;Z)2 =1, make a

new bucket b.

;> let the new segment P, equal to P,

and make a new segment B ,1» Herein, let x| be the
start point of B .1 > and Xx, be the end point of

then we have P_, =Bv UP

i+l

both P, and P’

i+l

Piecewise fractal model describes the similarity be-
tween the whole data with part of it. In order to better
approximate the whole data, we propose an extended
piecewise fractal model described in figure 3. In the ex-

tended piecewise fractal model, P, is extended to include

all data before X, . The extended piecewise fractal model

consists B buckets, and each bucket b, corresponds to a
shrinking map M, and the segments of P, and F. . b,
only keeps the suffix of £} starting from (s.,y ),

F(w _ ) and its number of data point. When a new

data comes, we add it to the current buckets. Under the

2" 2

. lBi n 2

constraint of <<= <1, let 2 B’ =y, add the
En i=1i i

A?

i=177

arrival data x, to P and P_, of the current bucket b, ,

and let x, be the end point of P, and P, . When

n 2

=11

n 2
i=1 Ai

=<1, make a new bucket b, ,, let the new seg-

ment P, equal to P and make a new segment Pl R

Moreover, let x, | be the start point of P

1.> and X, be

the end point of both P, and P then we have

i+l°
P, =P U P,,. When the number of buckets is bigger

than B, delete the oldest bucket, and keep the most re-

cent B buckets. The details of maintaining a piecewise
fractal model on a data stream are in algorithm 2.

http://lwww.i-joe.org
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Algorithm 2: Algorthm of Building pievewise fractal model ( X, )

n 2
1 compute . lBi approximately;
§ ;z=

n 2
2 compute A
i=l !
n 2

E._l B;
30 if A4S 2<1then
i=1 Ai

add X, to current bucket;

else

bucket Num ++;
if bucket Num>B then

4
5
6 create a new bucket for X, ; and X, ;
7
8
9 delete the oldest bucket;

B.  Outlier detection algorithm

When a new data point X, comes into the data stream,
we add it into the piecewise fractal model, and compte the

slope d, with the set

{(log(n - si ),log(F(w, —si )):i=1,.,B}. After
computing the slope d > We use algorithm 3 to detect

outliers on a data stream.

Algorithm 3: Algorithm of outlier detection

locate lOg(F(l)dp )at interval [ R

—_

2 Arr @) < retrieve monotonic search space of 1 ;
low <o;

high <— Array.size() -1

5 while Jow < high do

NN

6  mid < (low+ high)/2:
Jog(T(Array{mid)/ F()) _

8 low <= mid +1;

9 else

10 high < mid -1;
11 return hlgh,

The algorithm 3 doesn’t contain any parameter, and its
output is the alert of outliers. In addition, we return the
size of the sliding window where the outliers occur. The

time complexity of algorithm 3 is O(log m), where m is
the number of sliding windows needed to be checked. If
users want to detect outliers only when X, arrives, and
don’t care about the number of outliers and the size of the
sliding window, then the time complexity is only O(1).
So, if we use algorithm 3 to detect outliers on m sliding
windows with different sizes, then the space complexity is
O(B), and the time complexity is O(nlogm).
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VI. EXPERIMENTS

A.  Experimental setup

The experiments are implemented on a cluster of 4
nodes, and each node is a PC with a 3.2GHz Pentium4
CPU and 2GB memory. In the cluster, we use one node as
the centralized server node, and the other three nodes as
the distributed nodes. We apply the SR2240 reader to
observe the real distribution of the 2.4Ghz active tags, and
generate the experimental data streams with the observed
distribution. The observed data is the form of

V =<td,rd,t,ss,st >, wheret,d is the id of tag, 7,d
is the id of reader, ¢ is the observed time stamp, S§ is the
observed signal intensity, and §7 is the status of object.

In order to validate the efficiency and effectiveness of the
proposed algorithm, we denote the proposed fractal-based
outlier detection algorithm as FBOD, and compare it with
STORM [16] and KNOD [22]. The metrics that we use
are as follows:

1) running time is the required time while processing
data streams in stable status;

2) memory usage is the maximal memory usage of al-
gorithms while processing data streams;

3) precision is the proportion of real detected outliers
to total detected outliers;

4) recall is the proportion of real detected outliers to
total real outliers.

The experimental parameter setting is in table 1.

TABLE L
TABLE OF PARAMETER SETTING
Parameters Descriptions Values
w Sliding window size (KB) 1~100
R Neighbor radius 10
k Neighbor number 20
P Proportion of safe inliers saved in buckets () ~ |
. ocal outlier probability ~ U.
P Local outli babili 0~0.1

B.  Experimental results

In order to test the execution efficiency of the proposed
algorithm, we compare the running time of the three algo-
rithms, and the result is in figure 4. The running time of all
three algorithms is nearly linear with the volume of data
streams. At the same time, the growth rate of KNOD is
obviously bigger than that of STORM and FBOD, and the
reason is that the computation of KNOD increases more
quickly than STORM and FBOD. In addition, the pro-
posed FBOD algorithm optimizes the structure of data
streams, and it reduces the deleting and querying time for
nodes, so it has the lowest running time.

In order to test the memory usage, we generate 2-
dimension, 3-dimension and 4-dimension three datasets,
where each sliding window contains 100 data. The maxi-
mal memory usages of different algorithms are in figure 5.
From the figure we can see that, all algorithms use almost
the same amount of memory on the same dataset, and the
increase of data dimension only increases a small quantity
of memory.
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We let p=0.1,0=0.5and p=1.0, and observe
the precision and recall of the proposed algorithm while
increasing the size of sliding window. The results of pre-
cision and recall are in figure 6 and 7 respectively. With
the increasing of sliding window size, precision and recall
of FBOD increase. However, 0 has little effect on preci-

sion and recall of FBOD. The reason is that 0 is used to

approximate the segments of each data stream, and the
precision and recall can be assured while O exceeds

some fixed value.

In addition, we compared the precision between FBOD
and KNOD, and the result is in figure 8. Both of the two
algorithms have very high precision, but the precision of
FBOD is a little higher than that of KNOD. The reason is
that, we need to smooth parameters in KNOD, and this
would decrease the precision, but we don’t need to do this
in FBOD.

In order to test the effectiveness of algorithms while de-
tecting global outliers, we independently generate three
data streams with different distributions on three distribut-
ed nodes. We compare the precision of our FBOD algo-
rithm with the Naive distributed outlier detection (NDOD)
algorithm, and figure 9 illustrates the result when
p= 0.1. The NDOD algorithm detects outliers locally,

and our FBOD algorithm detects outliers globally, so
FBOD is obviously better than NDOD.
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VII. CONCLUSION

In this paper, we study outlier detection in RDID data
streams, which is one of the most important topics in
RFID. We apply fractal to detect outliers in data streams,
use the self-similarity of fractal to sort the searching space
into a monotone searching space, use piecewise fractal
model to map a data stream into a number of buckets, and
propose an outlier detecting algorithm in these buckets
based on the piecewise fractal model. Finally, we validate
the efficiency and effectiveness of the proposed algorithm
by massive experiments.
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