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PAPER

Real-Time Optimization of VMD in Healthcare Embedded 
Systems Using Parallel Processing with OpenMP

ABSTRACT
Variational mode decomposition (VMD) is an advanced signal processing technique used to 
analyze photoplethysmogram (PPG) signals to extract vital physiological indicators such as 
heart and respiratory rates. However, implementing VMD on embedded systems presents 
challenges due to limited computational resources and the need for real-time performance. 
This paper investigates the optimization of VMD using OpenMP to improve the performance 
of healthcare-focused embedded systems. We first describe the naive VMD implementation 
and identify computational bottlenecks. We then optimize the algorithm using OpenMP by 
parallelizing critical sections, including iterative updates and loop structures, within a homo-
geneous CPU architecture. We evaluate performance based on metrics such as processing 
time, efficiency, and the accuracy of heart rate extraction. Experimental results demonstrate 
that the optimized VMD algorithm achieves a near-linear speedup, with processing times 
reduced by up to 9.45 times compared to the naive single-threaded version while maintaining 
efficient resource utilization. This optimization enables real-time signal processing in health-
care applications, improving the performance and reliability of medical devices for patient 
monitoring and care.

KEYWORDS
healthcare, embedded systems, OpenMP, variational mode decomposition (VMD), 
photoplethysmogram (PPG)

1	 INTRODUCTION

Embedded systems are specialized computing platforms tailored to perform ded-
icated functions within broader systems. In the healthcare domain, they are integral 
to devices such as wearable health monitors, portable diagnostic tools, and real-time 
patient monitoring equipment. Wearable health monitors, for instance, are designed 
to continuously collect and analyze physiological data from sensors attached to 
the body, including accelerometers, gyroscopes, and photoplethysmogram (PPG) 
sensors [1–6]. PPG sensors measure blood volume changes in the microvascular 
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bed of tissue, crucial for determining heart rate and other cardiovascular metrics. 
Portable diagnostic tools are handheld or easily transportable devices that perform 
diagnostic tests at the point of care, enhancing accessibility and efficiency in health-
care delivery. Real-time patient monitoring systems continuously track patients’ 
vital signs and other health metrics, proving essential in intensive care units (ICUs) 
and remote patient monitoring setups.

These healthcare applications demand efficient, low-power processing to handle 
the continuous data streams generated by various sensors [7–12]. Embedded systems 
in this context must be capable of executing complex algorithms for signal process-
ing and analysis, often operating under stringent power and resource constraints. 
For instance, a wearable health monitor must operate for extended periods on battery 
power, necessitating the use of energy-efficient processors and optimized software to 
minimize power consumption. Additionally, the miniaturization of hardware compo-
nents is critical to maintaining the comfort and usability of wearable devices, further 
emphasizing the need for low-power solutions. Real-time analysis of physiological 
signals, such as heart rate and respiratory rate, is a critical function in these systems. 
Accurate and timely processing of these signals can significantly enhance patient 
care by providing immediate insights into the patient’s health status [13–15]. Because 
PPG signals are typically noisy and non-stationary, advanced signal processing tech-
niques are essential to extract relevant physiological information accurately [16–22].

Variational mode decomposition (VMD) is one such technique that decomposes 
the PPG signal into its constituent modes, facilitating the extraction of heart rate and 
respiratory rate with high accuracy [23–26]. VMD’s ability to adaptively separate signal 
components based on their intrinsic characteristics makes it particularly suitable for 
analyzing complex physiological signals. However, the computational complexity of 
VMD presents significant challenges, particularly in embedded platforms that have lim-
ited processing power and memory. This necessitates the use of optimization techniques 
to ensure real-time performance without compromising accuracy. Implementing com-
putationally intensive algorithms such as VMD on embedded systems requires opti-
mization strategies such as parallel processing with OpenMP. OpenMP allows for the 
distribution of computational tasks across multiple processor cores, effectively reduc-
ing the execution time and enhancing processing efficiency. By leveraging OpenMP, it 
is possible to achieve significant performance improvements, enabling the real-time 
processing capabilities necessary for healthcare applications. Efficient implementation 
of these algorithms not only improves the responsiveness of the monitoring system but 
also maintains the accuracy of the extracted physiological parameters.

A state-of-the-art method for signal processing, VMD decomposes a signal into its 
modes, each of which represents a different frequency component. This technique 
is especially useful for extracting important metrics such as heart and breathing 
rates from non-stationary physiological data such as PPGs. However, VMD’s com-
putational complexity presents many difficulties, particularly in embedded systems 
and real-time applications where memory and processing capacity are scarce. 
Effective use of VMD is essential to guaranteeing accurate and rapid analysis, which 
has an immediate effect on patient care and monitoring. To address these chal-
lenges, we leverage OpenMP, a widely used framework for parallel programming. 
By dividing workloads among several processor cores, OpenMP makes it possible 
to parallelize computationally demanding processes, significantly enhancing pro-
cessing efficiency. Our goal is to enhance VMD’s functionality and enable real-time 
healthcare applications in embedded systems by integrating OpenMP with it. This 
approach not only meets the stringent requirements of low-power, high-efficiency 
embedded systems but also ensures that the computational demands of VMD are 
met, thereby facilitating its widespread adoption in healthcare technologies.
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This paper describes a comprehensive study that uses OpenMP for parallel pro-
cessing to optimize the VMD implementation in healthcare-embedded systems. The 
main objective is to drastically reduce the processing time of VMD, making it suitable 
for real-time analysis of physiological signals. To illustrate the usefulness of parallel 
processing in embedded healthcare systems, the study also aims to assess the compu-
tational speedup efficiency of the optimized VMD algorithm. Ultimately, our purpose 
is to contribute to the development of more efficient and reliable healthcare monitor-
ing solutions that can function effectively within the constraints of embedded systems.

The rest of the paper is structured as follows: Section 2 explores the principles and 
applications of VMD, also illustrates parallel processing, and provides a summary of 
OpenMP’s capabilities and benefits for parallel programming, with its use in the medical 
field. The optimization process and methodology are described in Section 3, along with 
performance evaluation criteria and details on algorithm design and OpenMP parallel 
implementation. In Section 4, experimental results are presented, comparing the pro-
cessing times of optimized and naive VMD implementations, highlighting the improve-
ments achieved. Finally, Section 5 concludes the paper by summarizing key findings.

2	 VARIATIONAL MODE DECOMPOSITION AND PARALLEL 
PROCESSING

2.1	 Variational mode decomposition

K. Dragomiretskiy et al. [27] developed a non-recursive signal decomposition 
method that aims to decompose a given signal into a set of band-limited intrinsic 
mode functions (IMFs); the algorithm is fully established on a mathematical frame-
work. The main idea behind VMD is to extract the IMFs all at once via an iterative 
process; hence the number of modes K should already be established. By increasing 
the value of K, this condition causes the VMD’s complexity and calculation time to 
increase proportionately. In addition, the method might produce a noisy or mixed 
mode if K had an ill-set value. As a result, many researchers offer some methods 
for figuring out K appropriately. The most notable is known as detrended fluctu-
ation analysis (DFA), and several writers [28, 29] employ it. In addition, the VMD 
technique is associated with three primary ideas: frequency shifting to baseband by 
complex harmonic mixing, the Hilbert transform for constructing single-sideband 
analytic signals, and the Wiener filter for denoising signals. Variational mode func-
tions (VMFs), which are the major decomposed modes, are capable of reproducing 
the original signal with various sparsity characteristics. Additionally, the following is 
a concise summary of the VMD theory:

1.	 Initialize:

	 U 1

k k
� � �n �1 1 0� � � �, , ,� � � 	

	  Where:
	  {Uk}: = {U1, …, Uk} are shorthand notations for the set of all modes.
	  {ωk}: = {ω1, …, ωk} are shorthand notations for the center frequencies of 

the modes.
	  The iteration is from 1 to k = number of modes.
	  {λn}: are the Lagrangian multiplier.
	  ˆ( )f ω : is the Fourier transform of the original signal.
	  α: is a parameter for balancing.
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2.	 Compute the following values until the number of modes (K) is reached:
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3.	 Update the Lagrangian multiplier through the dual ascent method as follows:
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4.	 Repeat steps 2 and 3 until the function is converged based on convergence criteria 
satisfied by the condition:
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, where ∈ is a given accuracy requirement.

Furthermore, the following Pseudo-code shows the VMD approach 
(see Algorithm 1):

Algorithm 1: VMD
Start algorithm
1.	  // Variational Mode Decomposition – VMD
2.	  // The VMD function has the following parameters
3.	  function VMD (f, alpha, tau, K, DC, init, tol)
4.	   // Initialize variables
5.	   N ← length(f); // Length of input signal f
6.	   f_hat ← fftshift(fft(f)); // Fourier transform of f, shifted
7.	   u_hat ← zeros (K, N); // Initialize mode functions
8.	   omega ← if init == 1 then 0.5 * pi * (0: K - 1) / K else init
9.	   lambda_hat = zeros (1, N); // Initialize Lagrange multipliers
10.	  for n = 1: MaxIter do // Main iteration loop
11.	   u_hat_old ← u_hat;
12.	   for k = 1: K do // Update each mode
13.	   u_hat (k, :) ← (res. * exp (-1j * t * omega(k))). / (1 + 2 * alpha * (t - omega(k)). ^ 2);
14.	   end for
15.	   for k = 1: K do //Update center frequencies
16.	    omega(k) ← sum (t. * abs (u_hat (k, :)). ^ 2) / sum (abs (u_hat (k, :)). ^ 2);
17.	   end for
18.	   lambda_hat = lambda_hat + tau * (f_hat – sum (u_hat, 1));
19.	   if norm (u_hat - u_hat_old, ‘fro’) / norm (u_hat_old, ‘fro’) < tol then break
20.	  end for
21.	  for k = 1: K do
22.	   u (k, :) = ifft (ifftshift (u_hat (k, :))); // Compute final modes in time domain
23.	  end for
24.	  return u, omega
25.	end function
END algorithm
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The length of the input signal, its Fourier transform, mode functions, and 
Lagrange multipliers are the first variables that the VMD algorithm sets up. The user 
can specify the initialization of center frequencies, or they can be set equally. After 
that, the algorithm iterates, updating the mode functions and modifying them in 
the frequency domain for each iteration based on residual calculations. In order 
to make sure that the sum of all modes closely resembles the original signal, it also 
updates the Lagrange multipliers and the center frequencies using a weighted aver-
age. By measuring the relative change in modes, convergence is verified. The result 
is the collection of decomposed modes and their center frequencies. The modes are 
translated back to the time domain once the algorithm converges. The capacity of 
VMD to decompose complex signals into their constituent parts, such as PPG data, 
makes it very useful in the medical field. Because PPG signals record changes in 
blood volume, they are essential for monitoring cardiovascular health. We can sepa-
rate several physiological components, especially those associated with cardiac and 
respiratory activities, by applying VMD to PPG signals. For example, by identifying 
peaks that correspond to heartbeats, the cardiac component of the PPG signal, once 
separated via VMD, can be evaluated to extract the heart rate. In the same way, 
the breathing pattern is revealed by the respiratory component, which is similarly 
isolated using VMD. The frequency of these respiratory cycles can then be used to 
calculate the respiratory rate.

For more convenience, consider an original PPG signal with overlapping cardiac 
and respiratory data. We can decompose this signal into other modes using VMD, 
and we can then determine which of these modes correspond to cardiac and respi-
ratory activity by assessing their frequency content. This procedure demonstrates 
how well VMD extracts physiological indications from PPG signals, enhancing the 
quality of health monitoring. On the other hand, there are various technical obsta-
cles when implementing VMD in embedded systems, notably for real-time health-
care applications. Processing time is one of the biggest challenges since it directly 
affects the feasibility of adopting VMD in real-time applications such as continuous 
physiological signal monitoring.

2.2	 Parallel processing and OpenMP

Through the use of several processors or cores, a problem can be divided into 
smaller subproblems and solved concurrently through the use of parallel processing 
[30–35]. This method is especially helpful for real-time applications in the healthcare 
industry, where timely data analysis is crucial, as it greatly increases and enhances 
computational efficiency and decreases processing time. On embedded systems, 
complicated algorithms such as VMD can be executed more efficiently. For more 
convenience, the following Figures 1 and 2 show an overview of parallel processing 
and the fork and join model:

https://online-journals.org/index.php/i-joe


	 102	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 21 No. 1 (2025)

El Khadiri et al.

Fig. 1. Serial computing and parallel computing

Fig. 2. Fork and join model

As shown in Figures 1 and 2 above, parallel processing and OpenMP offer signif-
icant advancements over traditional serial computing by enabling the simultaneous 
execution of multiple tasks, thus improving computational efficiency and speed. In 
serial computing, a problem is processed directly by a single processor, executing 
one instruction at a time. This sequential approach can be time-consuming, espe-
cially for complex or large-scale problems. Conversely, parallel computing divides a 
problem into multiple smaller tasks, each of which is executed concurrently across 
multiple processors. This division allows for a more efficient use of computational 
resources, significantly reducing the overall processing time. OpenMP is a widely 
used API that simplifies the implementation of parallel processing in programs. 
It provides a set of compiler directives, library routines, and environment vari-
ables that facilitate the parallelization of code. By leveraging OpenMP, developers 
can efficiently manage and distribute tasks across available processors, leading to 
enhanced performance and scalability in various applications, including real-time 
signal processing in healthcare-embedded systems.

2.3	 Overview OpenMP in healthcare applications

From real-time data analysis in wearable devices to image processing in medical 
imaging, OpenMP has proven useful in a variety of healthcare applications [36–38]. 
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For example, using OpenMP to construct parallel algorithms can speed up the pro-
cessing of large datasets produced by ECG or PPG monitoring systems, facilitating 
quicker diagnosis and decision-making. Figure 3 shows the application of OpenMP 
in healthcare:

Fig. 3. Application of OpenMP in healthcare

3	 OPTIMIZATION METHODOLOGY

To estimate the heart rate using the BUT PPG database, we propose an approach 
that includes signal normalization, signal decomposition, selection of relevant 
IMFs, application of Fourier Transform, and extraction of physiological parame-
ters. Initially, the PPG signal is retrieved from the BUT PPG database [39–41], and 
it is normalized to maintain amplitude consistency and remove baseline drift. The 
normalized signal is then decomposed using VMD to separate it into several IMFs. 
For this study, we employ both a naive version and an optimized version of VMD 
using OpenMP. The naive version processes the signal sequentially, while the opti-
mized version leverages parallel processing to enhance computational efficiency. 
After decomposition, the relevant IMFs, which contain significant frequency com-
ponents related to heart rate, are selected. The selected IMFs are then subjected to 
Fourier Transform to convert the time-domain signal into the frequency domain. 
From the frequency spectrum, the dominant frequency corresponding to the heart 
rate is identified. This approach not only allows for accurate heart rate extraction 
but also demonstrates the performance benefits of the optimized VMD implemen-
tation in real-time healthcare applications. Our proposed approach can be depicted 
in Figure 4:

https://online-journals.org/index.php/i-joe
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Fig. 4. Overview of the proposed methodology

The optimization of the VMD algorithm focuses on increasing computational 
efficiency and enabling real-time processing capabilities. As aforementioned above, 
the main phases involved in VMD include initialization, iterative mode updating, 
frequency updating, and convergence checking. Each of these steps presents oppor-
tunities for optimization. Hereunder, Figure 5 shows the most prominent steps 
involved in the VMD method.

Fig. 5. Main steps of the VMD method

https://online-journals.org/index.php/i-joe
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In the optimization process, we examine each step’s computing complexity to 
find portions that can be parallelized. The objective is to distribute the workload 
across multiple processing units using OpenMP, thereby reducing the overall exe-
cution time. As stated before, OpenMP uses an API that supports multi-platform 
shared memory multiprocessing programming in C, C++, and Fortran. It was cho-
sen for this study due to its simplicity and powerful capabilities for parallelizing 
computational tasks. The proposed parallel implementation of VMD using OpenMP 
involved initialization as the first step, which means setting up the signal and initial 
parameters for VMD. After that, we proposed a parallel mode update by distributing 
the computation of mode updates across multiple threads. Each thread handles a 
subset of the modes, updating them concurrently. Then, frequency updates are per-
formed by computing the center frequencies for each mode in parallel, leveraging 
the shared memory model of OpenMP. In the end, we found the Lagrange multiplier 
update, which illustrates the adjustment of the Lagrange multipliers to ensure con-
vergence, performed in parallel to reduce overall computation time. Furthermore, 
the following Pseudocode illustrates the parallelized sections of the VMD algorithm 
(see Algorithm 2) using OpenMP directives:

Algorithm 2: Parallelized VMD Algorithm

// Section of VMD’s code
// Application of OpenMP directives
1.	 // Parallel mode update (OpenMP)
2.	 #pragma omp parallel for
3.	 for k = 0: K do
4.	   // Update mode function u_hat(k)
5.	   sum_others = calculate_sum_others (u_hat, k);
6.	   res = f_hat – sum_others – lambda_hat/2;
7.	   u_hat[k] = update_mode_function (res, omega[k], alpha, t);
8.	 end for
9.	  // Parallel frequency update (OpenMP)
10.	 #pragma omp parallel for
11.	 for k = 0: K do
12.	  // Update center frequency omega(k)
13.	  omega[k] = calculate_center_frequency(u_hat[k], t);
14.	 end for
15.	 // Parallel Lagrange multiplier update (OpenMP)
16.	 #pragma omp parallel for
17.	 lambda_hat = lambda_hat + tau * (f_hat – sum (u_hat, 1));
18.	 // Check for convergence

To assess the efficiency of our optimization, we established multiple performance 
measures. The main metric is processing time, which is the overall amount of time 
needed to decompose the signal into its constituent modes. We also took into account 
speedup, which is determined by dividing the processing time of the optimized 
implementation by the processing time of the naive implementation. However, the 
processing time is the way to compare the execution time of the naive and opti-
mized versions of the VMD algorithm. Afterward, the computing of the speedup 
factor serves as the ratio of the naive execution time to the optimized execution 
time. After that, the efficiency, which is used to assess the efficiency of parallelization 
by analyzing the utilization of computational resources, then, the scalability test of 
the implementation by varying the number of processing cores and observing the 
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performance changes. Here below are the formulas for the speedup and efficiency 
calculations:

	 S
T

T
naive

op ed

=
timiz

	 (4)

	 E
S

Number of cores
= 	 (5)

Where:

–	 S is the speedup.
–	 E is the efficiency.
–	 Tnaive is the total time for the naïve version of the VMD method.
–	 Toptimized is the total time for the optimized version of the VMD method.

4	 RESULTS

The results of our heart rate estimation approach will be presented in this 
section, along with a comparison with the results produced by the Brno University 
of Technology’s Department of Biomedical Engineering’s cardiology team and their 
numerous annotators and a comparison between the naïve and the optimized ver-
sion in terms of processing time, speedup, and efficiency. Let’s start by looking at an 
illustration of a PPG signal that was utilized in our study, as seen in Figure 6.

Fig. 6. Normalized PPG signal

To evaluate the efficacy of our proposed VMD-based heart rate extraction method, 
we compared heart rate values obtained from both the naive and optimized versions 
of the algorithm with those annotated by five different annotators from the BUT PPG 
database. This approach enables us to ensure robustness by validating against a 
diverse set of reference annotations. The heart rate values retrieved from the PPG 
signals using our method are shown in Table 1.
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Table 1. Heart rate values extracted by annotators vs VMD approach

Gender Age Weight Ant. 1 Ant. 2 Ant. 3 Ant. 4 Ant. 5 VMD appr.

F 51 58 82 84 84 82 84 84

F 51 58 85 84 84 84 81 84

F 51 58 83 84 84 83 87 84

F 54 63 66 67 67 66 67 69

F 54 63 70 72 69 69 70 72

F 54 63 71 70 71 70 71 72

F 61 70 68 68 68 68 67 66

F 61 70 66 67 66 65 67 66

F 61 70 67 67 66 66 68 66

M 23 71 82 90 0 78 80 78

M 23 71 90 92 90 90 92 90

M 23 71 102 102 95 100 98 102

M 24 84 110 108 110 110 110 108

M 24 84 120 122 120 120 124 120

M 24 84 113 116 116 115 117 114

F 21 69 83 82 84 80 82 84

F 21 69 93 93 93 95 91 90

M 59 80 64 63 63 64 61 66

M 59 80 68 66 68 68 68 66

M 23 73 76 75 75 76 74 78

M 23 73 105 105 106 100 117 102

M 24 70 72 76 72 72 75 72

M 24 70 76 73 78 74 80 78

M 24 70 75 75 75 75 75 72

As shown in Table 1, the heart rate values extracted by both versions of our VMD-
based method closely match those recorded by the annotators. The version that has 
been optimized by utilizing OpenMP for parallel processing is extremely appropri-
ate for real-time applications since it not only closely matches the annotators’ output 
but also drastically reduces the processing time.

To evaluate the performance of our heart rate estimation algorithm, we use the 
Bland-Altman plot and scatter plot [42]. These visualizations and statistical metrics 
provide insights into the relationship between estimated heart rates and the reference 
values annotated by the cardiology team. Figures 7–16 display the comparison’s find-
ings. The heart rate estimation results from our technique are represented by each 
data point in the scatter plot, which is shown against the relevant reference value 
provided by the cardiology team and their annotators. The plot’s trends and point 
distribution can provide information on the precision and coherence of our method-
ology. The degree and direction of the linear association between the estimated heart 
rates and the reference values are quantified by the correlation coefficient. A cor-
relation strength that is close to one suggests that our methodology yields extremely 
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accurate heart rate estimates. Conversely, a score near 0 denotes a poor association 
and raises the possibility that our estimations are not as accurate.

Fig. 7. Scatter plot between annotator 1 and VMD

Fig. 8. Scatter plot between annotator 2 and VMD

Fig. 9. Scatter plot between annotator 3 and VMD
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Fig. 10. Scatter plot between annotator 4 and VMD

Fig. 11. Scatter plot between annotator 5 and VMD

Fig. 12. Bland Altman between annotator 1 and VMD approach
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Fig. 13. Bland Altman between annotator 2 and VMD approach

Fig. 14. Bland Altman between annotator 3 and VMD approach

Fig. 15. Bland Altman between annotator 4 and VMD approach
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Fig. 16. Bland Altman between annotator 5 and VMD approach

Our experiments were conducted on an Intel(R) Core (TM) i5-6300U, 2.4 GHz, 
with 4 CPUs to assess the performance benefits of the enhanced VMD implementa-
tion using OpenMP. The experiments utilized Python for implementation, with the 
BUT PPG database providing the photoplethysmography (PPG) signals. These signals 
were used to extract heart rates, enabling a comparison between the naive and opti-
mized VMD implementations. We evaluated the parallelized VMD implementation 
utilizing OpenMP by comparing the processing times of the optimized version (multi-
threaded) and the naïve version (single-threaded). The reduction in processing time 
and the resultant computational speedup were the main performance indicators. 
Figures 17 and 18 illustrate the processing times at different PPG signal durations for 
both the optimized and naive VMD implementations:

Fig. 17. Processing time using naïve VMD version

Fig. 18. Processing time using optimized VMD version
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On the other side, the performance improvements were measured using efficiency 
and speedup calculations. The ratio of the naive implementation’s execution time 
to the optimized implementation’s execution time is known as speedup. The speed 
increase divided by the number of processors in use is efficiency. Figures 19 and 20 
illustrate the speedup and efficiency between the naive and optimized versions.

Fig. 19. Computational speedup

Fig. 20. Computational efficiency

The performance evaluation of the VMD algorithm, both in its naive and opti-
mized forms, reveals significant improvements when using OpenMP for parallel 
processing. The naive VMD implementation has an average processing time of 0.466 
seconds with a standard deviation of 0.109 seconds. In contrast, the optimized VMD 
implementation significantly reduces the average processing time to 0.050 seconds, 
with a standard deviation of 0.013 seconds. This substantial reduction in processing 
time results in an average speed up of 9.452 with a standard deviation of 1.097, 
demonstrating the efficiency of parallel processing. Furthermore, the efficiency of 
the optimized VMD implementation, measured as the speedup per processor, aver-
ages 4.727 with a standard deviation of 0.549. Table 2 presents our latter findings.

Table 2. Processing time using optimized VMD version

Average STD

Naive VMD Time (sec) 0.466 0.109

Optimized VMD Time (sec) 0.050 0.013

Speedup 9.452 1.097

Efficiency 4.727 0.549
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The experimental results demonstrate that the parallelized VMD algorithm using 
OpenMP significantly improves the processing time for PPG signal decomposition in 
healthcare-embedded systems. The optimized implementation achieved a substan-
tial reduction in processing time, making it suitable for real-time applications where 
quick response times are critical. The near-linear speedup with the number of cores 
utilized highlights the scalability of the OpenMP-based approach. This suggests that 
further performance gains can be achieved with higher core counts, making this 
optimization technique promising for future advancements in healthcare-embedded 
systems. In summary, the parallelized VMD algorithm using OpenMP offers a practi-
cal and effective solution for real-time signal processing in healthcare applications.

5	 CONCLUSION

Our work based on the optimization of the VMD algorithm through parallel 
processing with OpenMP, significantly improves the real-time processing capabil-
ities of healthcare-embedded systems. The optimized VMD approach produced a 
near-linear speedup by effectively utilizing multi-core processors, resulting in pro-
cessing speeds that were × 9.45 times faster than the naive single-threaded version. 
This substantial improvement in computational efficiency ensures that complex 
signal processing tasks, such as decomposing PPG signals to extract vital physiolog-
ical parameters such as heart and respiratory rates can be performed swiftly and 
accurately. Consequently, this optimization contributes to the development of more 
responsive and reliable medical devices for patient monitoring, ultimately enhanc-
ing the quality of healthcare delivery and patient outcomes through improved real-
time analysis and timely interventions.
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