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PAPER

Latent Dirichlet State Predictive Clustering Model  
for Disease Risk Prediction in Electronic Health Records

ABSTRACT
Electronic health records (EHRs) are a valuable source of data that helps to understand patients’ 
health conditions and generate healthcare decisions. However, modeling the longitudinal and 
temporal dependencies of EHRs is challenging in disease risk prediction (DRP). To overcome 
this problem, this study proposed a latent Dirichlet state predictive clustering (LDSPC) using 
medical notes for DRP in healthcare. This process includes three modules, such as posterior, 
prior, and likelihood. The posterior module utilized an attentive encoder for extracting data 
from unstructured medical notes. Additionally, the clustering approach is integrated into the 
similarity module to learn the patient’s useful representation of the latent Dirichlet state. These 
states are clustered into numerous cluster centers, and a weighted average is applied for risk 
prediction. Moreover, the MIMIC-III and N2C2-2014 datasets contain unstructured medical 
notes that are preprocessed by non-English characters and stop word removal processes. The 
LDSPC achieves better accuracy of 0.9864 and 0.9694 for MIMIC-III and N2C2-2014 datasets, 
correspondingly which is better when compared to knowledge-enhanced multimodal 
learning for disease diagnosis generation (EHR-KnowGen).

KEYWORDS
disease risk prediction (DRP), electronic health records (EHRs), latent Dirichlet state predictive 
clustering (LDSPC), posterior module, unstructured medical notes

1	 INTRODUCTION

The opportunity to increase healthcare quality through interoperability and 
healthcare information technology (IT) has gained significant attention from both 
the private and public sectors [1]. The e-health technologies include electronic 
health records (EHRs), electronic medical records (EMRs), health information 
exchanges, and personal health records (PHRs) [2]. As healthcare systems progres-
sively adopt health IT, a numerous clinical data volume is gathered. These data are 
kept in EHRs or PERs with numerous formats, such as simple database tables or 
any other format [3]. These records number in millions, which is highly complex, 
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and health information systems keep data in different nature [4]. The EHR appli-
cations to efficient medicine include tasks such as disease risk prediction (DRP), 
mortality, survival prediction, disease diagnosis, stay duration of intensive care 
unit ICUs, and statistical phenotype prediction [5, 6]. Through, the effectiveness of 
computational techniques is limited by the capability to manage huge-dimensional, 
isolated, heterogeneous, irregular, and longitudinal EHRs [7]. ICUs are information- 
rich hospitals, and the significance of rapid responses to patient degradation 
is high [8].

Patient’s health latent states are inferred through various types of data, 
which include laboratory testing results, unstructured medical notes, and signal 
monitoring [9]. It is critical to obtain customized healthcare to recognize every 
patient’s health state from high-capacity data that needs numerous labor resources 
and domain knowledge [10]. Artificial intelligence (AI)-based techniques signifi-
cantly help medical decision progress through modeling patients EHR data. The 
present approaches for DRP mainly focus on deep learning (DL) algorithms [11]. 
Convolutional neural networks (CNN), recurrent neural networks (RNN), and long 
short-term memory (LSTM) are generally exploited for medical textual notes and 
isolated structured EHR data for the DRP process [12]. Moreover, the initiation of 
large language models (LLMs) and their application in healthcare domains such 
as BioBERT, MedBERT, and ClinicalBERT has been used to procedure textual EHR 
data in different healthcare tasks [13, 14]. Therefore, the integration of LLMs with 
other DLs has established the best prediction performance in healthcare utilizing 
the strength of LLM in natural language processing (NLP) [15]. Modeling the longi-
tudinal and temporal dependencies in EHR is difficult for DRP due to patient data 
being irregular or high-dimensional, which makes it complex to capture meaningful 
patterns. To address this study, this study proposes a latent Dirichlet state predictive 
clustering (LDSPC) that uses unstructured medical notes to enhance DRP. By clus-
tering patient states over time, the LDSPC captures dynamic health trends, which 
leading to accurate and reliable predictions for healthcare applications. The primary 
contributions are stated as follows:

•	 The LDSPC is proposed in this study using medical notes. It is considered for 
medical notes unstructured text data type and preserves probabilistic model 
characteristics to utilize neural network representation power.

•	 The cluster probability is employed as weights to acquire weighted embeddings of 
the cluster center that is utilized for DRP. The characteristic of associated clusters 
is interpreted to understand every latent Dirichlet state that is updated by latent 
Dirichlet state predictive clustering.

The literature review discusses the previous research related to DRP and iden-
tifies the research gaps. The proposed methodology discusses the detailed descrip-
tion of unstructured medical notes for DRP in EHR. Moreover, the LDSPC provides 
better accuracy by considering unstructured text data types for medical notes. The 
conclusion summarizes key findings and significance with potential directions for 
future research.

2	 LITERATURE	REVIEW

The existing research for DRP in the healthcare sector is analyzed below with its 
advantages and limitations.
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Shuai Niu et al. [16] presented enhanced healthcare decision support by 
explainable AI for DRP. The non-parametric predictive clustering-based DRP was 
integrated into Dirichlet process-based predictive clustering (DirPred) through neu-
ral networks. The attention mechanism was integrated into DPMM to improve the 
model’s interpretability, which enables the capture of local-level to cluster-level evi-
dence through predictive clustering. The DirPred effectively captured longitudinal 
EHR data for disease prediction. However, DirPred requires prior specification of 
clusters because it relies on prior assumptions about structural data, which leads 
to suboptimal clustering results. Ardeshir Mansouri et al. [17] suggested a hybrid 
ML approach for ICU patient mortality prediction. Initially, the dataset was created 
and given to convolutional neural network (CNN) and its output was recorded into 
the probability of mortality. The temporal features are filtered through a filtering 
approach, and dual values are produced for each feature. The XGBoost classifier 
performed final classification, which helps the medical community to make accurate 
and immediate decisions. The XGBoost does not capture longitudinal, dynamic, and 
interactive patterns, which was crucial for accurate disease risk protection.

Shuai Niu et al. [18] implemented a deep state-space model with the predictive 
clustering for the risk prediction (DSPCR). Initially, the prior module learns 
the patient’s latent state transition for producing the present latent state according 
to the past one. The posterior estimates latent state posterior distribution. The like-
lihood produces prediction by predictive clustering algorithm exploitation for DRP. 
The DSPCR required high training to accurately capture temporal patterns and 
dependencies, which leads to high computational time. Sicen Liu et al. [19] devel-
oped a multi-channel fusion long short-term memory (MCF-LSTM) for DRP in EHRs. 
The MCF-LSTM models the correlation among various medical events through 
numerous channels. The task-wise fusion model was developed in that a gated net-
work was applied to designate data and transfer among events. Moreover, irregular 
temporal space among nearest clinical visits is demonstrated in separate channels 
that were integrated by another risk. The MCF-LSTM struggled with highly vari-
able and missing data among channels because it relies on a structural sequence of 
input for accurate risk prediction, which failed to capture significant patterns and 
dependencies.

Shuai Niu et al. [20] introduced an EHR-KnowGen, which incorporates various 
modalities into a combined feature space through soft prompts and influences LLMs 
for producing disease diagnosis. Through integrating external domain knowledge 
from various levels, multimodal information was extracted and combined, which 
outputs accurate diagnosis generation. The EHR-KnowGen has different modali-
ties that have domain discrepancies thereby reducing overall performance. Rawan 
AlSaad et al. [21] suggested temporal-self attention for DRP in HER using non-linear 
stationary kernel approximation. The developed self-attention with non-stationary 
kernel approximation was applied to capture both temporal relations and contextual 
information among patient visits in EHR. This model does not unlock the potential to 
manage variable time gap data and its influence on predicted results. It was general 
to explore more effective alternatives to encoding that were capable of embedding 
non-stationary temporal patterns into higher-dimensional spaces.

From the overall analysis, the existing techniques required prior specification of 
clusters because they rely on prior assumptions about structural data. Those models 
are unable to capture dynamic and longitudinal patterns, which was crucial for accu-
rate DRP. Required huge training to capture temporal patterns and dependencies. 
Struggled with high missing data among different channels due to the structural 
sequence of input which fails to capture significant dependencies and patterns.  
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To overcome this drawback, this study proposed an LDSPC for DRP. Here, the cluster 
probability is applied as weights to obtain a weighted embedding presentation. The 
associated cluster characteristic is construed to understand each latent Dirichlet state.

3	 PROPOSED	METHODOLOGY

Fig. 1. Procedure of proposed methodology

In this study, LDSPC is proposed for DRP in EHRs. The MIMIC-III and N2C2-2014 
dataset is used, which contains unstructured medical notes. The datasets are prepro-
cessed by non-English characters and stop word removal. Then, encoding the data 
to acquire a latent Dirichlet state generates latent Dirichlet state cluster distribution, 
and DRP stages are involved. This process enables effective and efficient DRP using 
unstructured medical notes from healthcare. Figure 1 represents the procedure of 
the proposed methodology.

3.1	 Dataset

The medical information mart for intensive care-III (MIMIC-III) [22] and N2C2-
2014 datasets are used here, which are publicly accessible datasets. The detailed 
descriptions are explained in the following subsection.

MIMIC-III: This dataset contains de-identified healthy data for patients hospi-
talized at the ICU at Beth Israel Deaconess Medical Center in Boston, Massachusetts. 
A similar data-splitting strategy was employed to attain training and test datasets 
using a 4:1 ratio.

N2C2-2014: This dataset contains de-identified EHRs and related annotations 
from various hospitals, which comprise 1,304 medical notes from 296 individuals. 
A similar data-splitting strategy was employed to attain training and test datasets 
using a 4:1 ratio. Table 1 summarizes the dataset.

Table 1. Summary of dataset

Dataset MIMIC-III N2C2-2014

Patients 38,597 296

Avg hospital visits 2.61 4.42

EHRs 53,423 1,304

Longitudinal 9,759 1,304

https://online-journals.org/index.php/i-joe
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3.2	 Preprocessing

The medical notes preprocessing includes non-English characters and stop word 
removal. These preprocessing steps are explained below:

Non-English characters removal: The non-alphabetic characters such as punc-
tuation, special symbols, and numbers are removed by using regular expressions. 
This process is essential for DRP to ensure data consistency and uniformity, which 
helps to achieve accurate prediction.

Stop-words removal: The stop-words have less semantic meaning, and they 
were removed to focus on important words in text such as “is”, “and”, and “the”. 
This process enables us to focus on informative and meaningful terms related to 
disease risk which enhances accuracy and efficiency by eliminating noise. Table 2 
summarizes the preprocessing steps.

Table 2. Summary of preprocessing steps

Preprocessing
Steps Description Example 

Before the Step
Example 

After the Step Purpose

Non-English 
characters removal

Uses a regular expression to 
remove punctuation, special 
symbols, and numbers

“Patient Age: 50.” “PatientAge” Ensures better 
prediction  
results

Stop-Words removal Removes the stop words 
such as “was”, “the”, “and”

“The patient’s 
condition 
is critical”

“Patient critical” Reduces  
the noise

3.3	 Latent	Dirichlet	state	predictive	clustering

Assume every patient n is considered as an EHR sequence gathered from numer-
ous hospital visits where every visit data sample t is signified as z

t

n. The N
t

n is several 
words of the patient n at visit t in medical notes. Tn is the total number of visitors. 
Equation (1) denotes the occurrence of various disease risks observed at numerous 
visits where every vector y

t

n has 0 and 1 values. In the DRP task of patient n, xn is 
applied to produce the prediction value of yn. The LDSPC implements the sequential 
Bayesian updating approach by prior from alteration state and likelihood model 
defined through the newest examination to update the present latent Dirichlet state 
via calculating Bayes rule-based posterior distribution. In this study, this approach is 
implemented to gather patient’s latent spate x

t

n at every hospital visit t.

 y y y xn n

t

n

T

n

n

� � �� �1
, ,� , ,�  (1)

Figure 2 shows the outline of the proposed approach. The prior module produces 
x
t

n of prior distribution from past latent Dirichlet states. The posterior module esti-
mates x

t

n of posterior distribution through encoding data involved in z
t

n . The likeli-
hood module implements a clustering algorithm to produce y

t

n observations. The µ
t

n 
and σ

t

n are the mean and standard deviation of latent Dirichlet states, here (p) and 
(q) are prior and posterior subscripts. x̂

t

n is a latent Dirichlet state sampled vector, c1:K 
includes cluster center embeddings K, o

t

n and its s
t

n standardized form denotes sim-
ilarity among x̂

t

n and ck for every k ∈ {1, …, K}. The u
t

n is a c1:K the weighted average, 
here weight is specified through s

t

n and predicted risk vector is ŷ
t

n.
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Fig. 2. Outline of proposed approach

Posterior module. In the posterior module, the variational approximation is  
q x x z

t

n

t

n

t

n

� �� �|
1
,�  where, x x x

t

n n

t

n

� �
� ��� ��1 1 1

, ,�  which contains the latent Dirichlet state of 
every previous visitor. Particularly, the posterior is recursive through the attentive 
encoder network and FC network by x

t

n

−1 and Zt. For the embedding process, robustly 
optimized bidirectional encoder representations from the transformer approach 
(RoBERTa) and co-attention mechanism (CoAM) are applied to embed medical notes 
x
t

n into latent representation. The RoBERTa is applied for the encoding process which 
can enhance clinical text interpretation and patient records, which leads to accu-
rate risk prediction. The CoAM enables concentration on relevant parts of input 
text by attending to clinical features and disease-related data simultaneously, which 
enhances the capability to extract and integrate significant features from various 
sources. The embedding data is signified as E R

t

n D N
t
n

� � , where D is a size of embedding. 
For the integrating step, the CoAM is adopted, which assists in capturing data 
involved in sequential words. Initially, the scaled-dot similarity matrix G R

t

n N N
t
n

t
n

� �  is 
applied to the present similarity among every token from E

t

n as equation (2),

 G

FC E FC E

t

n
t

n
T

t

n

�
� �� � � �

1 2

D

 (2)

Where, FC1 and FC2 are Fully Connected (FC) layers, (·)T is transposition function. 
Max-pooling with SoftMax activation is applied to produce a focused medical note 
embedding vector e R

t

n D∈  as equation (3–4),

 g SoftMax MaxPool G
t

n

t

n� � �� �� (3)

 e g FC E
t

n

i

N

t i

n

t i

n

t
n

� � �
�
�

1

3, ,
 (4)
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Here, FC3 is FC layer, g R
t

n N
t
n

∈  is a score vector of CoAM, E
t i

n

,  is a column i of E
t

n, 
g
t i

n

,  is an element i of g
t

n. The e
t

n contains weighted data from z
t

n, the next stage is to 
integrate e

t

n with x
t

n

−1 for producing w
t

n as equation (5),

 w FC g e BiGRU x
t

n

t

n

t

n� � � �� �� ��4 1
� (5)

Here, FC4 is FC layer, g is a forget gate implemented from LSTM, ⊕ is a concatena-
tion operator. The w

t

n is a weighted representation fed into the FC network of FC5 and 
FC6 for producing mean and standard deviations such as µ

t

n q( ) and σ
t

n q( ). The sample 
state vector is given in equation (6),

 ˆ ( ) ( )x
t

n

t

n q

t

n q� � �� � �  (6)

where ε is a random noise.
Prior module. In the Bayesian sequential inference framework, the state tran-

sition model is applied to produce a prior circulation of the present latent Dirichlet 
state from the past state. Therefore, prior circulation of the patient n at time t is in 
equation (7–9),

 p x x
t

n

t

n

t

n p

t

n p

�
� �� � � � ��

|
1
� �N~ ,( ) ( )  (7)

 �
t

n p

t

nFC GRU x( )� � �� ��5 1
 (8)

 �
t

n p

t

nFC GRU x( )� � �� ��6 1
 (9)

Here, µ
t

n p( ) and σ
t

n p( ) are mean and standard deviation of prior modules which are 
recursive through GRU and dual FC layers such as FC5 and FC6. The FC5 is applied to 
produce the mean vector, and FC6 is applied to produce the standard deviation.

Likelihood module. In the likelihood module, predictive clustering is integrated 
into the LDSPC model. Every latent Dirichlet is clustered into K groups in which 
embedding centers are as c1:K = [c1, …, ck, …, cK]. Every sampled latent Dirichlet state x̂

t

n 
is approached as the weighted average of c1:K. Here, s

t

n is established through similar-
ity among latent Dirichlet states to every cluster embedding. The center embeddings 
weighted average u

t

n is applied for DRP. The initial step is for the cluster’s Latent 
Dirichlet state detection and derive embeddings of cluster centers. The possibilities 
of allocating x̂

t

n to kth cluster is estimated through calculating similarity among x̂
t

n 
and ck based on distribution t as equation (10),

 o

x c

x c

t

n

t

n

k

k

K

t

n

k

�
� ��

�
�

�
�
�

� ��
�
�

�
�
�

�
�

�

�
�

� ��

1

1

2

2

1

2

1 2

2

1

ˆ

ˆ

/

/

�

�

�

�
22

� (10)

Where α is a degree of freedom in distribution t, x̂
t

n is the latent representation 
of x

t

n produced through the posterior module. Then, the SoftMax layer is applied to 
normalize o o o

t

n

t

n

t

nK� ��� ��
1 ; ;  as equation (10), The cluster center embedding weighted 

average as equation (11–12),

 s SoftMax o
t

n

t

n� � �  (11)

https://online-journals.org/index.php/i-joe


 86 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 15 (2024)

Yavanamandha and Rao

 u c s
t

n

K

T

t

n= ( )
:1

 (12)

Here, c R
K

K D

1:
� � , K is a truncation parameter, u R

t

n D∈  and (·)T is a transposition 
function, then u

t

n is fed into FC layer FC7 to get risk prediction results as equation (13),

 ŷ FC u
t

n

t

n� � �
7

 (13)

The log-likelihood of perceiving every element of y
t

n by specified latent Dirichlet 
state z

t

n are calculated as equation (14),

 logp y z y y y y
t j

n

t

n

t j

n

t j

n

t j

n

t j

n

� , , , , ,
log logˆ ˆ|� � � � � � �� � �� �1 1  (14)

The evidence lower bound (ELB) through the adoption of Bayesian variational 
inference as equation (15),

 L
N

E log p y x JSD q x z
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n

N

q x z

n n n n

n n
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t

T

t

n

t

n

t

n

t

n

t

n

n

JSD q x x z p x x

2

1 1
| |, 

�

 (15)

Where, JSD(·) calculates the Jensen-Shannon divergence among dual distribution. 
The p y x

t

n

t

n

�
|� � is the likelihood of perceiving y

t

n provided latent Dirichlet state x
t

n.  
When, t > 1, q x x z

t

n

t

n

t

n

� �� �|
1
,  and p x x

t

n

t

n

�
|

�� �
1

 are posterior and prior of x
t

n. The pθ(z1) 
and q z xn n

� � �
1 1
|  are prior and posterior for xn1. The ∅ and θ are neural network param-

eters for distribution. Figure 3 explains the flowchart of the proposed approach.

Fig. 3. Flowchart of proposed approach
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4	 EXPERIMENTAL	RESULTS

The LDSPC performance is simulated in the environment of Python with sys-
tem requirements of i5 processor, 16GB RAM, and Windows 10 OS. The results are 
crucial for healthcare and the broader community as described by the capability of 
LDSPC to enhance the DRP from EHR. Particularly in addressing challenges in han-
dling unstructured medical nodes and longitudinal data modeling. This enhances 
the accurate and reliable predictive healthcare system in personalized involvements 
that leads to enhanced patient outcomes and reduced healthcare costs in medical 
settings. The performance is estimated with accuracy, micro precision, micro recall, 
micro f1-score, macro precision, macro recall, and macro f1-score which are given 
in equation (16–22).

 Accuracy
TP TN

TP TN FP FN
�

�
� � �

 (16)

 Micro Precision

TP

TP FP

i
i

i
i

i
i

�
�

�
� �

 (17)

 Micro Recall

TP

TP FN

i
i

i
i

i
i

�
�

�
� �

 (18)

 Micro F score
Micro Precision Micro Recall

Micro Precisi
�

� �

�
1

2
� �

� �
oon Micro Recall� �

 (19)

 MacroPrecision

TP

TP FP

L

i
i

i
i

i
i

�
�

�
� �  (20)

 Macro Recall

TP

TP FN

L

i
i

i
i

i
i

�
�

�
� �  (21)

 Macro F score
Macro Precision Macro Recall

Macro Precisi
�

� �

�
1

2
� �

� �
oon Macro Recall� �

 (22)

Where, True Positive (TP), True Negative (TN), False Positive (FP) and False Negative 
(FN) are TP, TN, FP and FN, i and L are class index and number of classes.

4.1	 Quantitative	and	qualitative	analysis

The LDSPC performance is calculated through accuracy, micro precision, micro 
recall, micro f1-score, macro precision, macro recall, macro f1-score, and compu-
tation time. Tables 3 and 4 denote the various clustering results for MIMIC-III and 
N2C2-2014 datasets.
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Table 3. Performance on MIMIC-III dataset

Method
Micro Macro

Accuracy
Precision Recall F1-Score Precision Recall F1-Score

DSPC 0.8866 0.8952 0.8908 0.8846 0.8919 0.8882 0.9273

DSSPC 0.9035 0.9162 0.9098 0.9012 0.9128 0.9069 0.9467

HDSPC 0.9251 0.9316 0.9283 0.9164 0.9186 0.9174 0.9571

LSPC 0.9364 0.9437 0.9405 0.9253 0.9349 0.9302 0.9638

Proposed   
LDSPC

0.9538 0.9829 0.9681 0.9462 0.9816 0.9635 0.9864

0.8

0.84

0.88

0.92

0.96

1

Precision Recall F1-Score Precision Recall F1-Score

Micro Macro

Accuracy

Va
lu

es

Performance Metrics

DSPC DSSPC HDSPC LSPC Proposed LDSPC

Fig. 4. Performance of LDSPC on MIMIC-III dataset

In Table 3 and Figure 4, for the MIMIC-III dataset, LDSPC performance is 
calculated and compared with other techniques such as density-based spatial 
predictive clustering (DSPC), deep state space predictive clustering (DSSPC), hier-
archical Dirichlet state predictive clustering (HDSPC), and latent state predictive 
clustering (LSPC). The LDSPC performance is estimated through seven perfor-
mance metrics. The LDSPC achieves 0.9864 accuracy, 0.9538 micro precision, 
0.9829 micro recall, 0.9681 micro f1-score, 0.9462 micro precision, 0.9816 macro 
recall, and 0.9635 macro f1-score for the MIMIC-III dataset, which is better than 
existing techniques.

Table 4. Performance on N2C2-2014 dataset

Method
Micro Macro

Accuracy
Precision Recall F1-Score Precision Recall F1-Score

DSPC 0.8952 0.8912 0.8931 0.8826 0.8816 0.8821 0.9047

DSSPC 0.9138 0.9167 0.9152 0.9064 0.9018 0.9040 0.9238

HDSPC 0.9364 0.9352 0.9358 0.9251 0.9239 0.9245 0.9486

LSPC 0.9522 0.9646 0.9583 0.9487 0.9491 0.9489 0.9527

Proposed  
LDSPC

0.9667 0.9683 0.9674 0.9536 0.9542 0.9539 0.9694
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Fig. 5. Performance of LDSPC on N2C2-2014 dataset

In Table 4 and Figure 5, for the N2C2-2014 dataset, LDSPC performance is calcu-
lated and compared with other techniques such as DSPC, DSSPC, HDSPC, and LSPC. 
The LDSPC performance is estimated through seven performance metrics. The pro-
posed LDSPC achieves 0.9694 accuracy, 0.9667 micro precision, 0.9683 micro recall, 
0.9674 micro f1-score, 0.9536, micro precision 0.9542 macro recall, and 0.9539 
macro f1-score for the N2C2-2014 dataset, which is better than existing techniques.

In Figure 6, LDSPC performance is calculated and compared with other tech-
niques such as DSPC, DSSPC, HDSPC, and LSPC. The LDSPC performance is estimated 
through computation time. The LDSPC achieves less computation time of 1.76s and 
2.13s for MIMIC-III and N2C2-2014 datasets, which is better than existing techniques.

Fig. 6. Computation time (s) of the proposed approach

4.2	 Comparative	analysis

The LDSPC performance is estimated and compared with existing techniques 
such as DirPred [16], DSPCR [18], and EHR-KnowGen [20]. All seven performance 
metrics are considered for comparison. The LDSPC achieves 0.9864 accuracy, 0.9538 
micro precision, 0.9829 micro recall, 0.9681 micro f1-score, 0.9462 micro precision 
0.9816 macro recall, and 0.9635 macro f1-score for the MIMIC-III dataset, which is 
better as signified in Table 5. The LDSPC achieves 0.9694 accuracy, 0.9667 micro 
precision, 0.9683 micro recall, 0.9674 micro f1-score, 0.9536 micro precision, 0.9542 
macro recall, and 0.9539 macro f1-score for the N2C2-2014 dataset, which is better 
as signified in Table 6.

https://online-journals.org/index.php/i-joe


 90 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 15 (2024)

Yavanamandha and Rao

Table 5. Comparison on MIMIC-III dataset

Method
Micro Macro

Accuracy
Precision Recall F1-Score Precision Recall F1-Score

DirPred [16] 0.8722 0.9340 0.9022 0.8714 0.9307 0.8997 0.6041

DSPCR [18] 0.8272 0.9797 0.8971 0.8262 0.9768 0.8952 0.5651

EHR-KnowGen [20] 0.2742 0.3228 0.2965 0.2354 0.2537 0.2376 0.3813

Proposed LDSPC 0.9538 0.9829 0.9681 0.9462 0.9816 0.9635 0.9864

Table 6. Comparison on N2C2-2014 dataset

Method
Micro Macro

Accuracy
Precision Recall F1-Score Precision Recall F1-Score

DirPred [16] 0.9270 0.9379 0.9323 0.9209 0.9360 0.9278 0.7050

DSPCR [18] 0.9093 0.9330 0.9210 0.9042 0.9260 0.9140 0.6432

EHR-KnowGen [20] 0.9449 0.9534 0.9492 0.9389 0.9459 0.9422 0.7826

Proposed LDSPC 0.9667 0.9683 0.9674 0.9536 0.9542 0.9539 0.9694

4.3	 Discussion

The results of LDSPC are analyzed with different clustering approaches for MIMIC-III 
and N2C2-2014 datasets. The drawbacks of existing research are DirPred [16] required 
prior requirement of clusters due to its prior assumption about structural data that 
leads to suboptimal clustering performance. The DSPCR [18] required extensive train-
ing to capture temporal patterns and dependencies accurately, which led to huge 
computation time. The EHR-KnowGen [20] has various modalities that have domain 
discrepancies, thereby reducing overall performance. In this work, LDSPC is proposed 
for DRP in healthcare. The RoBERTa is applied for the encoding process, which can 
enhance clinical text interpretation and patient records, which leads to accurate risk 
prediction. The CoAM enables concentration on relevant parts of input text by attend-
ing to clinical features and disease-related data simultaneously, which enhances the 
capability to extract and integrate significant features from various sources. The LDSPC 
achieves better accuracy of 0.9864 and 0.9694 for MIMIC-III and N2C2-2014 datasets, 
respectively, when compared to DirPred [16], DSPCR [18], and EHR-KnowGen [20].

5	 CONCLUSION

The LDSPC is proposed in this study for DRP in healthcare using medical notes. 
This process includes three modules, such as posterior, prior, and likelihood. The 
posterior module utilized an attentive encoder for extracting data from unstructured 
medical notes. Moreover, the clustering approach is integrated into the similarity 
module to learn the patient’s useful representation of the latent Dirichlet state. These 
latent states are gathered into numerous cluster center weighted average, which are 
applied for DRP. The encoder with CoAM is used for encoding raw medical notes from 
actual language space to latent presentation. The datasets contain unstructured med-
ical notes that are preprocessed by non-English characters and stop word removal 
processes. The LDSPC achieves better accuracy of 0.9864 and 0.9694 for MIMIC-III 
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and N2C2-2014 datasets, respectively. Exploring divergence and hybrid clustering 
approaches for DRP leads to an accurate and computationally efficient model that 
enhances the scalability and predictive performance in managing complex health-
care data. In the future, this study suggests to exploring divergence and hybrid clus-
tering approaches, which further enhance the accuracy and computation efficiency.
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